cellCellSimulate
functionscTensor 2.2.0
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R version 4.1.0 (2021-05-18)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] AnnotationHub_3.0.0
## [2] BiocFileCache_2.0.0
## [3] dbplyr_2.1.1
## [4] scTGIF_1.6.0
## [5] Homo.sapiens_1.3.1
## [6] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [7] org.Hs.eg.db_3.13.0
## [8] GO.db_3.13.0
## [9] OrganismDbi_1.34.0
## [10] GenomicFeatures_1.44.0
## [11] AnnotationDbi_1.54.0
## [12] LRBase.Mmu.eg.db_2.0.0
## [13] SingleCellExperiment_1.14.0
## [14] SummarizedExperiment_1.22.0
## [15] Biobase_2.52.0
## [16] GenomicRanges_1.44.0
## [17] GenomeInfoDb_1.28.0
## [18] IRanges_2.26.0
## [19] S4Vectors_0.30.0
## [20] BiocGenerics_0.38.0
## [21] MatrixGenerics_1.4.0
## [22] matrixStats_0.58.0
## [23] scTensor_2.2.0
## [24] RSQLite_2.2.7
## [25] LRBase.Hsa.eg.db_2.0.0
## [26] LRBaseDbi_2.2.0
## [27] BiocStyle_2.20.0
##
## loaded via a namespace (and not attached):
## [1] Hmisc_4.5-0 ica_1.0-2
## [3] Rsamtools_2.8.0 foreach_1.5.1
## [5] lmtest_0.9-38 crayon_1.4.1
## [7] spatstat.core_2.1-2 MASS_7.3-54
## [9] nlme_3.1-152 backports_1.2.1
## [11] GOSemSim_2.18.0 MeSHDbi_1.28.0
## [13] rlang_0.4.11 XVector_0.32.0
## [15] ROCR_1.0-11 irlba_2.3.3
## [17] nnTensor_1.0.7 filelock_1.0.2
## [19] GOstats_2.58.0 BiocParallel_1.26.0
## [21] rjson_0.2.20 tagcloud_0.6
## [23] bit64_4.0.5 glue_1.4.2
## [25] sctransform_0.3.2 spatstat.sparse_2.0-0
## [27] dotCall64_1.0-1 spatstat.geom_2.1-0
## [29] tcltk_4.1.0 DOSE_3.18.0
## [31] tidyselect_1.1.1 SeuratObject_4.0.1
## [33] fitdistrplus_1.1-3 XML_3.99-0.6
## [35] tidyr_1.1.3 zoo_1.8-9
## [37] GenomicAlignments_1.28.0 xtable_1.8-4
## [39] magrittr_2.0.1 evaluate_0.14
## [41] ggplot2_3.3.3 zlibbioc_1.38.0
## [43] rstudioapi_0.13 miniUI_0.1.1.1
## [45] bslib_0.2.5.1 rpart_4.1-15
## [47] fastmatch_1.1-0 ensembldb_2.16.0
## [49] treeio_1.16.0 maps_3.3.0
## [51] fields_12.3 shiny_1.6.0
## [53] xfun_0.23 cluster_2.1.2
## [55] tidygraph_1.2.0 TSP_1.1-10
## [57] KEGGREST_1.32.0 tibble_3.1.2
## [59] interactiveDisplayBase_1.30.0 ggrepel_0.9.1
## [61] biovizBase_1.40.0 ape_5.5
## [63] listenv_0.8.0 dendextend_1.15.1
## [65] Biostrings_2.60.0 png_0.1-7
## [67] future_1.21.0 withr_2.4.2
## [69] bitops_1.0-7 ggforce_0.3.3
## [71] RBGL_1.68.0 plyr_1.8.6
## [73] GSEABase_1.54.0 AnnotationFilter_1.16.0
## [75] pillar_1.6.1 cachem_1.0.5
## [77] graphite_1.38.0 vctrs_0.3.8
## [79] ellipsis_0.3.2 generics_0.1.0
## [81] plot3D_1.3 MeSH.Aca.eg.db_1.15.0
## [83] outliers_0.14 tools_4.1.0
## [85] foreign_0.8-81 entropy_1.3.0
## [87] munsell_0.5.0 tweenr_1.0.2
## [89] fgsea_1.18.0 DelayedArray_0.18.0
## [91] fastmap_1.1.0 compiler_4.1.0
## [93] abind_1.4-5 httpuv_1.6.1
## [95] rtracklayer_1.52.0 