
Package ‘gCrisprTools’
October 14, 2021

Type Package

Title Suite of Functions for Pooled Crispr Screen QC and Analysis

Version 1.20.0

Date 2019-04-09

Author Russell Bainer, Dariusz Ratman, Steve Lianoglou, Peter Haverty

Maintainer Russell Bainer <russ.bainer@gmail.com>

Description Set of tools for evaluating pooled high-throughput screening experiments,
typically employing CRISPR/Cas9 or shRNA expression cassettes. Contains methods for interro-
gating
library and cassette behavior within an experiment, identifying differentially abundant
cassettes, aggregating signals to identify candidate targets for empirical validation,
hypothesis testing, and comprehensive reporting.

License Artistic-2.0

Imports Biobase, limma, RobustRankAggreg, ggplot2, PANTHER.db,
rmarkdown, grDevices, graphics, stats, utils, parallel,
SummarizedExperiment

Suggests edgeR, knitr, grid, AnnotationDbi, org.Mm.eg.db,
org.Hs.eg.db, RUnit, BiocGenerics

RoxygenNote 7.1.0

VignetteBuilder knitr

Encoding UTF-8

biocViews ImmunoOncology, CRISPR, PooledScreens, ExperimentalDesign,
BiomedicalInformatics, CellBiology, FunctionalGenomics,
Pharmacogenomics, Pharmacogenetics, SystemsBiology,
DifferentialExpression, GeneSetEnrichment, Genetics,
MultipleComparison, Normalization, Preprocessing,
QualityControl, RNASeq, Regression, Software, Visualization

NeedsCompilation no

Depends R (>= 3.6)

git_url https://git.bioconductor.org/packages/gCrisprTools

git_branch RELEASE_3_13

1

2 R topics documented:

git_last_commit ea57239

git_last_commit_date 2021-05-19

Date/Publication 2021-10-14

R topics documented:
gCrisprTools-package . 3
aln . 3
ann . 4
ct.alignmentChart . 4
ct.applyAlpha . 5
ct.buildSE . 6
ct.CAT . 7
ct.DirectionalTests . 8
ct.filterReads . 9
ct.GCbias . 10
ct.generateResults . 11
ct.GREATdb . 13
ct.gRNARankByReplicate . 14
ct.guideCDF . 15
ct.inputCheck . 16
ct.makeContrastReport . 17
ct.makeQCReport . 18
ct.makeReport . 20
ct.makeRhoNull . 21
ct.multiGSEA . 22
ct.normalizeBySlope . 23
ct.normalizeFactoredQuantiles . 24
ct.normalizeFQ . 25
ct.normalizeGuides . 26
ct.normalizeMedians . 28
ct.normalizeNTC . 29
ct.normalizeSpline . 30
ct.PantherPathwayEnrichment . 31
ct.PRC . 33
ct.prepareAnnotation . 34
ct.rawCountDensities . 35
ct.resultCheck . 36
ct.ROC . 37
ct.signalSummary . 38
ct.stackGuides . 39
ct.targetSetEnrichment . 40
ct.topTargets . 41
ct.viewControls . 43
ct.viewGuides . 44
es . 45
essential.genes . 46

gCrisprTools-package 3

fit . 46
resultsDF . 47

Index 48

gCrisprTools-package gCrisprTools

Description

Pipeline for using CRISPR data at Genentech

aln Precalculated alignment statistics of a crispr screen

Description

Example alignment matrix file for the provided example Crispr screen. All sample, gRNA, and
Gene information has been anonymized and randomized.

Source

Genentech, Inc.

See Also

Please see ‘vignettes/Crispr_example_workflow.R’ for details.

Examples

data("aln")
head(aln)

4 ct.alignmentChart

ann Annotation file for a mouse Crispr library

Description

Example annotation file for the screen data provided in es. All sample, gRNA, and Gene informa-
tion has been anonymized and randomized.

Source

Genentech, Inc.

See Also

Please see ‘vignettes/Crispr_example_workflow.R’ for details.

Examples

data("ann")
head(ann)

ct.alignmentChart View a Barchart Summarizing Alignment Statistics for a Crispr Screen

Description

This function displays the alignemnt statistics for a pooled Crispr screen, reported directly from an
alignment statistic matrix.

Usage

ct.alignmentChart(aln, sampleKey = NULL)

Arguments

aln A numeric matrix of alignment statistics for a Crispr experiment. Corresponds
to a 4xN matrix of read counts, with columns indicating samples and rows in-
dicating the number of "targets", "nomatch", "rejections", and "double_match"
reads. Details about these classes may be found in the best practices vignette or
as part of the report generated with ct.makeReport().

sampleKey An optional ordered factor linking the samples to experimental variables. The
names attribute should exactly match those present in aln.

Value

A grouped barplot displaying the alignment statistics for each sample included in the alignment
matrix, which usually corresponds to all of the samples in the experiment.

ct.applyAlpha 5

Author(s)

Russell Bainer

Examples

data('aln')
ct.alignmentChart(aln)

ct.applyAlpha Apply RRA ’alpha’ cutoff to RRAalpha input

Description

The ’alpha’ part of RRAalpha is used to consider only the top guide-level scores for gene-level
statistics. Practically, all guides failing the cutoff get a pvalue of 1. There are three ways of deter-
mining which guides fail. See ’scoring’ below.

