It simply constructs an boundaryFilter that removes the marginal events. It can be passed directly to ggcyto constructor. See the examples for details.
marginalFilter(fs, dims, ...)
fs | flowSet (not used.) |
---|---|
dims | the channels involved |
... | arguments passed to boundaryFilter |
an boundaryFilter
data(GvHD) fs <- GvHD[1] chnls <- c("FSC-H", "SSC-H") #before removign marginal events summary(fs[, chnls])#> $s5a01 #> FSC-H SSC-H #> Min. 59.0000 6.0000 #> 1st Qu. 115.0000 82.0000 #> Median 197.0000 145.5000 #> Mean 245.2456 202.8588 #> 3rd Qu. 338.0000 237.0000 #> Max. 1023.0000 1023.0000 #># create merginal filter g <- marginalFilter(fs, chnls) g#> boundaryFilter 'defaultBoundaryFilter' operating on channels: #> FSC-H (tolerance=2.22e-16, boundary=both) #> SSC-H (tolerance=2.22e-16, boundary=both)#> $s5a01 #> FSC-H SSC-H #> Min. 59.0000 6.0000 #> 1st Qu. 114.0000 80.0000 #> Median 193.0000 142.0000 #> Mean 236.7293 185.7215 #> 3rd Qu. 331.0000 228.0000 #> Max. 943.0000 1009.0000 #>#pass the function directly to ggcyto dataDir <- system.file("extdata",package="flowWorkspaceData") gs <- load_gs(list.files(dataDir, pattern = "gs_manual",full = TRUE)) # with marginal events ggcyto(gs, aes(x = CD4, y = CD8), subset = "CD3+") + geom_hex(bins = 64)# using marginalFilter to remove these events ggcyto(gs, aes(x = CD4, y = CD8), subset = "CD3+", filter = marginalFilter) + geom_hex(bins = 64)