Gviz_1.36.0
## [97] plotly_4.9.3 GenomeInfoDbData_1.2.6
## [99] gridExtra_2.3 lattice_0.20-44
## [101] deldir_0.2-10 visNetwork_2.0.9
## [103] AnnotationForge_1.34.0 utf8_1.2.1
## [105] later_1.2.0 dplyr_1.0.6
## [107] jsonlite_1.7.2 concaveman_1.1.0
## [109] scales_1.1.1 graph_1.70.0
## [111] tidytree_0.3.3 pbapply_1.4-3
## [113] genefilter_1.74.0 lazyeval_0.2.2
## [115] promises_1.2.0.1 MeSH.db_1.15.0
## [117] latticeExtra_0.6-29 goftest_1.2-2
## [119] spatstat.utils_2.1-0 reticulate_1.20
## [121] checkmate_2.0.0 rmarkdown_2.8
## [123] cowplot_1.1.1 schex_1.6.0
## [125] MeSH.Syn.eg.db_1.15.0 webshot_0.5.2
## [127] Rtsne_0.15 dichromat_2.0-0
## [129] BSgenome_1.60.0 uwot_0.1.10
## [131] igraph_1.2.6 survival_3.2-11
## [133] yaml_2.2.1 plotrix_3.8-1
## [135] htmltools_0.5.1.1 memoise_2.0.0
## [137] VariantAnnotation_1.38.0 rTensor_1.4.8
## [139] BiocIO_1.2.0 Seurat_4.0.1
## [141] seriation_1.2-9 graphlayouts_0.7.1
## [143] viridisLite_0.4.0 digest_0.6.27
## [145] assertthat_0.2.1 ReactomePA_1.36.0
## [147] mime_0.10 rappdirs_0.3.3
## [149] registry_0.5-1 spam_2.6-0
## [151] future.apply_1.7.0 misc3d_0.9-0
## [153] data.table_1.14.0 blob_1.2.1
## [155] cummeRbund_2.34.0 splines_4.1.0
## [157] Formula_1.2-4 ProtGenerics_1.24.0
## [159] RCurl_1.98-1.3 hms_1.1.0
## [161] colorspace_2.0-1 base64enc_0.1-3
## [163] BiocManager_1.30.15 aplot_0.0.6
## [165] nnet_7.3-16 sass_0.4.0
## [167] Rcpp_1.0.6 bookdown_0.22
## [169] RANN_2.6.1 MeSH.PCR.db_1.15.0
## [171] enrichplot_1.12.0 fansi_0.4.2
## [173] parallelly_1.25.0 R6_2.5.0
## [175] grid_4.1.0 ggridges_0.5.3
## [177] lifecycle_1.0.0 curl_4.3.1
## [179] MeSH.Bsu.168.eg.db_1.15.0 leiden_0.3.7
## [181] MeSH.AOR.db_1.15.0 meshr_1.28.0
## [183] jquerylib_0.1.4 DO.db_2.9
## [185] Matrix_1.3-3 qvalue_2.24.0
## [187] RcppAnnoy_0.0.18 RColorBrewer_1.1-2
## [189] iterators_1.0.13 stringr_1.4.0
## [191] htmlwidgets_1.5.3 polyclip_1.10-0
## [193] biomaRt_2.48.0 purrr_0.3.4
## [195] shadowtext_0.0.8 reactome.db_1.76.0
## [197] mgcv_1.8-35 globals_0.14.0
## [199] htmlTable_2.2.1 patchwork_1.1.1
## [201] codetools_0.2-18 prettyunits_1.1.1
## [203] gtable_0.3.0 DBI_1.1.1
## [205] highr_0.9 tensor_1.5
## [207] httr_1.4.2 KernSmooth_2.23-20
## [209] stringi_1.6.2 progress_1.2.2
## [211] msigdbr_7.4.1 reshape2_1.4.4
## [213] farver_2.1.0 heatmaply_1.2.1
## [215] annotate_1.70.0 viridis_0.6.1
## [217] hexbin_1.28.2 fdrtool_1.2.16
## [219] Rgraphviz_2.36.0 magick_2.7.2
## [221] ggtree_3.0.0 rvcheck_0.1.8
## [223] restfulr_0.0.13 Category_2.58.0
## [225] scattermore_0.7 BiocVersion_3.13.1
## [227] bit_4.0.4 spatstat.data_2.1-0
## [229] scatterpie_0.1.6 jpeg_0.1-8.1
## [231] ggraph_2.0.5 babelgene_21.4
## [233] pkgconfig_2.0.3 MeSH.Hsa.eg.db_1.15.0
## [235] knitr_1.33