Usage

ct.applyAlpha(
stats,
RRAalphaCutoff = 0.1,
scoring = c("combined", "pvalue", "fc")

)

Arguments

stats three-column numeric matrix with pvalues for down and up one-sided test with
guide-level fold changes (coefficients from the relevant contrast).

RRAalphaCutoff A cutoff to use when defining gRNAs with significantly altered abundance dur-
ing the RRAa aggregation step, which may be specified as a single numeric
value on the unit interval or as a logical vector. When supplied as a logical
vector (of length equal to nrows(fit)), this parameter directly indicates the
gRNAs to include during RRAa aggregation. Otherwise, if scoring is set to
pvalue or combined, this parameter is interpreted as the maximum nominal p-
value required to consider a gRNA’s abundance meaningfully altered during the
aggregation step. If scoring is fc, this parameter is interpreted as the propor-
tion of the list to be considered meaningfully altered in the experiment (e.g., if
RRAalphaCutoff is set to 0.05, only consider the rankings of the 5 (or down-
regulated) gRNAs for the purposes of RRAa calculations).

scoring The gRNA ranking method to use in RRAa aggregation. May take one of three
values: pvalue, fc, or ’combined’. pvalue indicates that the gRNA ranking
statistic should be created from the (one-sided) p-values in the fit object. fc
indicates that the ranks of the gRNA coefficients should be used instead, and
combined indicates that that the coefficents should be used as the ranking statis-
tic but gRNAs are discarded in the aggregation step based on the corresponding
nominal p-value in the fit object.

6 ct.buildSE

Value

data.frame with guide-level pvals, fold change, and scores.deplete and scores.enrich which are the
input the RRAalpha

Author(s)

Russell Bainer

ct.buildSE Package Screen Data into a ‘SummarizedExperiment‘ Object

Description

Convenience function to package major components of a screen into a ‘SummarizedExperiment‘
container for downstream visualization and analysis. All arguments are optional except for ‘es‘.

Usage

ct.buildSE(
es,
sampleKey = NULL,
ann = NULL,
vm = NULL,
fit = NULL,
summaryList = NULL

)

Arguments

es An ‘ExpressionSet‘ of screen data. Required.

sampleKey a gCrisprTools ‘sampleKey‘ object, to be added to the ‘colData‘.

ann Annotation object to be packaged into the ‘rowData‘

vm A ‘voom‘-derived normalized object

fit a ‘MArrayLM‘ object containing the contrast information and model results

summaryList A named list of data.frames, returned by ct.generateResults. if you need
to generate one of these by hand for some reason, see the example resultsDF
object loaded in the example below.

Value

A ‘SummarizedExperiment‘ object.

Author(s)

Russell Bainer

ct.CAT 7

Examples

data('ann', 'es', 'fit', 'resultsDF')
ct.buildSE(es, ann = ann, fit = 'fit', summaryList = list('resA' = resultsDF, 'resB' = resultsDF))

ct.CAT Compare Two CRISPR Screens via a CAT plot

Description

This is a function for comparing the results of two screening experiments. Given two summaryDF,
the function places them in register with one another, generates a Concordance At The Top (CAT)
plot, and returns an invisible dataframe containing the relevant gene-level signals.

This function is conceptually similar to the ‘ct.ROC‘ and ‘ct.PRC()‘ functions, but is appropriate
when considering consistency of ranked values rather than an interchangeable set; the most common
use case is for comparing primary and replication screens, where the underlying technology and
selection criteria are expected to be highly similar. CAT plots are fundamentally about comparing
rankings, and so only targets in common between the two provided screens are considered. If the
totality of list overlap is important, consider using ‘ct.PRC()‘ or ‘ct.ROC()‘.

Note that ranking statistics in CRISPR screens are (usually) permutation-based, and so some gran-
ularity in the rankings is expected. This function does a little extra work to limit the influence of
this granularity and to ensure that hits are counted as soon as the requisite value of the ranking
statistic is reached regardless of where the target is located within the block of equally-significant
hits. Functionally, this means that the drawn curve is somewhat anticonservative in cases where the
target ranks are not well differentiated.

Usage

ct.CAT(
df1,
df2,
targets = c("geneSymbol", "geneID"),
enrich,
plot.it = TRUE,
plot.rho = TRUE

)

Arguments

df1 A dataframe summarizing the results of the screen, returned by the function
ct.generateResults.

df2 A dataframe summarizing the results of the screen, returned by the function
ct.generateResults.

targets Column of the provided summaryDF to consider. Must be geneID or geneSymbol.

enrich Logical indicating whether to test for enrichment or depletion.

8 ct.DirectionalTests

plot.it Logical indicating whether to compose the plot on the default device.

plot.rho Logical indicating whether to plot the Rho values in addition to the P-values,
which sometimes have better ranking properties.

Value

Invisibly, a data.frame containing the relevant summary stats for each target in both screens.

Author(s)

Russell Bainer

Examples

data('resultsDF')
cat <- ct.CAT(resultsDF, resultsDF[1:2000,], enrich = TRUE)
head(cat)

ct.DirectionalTests Compute Directional P-values from eBayes Output

Description

This function produces two sets of one-sided P-values derived from the moderated t-statistics pro-
duced by eBayes.

Usage

ct.DirectionalTests(fit, contrast.term = NULL)

Arguments

fit An object of class MArrayLM containing, at minimum, a df.residual slot con-
taining the appropriate degres of freedom for each test, and a t slot containing t
statistics.

contrast.term If a fit object with multiple coefficients is passed in, a string indiating the coef-
ficient of interest.

Value

A matrix object with two numeric columns, indicating the p-values quantifying the evidence for
enrichment and depletion of each feature in the relevant model contrast.

Author(s)

Russell Bainer

ct.filterReads 9

Examples

data('fit')
ct.DirectionalTests(fit)

ct.filterReads Remove low-abundance elements from an ExpressionSet object

Description

This function removes gRNAs only present in very low abundance across all samples of a pooled
Crispr screening experiment. In most cases very low-abundance guides are the result of low-level
contamination from other libraries, and often distort standard normalization approaches. This func-
tion trims gRNAs in a largely heuristic way, assuming that the majority of ’real’ gRNAs within the
library are comparably abundant in at least some of the samples (such as unexpanded controls), and
that contaminants are present at negligible levels. Specifically, the function trims the trim most
abundant guides from the upper tail of each log-transformed sample distribution, and then omits
gRNAs whose abundances are always less than 1/(2^log2.ratio) of this value.

Usage

ct.filterReads(
eset,
trim = 1000,
log2.ratio = 4,
sampleKey = NULL,
plot.it = TRUE,
read.floor = NULL

)

Arguments

eset An unnormalized ExpressionSet object containing, at minimum, a matrix of
gRNA counts accessible with exprs().

trim The number of gRNAs to be trimmed from the top of the distribution before
estimating the abundance range. Empirically, this usually should be equal to
about 2 to 5 percent of the guides in the library.

log2.ratio Maximum abundance of contaminant gRNAs, expressed on the log2 scale from
the top of the trimmed range of each sample. That is, log2.ratio = 4 means to
discard all gRNAs whose abundance is (1/2)^4 of the trimmed maximum.

sampleKey An (optional) sample key, supplied as an ordered factor linking the samples to
experimental variables. The names attribute should exactly match those present
in eset, and the control set is assumed to be the first level.

plot.it Logical value indicating whether to plot the adjusted gRNA densities on the
default device.

read.floor Optionally, the minimum number of reads required for each gRNA.

10 ct.GCbias

Value

An ExpressionSet object, with trace-abundance gRNAs omitted.

Author(s)

Russell Bainer

Examples

data('es')
ct.filterReads(es)

ct.GCbias Visualization of gRNA GC Content Trends

Description

This function visualizes relationships between gRNA GC content and their measured abundance or
various differential expression model estimates.

Usage

ct.GCbias(data.obj, ann, sampleKey = NULL, lib.size = NULL)

Arguments

data.obj An ExpressionSet or fit (MArrayLM) object to be analyzed for the presence of
GC content bias.

ann An annotation data.frame, used to estimate GC content for each guide. Guides
are annotated by row, and the object must minimally contain a target col-
umn containing a character vector that indicates the corresponding nucleotide
sequences.

sampleKey An optional sample key, supplied as a factor linking the samples to experimental
variables. The names attribute should exactly match those present in eset, and
the control set is assumed to be the first level. Ignored in the analysis of model
fit objects.

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

ct.generateResults 11

Value

An image relating GC content to experimental observations on the default device. If the provided
data.obj is an ExpressionSet, this takes the form of a scatter plot where the GC with a smoothed
trendline within each sample. If data.obj is a fit object describing a linear model contrast, then
four panels are returned describing the GC content distribution and its relationship to guide-level
fold change, standard deviation, and P-value estimates.

Author(s)

Russell Bainer

Examples

data('es')
data('ann')
data('fit')

ct.GCbias(es, ann)
ct.GCbias(fit, ann)

ct.generateResults Calculate results of a crispr screen from a contrast

Description

This is a wrapper function that enables direct generation of target-level p-values from a crispr screen.

Usage

ct.generateResults(
fit,
annotation,
RRAalphaCutoff = 0.1,
permutations = 1000,
contrast.term = NULL,
scoring = c("combined", "pvalue", "fc"),
permutation.seed = NULL

)

Arguments

fit An object of class MArrayLM containing, at minimum, a t slot with t-statistics
from the comparison, a df.residual slot with the corresponding residuals fo
the model fits, and an Amean slot with the respective mean abundances.

annotation An annotation file for the experiment. gRNAs are annotated by row, and must
minimally contain columns geneSymbol and geneID.

12 ct.generateResults

RRAalphaCutoff A cutoff to use when defining gRNAs with significantly altered abundance dur-
ing the RRAa aggregation step, which may be specified as a single numeric
value on the unit interval or as a logical vector. When supplied as a logical
vector (of length equal to nrows(fit)), this parameter directly indicates the
gRNAs to include during RRAa aggregation. Otherwise, if scoring is set to
pvalue or combined, this parameter is interpreted as the maximum nominal p-
value required to consider a gRNA’s abundance meaningfully altered during the
aggregation step. If scoring is fc, this parameter is interpreted as the propor-
tion of the list to be considered meaningfully altered in the experiment (e.g., if
RRAalphaCutoff is set to 0.05, only consider the rankings of the 5 (or down-
regulated) gRNAs for the purposes of RRAa calculations).
Note that this function uses directional tests to identify enriched or depleted
targets, and when RRAalphaCutoff is provided as a logical vector, only one of
these hypotheses is implicitly specified; this means that enrichment and deple-
tion cannot be .

permutations The number of permutations to use during the RRAa aggregation step.

contrast.term If a fit object with multiple coefficients is passed in, a string indiating the coef-
ficient of interest.

scoring The gRNA ranking method to use in RRAa aggregation. May take one of three
values: pvalue, fc, or ’combined’. pvalue indicates that the gRNA ranking
statistic should be created from the (one-sided) p-values in the fit object. fc
indicates that the ranks of the gRNA coefficients should be used instead, and
combined indicates that that the coefficents should be used as the ranking statis-
tic but gRNAs are discarded in the aggregation step based on the corresponding
nominal p-value in the fit object.

permutation.seed

numeric seed for permutation reproducibility. Default: NULL means to not set
any seed. This argument is passed through to ct.RRAaPvals.

Value

A dataframe containing gRNA-level and target-level statistics. In addition to the information present
in the supplied annotation object, the returned object indicates P-values and Q-values for the de-
pletion and enrichment of each gRNA and associated target, the median log2 fold change estimate
among all gRNAs associated with the target, and Rho statistics that are calculated internally by the
RRAa algorithm that may be useful in ranking targets that are considered significant at a given alpha
or false discovery threshold.

A ‘resultsDF‘ formatted dataframe containing gene-level statistics.

Author(s)

Russell Bainer

Examples

data('fit')
data('ann')
output <- ct.generateResults(fit, ann, permutations = 10)

ct.GREATdb 13

head(output)
p = seq(0, 1, length.out=20)
fc = seq(-3, 3, length.out=20)
fc[2] = NA
fc[3] = -20
stats = data.frame(
Depletion.P=p,
Enrichment.P=rev(p),
fc=fc

)
ct.applyAlpha(stats,scoring="combined")

ct.GREATdb Update a gene-centric msdb object for GREAT-style enrichment anal-
ysis using a specified CRISPR annotation.

Description

Update a gene-centric msdb object for GREAT-style enrichment analysis using a specified CRISPR
annotation.

Usage

ct.GREATdb(
annotation,
gsdb = getMSigGeneSetDb(c("h", "c2"), "human"),
minsize = 10

)

Arguments

annotation an annotation object returned by ct.prepareAnnotation().

gsdb A gene-centric GeneSetDb object to conform to the relevant peakwise dataset.

minsize Minimum number of targets required to consider a geneset valid for analysis.

Value

A new GeneSetDb object with the features annotated genewise to pathways.

14 ct.gRNARankByReplicate

ct.gRNARankByReplicate

Visualization of Ranked gRNA Abundances by Replicate

Description

This function median scales and log2 transforms the raw gRNA count data contained in an Expres-
sionSet, and then plots the ordered expression values within each replicate. The curve colors are
assigned based on a user- specified column of the pData contained in the ExpressionSet. Optionally,
this function can plot the location of Nontargeting control guides (or any guides, really) within the
distribution.

Usage

ct.gRNARankByReplicate(
eset,
sampleKey,
annotation = NULL,
geneSymb = NULL,
lib.size = NULL

)

Arguments

eset An ExpressionSet object containing, at minimum, count data accessible by ex-
prs() and some phenoData.

sampleKey A sample key, supplied as a (possibly ordered) factor linking the samples to
experimental variables. The names attribute should exactly match those present
in eset, and the control set is assumed to be the first level.

annotation An annotation dataframe indicating the nontargeting controls in the geneID col-
umn.

geneSymb The geneSymbol identifier(s) in annotation that corresponds to gRNAs to be
plotted on the curves. If the provided value is not present in the geneSymbol,
nontargeting controls will be plotted instead.

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

Value

A waterfall plot as specified, on the default device.

Author(s)

Russell Bainer

ct.guideCDF 15

Examples

data('es')
data('ann')

#Build the sample key
library(Biobase)
sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference"))
names(sk) <- row.names(pData(es))

ct.gRNARankByReplicate(es, sk, ann, 'Ripk3')

ct.guideCDF View CDFs of the ranked gRNAs or Targets present in a crispr screen

Description

This function generates a plot relating the cumulative proportion of reads in each sample of a crispr
screen to the abundance rank of the underlying guides (or Targets). The purpose of this algorithm
is to detect potential distortions in the library composition that might not be properly controlled by
sample normalization (see also: ct.stackedGuides()).

Usage

ct.guideCDF(eset, sampleKey = NULL, plotType = "gRNA", annotation = NULL)

Arguments

eset An ExpressionSet object containing, at minimum, a matrix of gRNA abundances
extractable with the exprs() function.

sampleKey An optional sample key, supplied as an ordered factor linking the samples to
experimental variables. The names attribute should exactly match those present
in eset, and the control set is assumed to be the first level.

plotType A string indicating whether the individual guides should be displayed ("gRNA"),
or if they should be aggregated into target-level estimates ("Target") according
to the geneSymbol column in the annotation object.

annotation An optional data.frame containing an annotation object to be used to aggregate
the guides into targets. gRNAs are annotated by row, and must minimally con-
tain a column geneSymbol indicating the target elements.

Value

A CDF plot displaying the appropriate CDF curves on the default device.

Author(s)

Russell Bainer

16 ct.inputCheck

Examples

data('es')
ct.guideCDF(es)

ct.inputCheck Check compatibility of a sample key with a supplied object

Description

For many gCrisprTools functions, a sample key must be provided that specifies sample mapping to
experimental groups and specifies which of these contains control samples. This function checks
whether the specified sample key is of the proper format and has properties consistent matching the
specified object.

Usage

ct.inputCheck(sampleKey, object)

Arguments

sampleKey A named factor, where the levels indicate the experimental replicate groups
and the names match the colnames of the expression matrix contained in object.
The first level should correspond to the control samples, but obviously there is
no way to algorithmically control this.

object An ExpressionSet, EList, or matrix.

Value

A logical indicating whether the objects are compatible.

Author(s)

Russell Bainer

Examples

data('es')
library(limma)
library(Biobase)

#Build the sample key
sk <- relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference")
names(sk) <- row.names(pData(es))
ct.inputCheck(sk, es)

ct.makeContrastReport 17

ct.makeContrastReport Generate a Contrast report from a pooled CRISPR screen

Description

This is a function to generate an html Contrast report for a CRISPR screen, focusing on contrast-
level analyses collected from other functions in gCrisprTools. It is designed to be used ’as-is’, and
analysts interested in using different functionalities of the various functions should do that outside
of this wrapper script.

Usage

ct.makeContrastReport(
eset,
fit,
sampleKey,
results,
annotation,
comparison.id,
identifier,
contrast.subset = colnames(eset),
outdir = NULL

)

Arguments

eset An ExpressionSet object containing, at minimum, a matrix of gRNA abundances
extractable with the exprs() function and some named phenodata extractable
with pData().

fit A fit object for the contrast of interest, usually generated with lmFit.

sampleKey A sample key, supplied as an ordered factor linking the samples to experimental
variables. The names attribute should exactly match those present in eset, and
the control set is assumed to be the first level.

results A data.frame summarizing the results of the screen, returned by the function
ct.generateResults.

annotation An annotation object for the experiment. See the man page for ct.prepareAnnotation()
for details and example format.

comparison.id character with a name of the comparison.

identifier A character string to name the report and corresponding subdirectories. If pro-
vided, the final report will be called ’identifier.html’ and will be located in a
directory called identifier in the outdir. If NULL, a generic name

contrast.subset

character vector containing the sample labels to be used in the analysis; all ele-
ments must be contained in the colnames of the specified eset. including the
timestamp will be generated. Default: colnames(eset).

18 ct.makeQCReport

outdir An optional character string indicating the directory in which to generate the
report. If NULL, a temporary directory will be automatically generated.

Value

The path to the generated html report.

Author(s)

Russell Bainer, Dariusz Ratman

Examples

data('es')
data('fit')
data('ann')
data('resultsDF')

##' #Build the sample key
library(Biobase)
sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference"))
names(sk) <- row.names(pData(es))

path2report <- ct.makeContrastReport(es, fit, sk, resultsDF, ann, comparison.id = NULL, outdir = ".")

ct.makeQCReport Generate a QC report from a pooled CRISPR screen

Description

This is a function to generate an html QC report for a CRISPR screen, focusing on experiment-level
and library-level analyses collected from other functions in gCrisprTools. It is designed to be used
’as-is’, and analysts interested in using different functionalities of the various functions should do
that outside of this wrapper script.

Usage

ct.makeQCReport(
eset,
trim,
log2.ratio,
sampleKey,
annotation,
aln,
identifier = NULL,
lib.size,
geneSymb = NULL,
outdir = NULL

)

ct.makeQCReport 19

Arguments

eset An ExpressionSet object containing, at minimum, a matrix of gRNA abundances
extractable with the exprs() function and some named phenodata extractable
with pData().

trim The number of gRNAs to be trimmed from the top of the distribution before
estimating the abundance range. Empirically, this usually should be equal to
about 2 to 5 percent of the guides in the library.

log2.ratio Maximum abundance of contaminant gRNAs, expressed on the log2 scale from
the top of the trimmed range of each sample. That is, log2.ratio = 4 means to
discard all gRNAs whose abundance is (1/2)^4 of the trimmed maximum.

sampleKey A sample key, supplied as an ordered factor linking the samples to experimental
variables. The names attribute should exactly match those present in eset, and
the control set is assumed to be the first level.

annotation An annotation object for the experiment. See the man page for ct.prepareAnnotation
for details and example format.

aln A numeric alignment matrix, where rows correspond to "targets", "nomatch",
"rejections", and "double_match", and where columns correspond to experimen-
tasl samples.

identifier A character string to name the report and corresponding subdirectories. If pro-
vided, the final report will be called ’identifier.html’ and will be located in a
directory called identifier. If NULL, a generic name including the timestamp
will be generated.

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

geneSymb The geneSymbol identifier(s) in annotation that corresponds to gRNAs to be
plotted on the curves. Passed through to ct.gRNARankByReplicate, ct.viewControls
and ct.prepareAnnotation (as controls argument if it’s not NULL). Default
NULL.

outdir An optional character string indicating the directory in which to generate the
report. If NULL, a temporary directory will be automatically generated.

Value

The path to the generated html report.

Author(s)

Russell Bainer, Dariusz Ratman

Examples

data('es')
data('ann')

20 ct.makeReport

data('aln')

##' #Build the sample key
library(Biobase)
sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference"))
names(sk) <- row.names(pData(es))

path2report <- ct.makeQCReport(es, trim = 1000, log2.ratio = 0.0625, sk, ann, aln, identifier = NULL, lib.size = NULL, geneSymb = 'NoTarget', outdir = ".")

ct.makeReport Generate a full experimental report from a pooled CRISPR screen

Description

This is a function to generate an html report for a CRISPR screen, incorporating information about
a specified contrast. The report contains a combination of experiment-level and contrast-specific
analyses, largely collected from other functions in gCrisprTools. It is designed to be used ’as-
is’, and analysts interested in using different functionalities of the various functions should do that
outside of this wrapper script.

Usage

ct.makeReport(
fit,
eset,
sampleKey,
annotation,
results,
aln,
outdir = NULL,
contrast.term = NULL,
identifier = NULL

)

Arguments

fit An object of class MArrayLM containing, at minimum, a coefficents slot with
coefficients from the comparison, and a stdev.unscaled slot with the corre-
sponding standard deviation of the coefficent estimates. The row.names at-
tribute should ideally match that which is found in annotation, but this will
be checked internally.

eset An ExpressionSet object containing, at minimum, a matrix of gRNA abundances
extractable with the exprs() function and some named phenodata extractable
with pData().

sampleKey A sample key, supplied as an ordered factor linking the samples to experimental
variables. The names attribute should exactly match those present in eset, and
the control set is assumed to be the first level.

ct.makeRhoNull 21

annotation An annotation object for the experiment. See the man page for ct.prepareAnnotation()
for details and example format.

results A data.frame summarizing the results of the screen, returned by the function
ct.generateResults.

aln A numeric alignment matrix, where rows correspond to "targets", "nomatch",
"rejections", and "double_match", and where columns correspond to experimen-
tasl samples.

outdir A directory in which to generate the report; if NULL, a temporary directory will
be automatically generated. The report will be located in a subdirectory whose
name is internally generated (see below). The path to the report itself is returned
by the function.

contrast.term A parameter passed to ct.preprocessFit in the event that the fit object con-
tains data from multiple contrasts. See that man page for further details.

identifier A character string to name the report and corresponding subdirectories. If pro-
vided, the final report will be called ’identifier.html’ and will be located in a
directory called identifier in the outdir. If NULL, a generic name including
the timestamp will be generated.

Value

The path to the generated html report.

Author(s)

Russell Bainer

Examples

data('fit')
data('es')

##' #Build the sample key
library(Biobase)
sk <- relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference")
names(sk) <- row.names(pData(es))

data('ann')
data('resultsDF')
data('aln')
path2report <- ct.makeReport(fit, es, sk, ann, resultsDF, aln, outdir = ".")

ct.makeRhoNull Make null distribution for RRAalpha tests

Description

Makes random distribution of Rho value by taking nperm random samples of n rank stats, p.

22 ct.multiGSEA

Usage

ct.makeRhoNull(n, p, nperm)

Arguments

n single integer, number of guides per gene

p numeric vector of rank statistics

nperm single integer, how many random samples to take.

Value

numeric vector of Rho values

ct.multiGSEA Geneset Enrichment within a CRISPR screen using multiGSEA This
function identifies differentially enriched/depleted ontological cate-
gories within the hits of a CRISPR screen given a provided ‘Gens-
eSetDb()‘ and a results ‘data.frame‘ created by ‘ct.generateResults()‘.
Testing is performed using a Hypergeometric test, and results are
returned as a ‘MultiGSEAResult‘ object defined in the ‘multiGSEA‘
package. Note that the ‘@logFC‘ slot in the returned object will con-
tain the median gRNA lfc across all associated guides, which in some
cases may have dubious interpretive value. This method used over-
representation analysis, derived from ‘limma::kegga()‘, and incorpo-
rates the number of gRNAs associated with each Target (inferred from
the ‘geneSymbol‘ column of the ‘resultsDF‘) as the bias vector (be-
cause standard aggregation methods should be underpowered for tar-
gets with few guides). Setting ‘unbiased‘ = ‘TRUE‘ suppresses this
behavior, which is identical to a hypergeometric test.

Description

Geneset Enrichment within a CRISPR screen using multiGSEA

This function identifies differentially enriched/depleted ontological categories within the hits of a
CRISPR screen given a provided ‘GenseSetDb()‘ and a results ‘data.frame‘ created by ‘ct.generateResults()‘.
Testing is performed using a Hypergeometric test, and results are returned as a ‘MultiGSEAResult‘
object defined in the ‘multiGSEA‘ package. Note that the ‘@logFC‘ slot in the returned object will
contain the median gRNA lfc across all associated guides, which in some cases may have dubious
interpretive value.

This method used overrepresentation analysis, derived from ‘limma::kegga()‘, and incorporates the
number of gRNAs associated with each Target (inferred from the ‘geneSymbol‘ column of the
‘resultsDF‘) as the bias vector (because standard aggregation methods should be underpowered for
targets with few guides). Setting ‘unbiased‘ = ‘TRUE‘ suppresses this behavior, which is identical
to a hypergeometric test.

ct.normalizeBySlope 23

Usage

ct.multiGSEA(
resultsDF,
gsdb,
cutoff = 0.1,
stat = c("q", "p", "rho"),
unbiased = FALSE

)

Arguments

resultsDF ‘data.frame‘ returned by ‘ct.generateResults()‘.

gsdb ‘GenseSetDb‘ object containing annotations.

cutoff Q, P, or Rho statistic cutoff defining significant enrichment/depletion in the
screen. Default is 0.1.

stat Statistic to be used in calling enrichment/depletion in the screen. Must be one
of ’q’, ’p’, or ’rho’.

unbiased Logical indicating whether to estimate bias on the basis of the number of gRNAs
associated with each target.

Author(s)

Steve Lianoglou for multiGSEA; Russell Bainer for wrapping functions.

Examples

data('ann')
data('resultsDF')
#gsd <- multiGSEA::getMSigGeneSetDb(c('h', 'c2'), 'mouse', id.type = 'entrez')

ct.normalizeBySlope Normalize sample abundance estimates by the slope of the values in
the central range

Description

This function normalizes Crispr gRNA abundance estimates by equalizing the slopes of the middle
(logged) values of the distribution across samples. Specifically, the algorithm ranks the gRNA
abundance estimates within each sample and determines a relationship between rank change and
gRNA within a trimmed region of the distribution via a linear fit. It then adjusts each sample such
that the center of the logged abundance distribution is strictly horizontal and returns these values as
median-scaled counts in the appropriate slot of the input ExpressionObject.

Usage

ct.normalizeBySlope(ExpressionObject, trim = 0.25, lib.size = NULL, ...)

24 ct.normalizeFactoredQuantiles

Arguments

ExpressionObject

An ExpressionSet containing, at minimum, count data accessible by exprs, or
an EList object with count data in the $E slot (usually returned by voom).

trim The proportion to be trimmed from each end of the distributionbefore perform-
ing the linear fit; algorithm defaults to 25 fit is performed on the interquartile
range.

lib.size An optional vector of size factor adjusted library size. Default: NULL means to
use sum of column counts as a lib.size.

... Other arguments to be passed to ct.normalizeMedians(), if desired.

Value

A renormalized object of the same type as the provided object.

Author(s)

Russell Bainer

Examples

data('es')
data('ann')

#Build the sample key and library sizes for visualization
library(Biobase)
sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference"))
names(sk) <- row.names(pData(es))
ls <- colSums(exprs(es))

es.norm <- ct.normalizeBySlope(es, lib.size= ls)
ct.gRNARankByReplicate(es, sk, lib.size= ls)
ct.gRNARankByReplicate(es.norm, sk, lib.size= ls)

ct.normalizeFactoredQuantiles

Apply Factored Quantile Normalization to gRNA counts

Description

This function normalizes Crispr gRNA abundance estimates by equalizing the median gRNA abun-
dance values after correcting for library size. It does this by converting raw count values to log2
counts per million and optionally adjusting further in the usual way by dividing these values by
user-specified library size factors. THis method should be more stable than the endogenous scaling
functions used in voom in th especific case of Crispr screens or other cases where the median number
of observed counts may be low.

ct.normalizeFQ 25

Usage

ct.normalizeFactoredQuantiles(eset, lib.size = NULL)

Arguments

eset An ExpressionSet containing, at minimum, count data accessible by exprs.

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

Value

A renormalized ExpressionSet object of the same type as the provided object.

Author(s)

Russell Bainer

Examples

data('es')

#Build the sample key and library sizes for visualization
library(Biobase)
sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference"))
names(sk) <- row.names(pData(es))
ls <- colSums(exprs(es))

es.norm <- ct.normalizeMedians(es, lib.size= ls)
ct.gRNARankByReplicate(es, sampleKey = sk, lib.size= ls)
ct.gRNARankByReplicate(es.norm, sampleKey = sk, lib.size= ls)

ct.normalizeFQ Factored Quantile Normalization

Description

This function applies quantile normalization to subsets of samples defined by a provided factor,
correcting for library size. It does this by converting raw count values to log2 counts per million
and optionally adjusting further in the usual way by dividing these values by user-specified library
size factors; then this matrix is split into groups according to the provided factor that are quantile
normalized, and then the groups are median scaled to each other before conversion back into raw
counts. This method is best used in comparisons for long timecourse screens, where groupwise
differences in growth rate cause uneven intrinsic dialation of construct distributions.

Note that this normalization strategy is not appropriate for experiments where significant distortion
of the libraries is expected as a consequence of the screening strategy (e.g., strong selection screens).

26 ct.normalizeGuides

Usage

ct.normalizeFQ(eset, sets, lib.size = NULL)

Arguments

eset An ExpressionSet containing, at minimum, count data accessible by exprs.
sets A character or factor object delineating which samples shoudl be grouped to-

gether during the normalization step. Must be the same length as the number of
columns in the provided eset, and cannot contain ‘NA‘ or ‘NULL‘ values.

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

Value

A renormalized ExpressionSet object of the same type as the provided object.

Author(s)

Russell Bainer

Examples

data('es')

#Build the sample key and library sizes for visualization
library(Biobase)
sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference"))
names(sk) <- row.names(pData(es))
ls <- colSums(exprs(es))

es.norm <- ct.normalizeFQ(es, sets = gsub('(Death|Control)', '', pData(es)$TREATMENT_NAME), lib.size= ls)
ct.gRNARankByReplicate(es, sampleKey = sk, lib.size= ls)
ct.gRNARankByReplicate(es.norm, sampleKey = sk, lib.size= ls)

ct.normalizeGuides Normalize an ExpressionSet Containing a Crispr Screen

Description

This function normalizes Crispr gRNA abundance estimates contained in an ExpressionSet object.
Currently four normalization methods are implemented: median scaling (via normalizeMedianValues),
slope-based normalization (via ct.normalizeBySlope()), scaling to the median of the nontarget-
ing control values (via ct.normalizeNTC()), and spline fitting to the distribution of the nontarget-
ing gRNAs (via ct.normalizeSpline()). Because of the peculiarities of pooled Crispr screening
data, these implementations may be more stable than the endogenous methods used downstream by
voom. See the respective man pages for further details about specific normalization approaches.

ct.normalizeGuides 27

Usage

ct.normalizeGuides(
eset,
method = c("scale", "FQ", "slope", "controlScale", "controlSpline"),
annotation = NULL,
sampleKey = NULL,
lib.size = NULL,
plot.it = FALSE,
...

)

Arguments

eset An ExpressionSet object with integer count data extractable with exprs().

method The normalization method to use.

annotation The annotation object for the library, required for the methods employing non-
targeting controls.

sampleKey An (optional) sample key, supplied as an ordered factor linking the samples to
experimental variables. The names attribute should exactly match those present
in eset, and the control set is assumed to be the first level. If ‘method‘ = ‘FQ‘,
the sampleKey is taken as the ‘sets‘ argument (and its format requirements are
similarly relaxed; see ‘?ct.normalizeFC‘).

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

plot.it Logical indicating whether to plot the ranked log2 gRNA count distributions
before and after normalization.

... Other parameters to be passed to the individual normalization methods.

Value

A renormalized ExpressionSet. If specified, the sample level counts will be scaled so as to maintain
the validity of the specified lib.size values.

Author(s)

Russell Bainer

See Also

ct.normalizeMedians, ct.normalizeBySlope, ct.normalizeNTC, ct.normalizeSpline

28 ct.normalizeMedians

Examples

data('es')
data('ann')

#Build the sample key as needed
library(Biobase)
sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference"))
names(sk) <- row.names(pData(es))

es.norm <- ct.normalizeGuides(es, 'scale', annotation = ann, sampleKey = sk, plot.it = TRUE)
es.norm <- ct.normalizeGuides(es, 'slope', annotation = ann, sampleKey = sk, plot.it = TRUE)
es.norm <- ct.normalizeGuides(es, 'controlScale', annotation = ann, sampleKey = sk, plot.it = TRUE, geneSymb = 'NoTarget')
es.norm <- ct.normalizeGuides(es, 'controlSpline', annotation = ann, sampleKey = sk, plot.it = TRUE, geneSymb = 'NoTarget')

ct.normalizeMedians Normalize sample abundance estimates by median gRNA counts

Description

This function normalizes Crispr gRNA abundance estimates by equalizing the median gRNA abun-
dance values after correcting for library size. It does this by converting raw count values to log2
counts per million and optionally adjusting further in the usual way by dividing these values by
user-specified library size factors. THis method should be more stable than the endogenous scaling
functions used in voom in th especific case of Crispr screens or other cases where the median number
of observed counts may be low.

Usage

ct.normalizeMedians(eset, lib.size = NULL)

Arguments

eset An ExpressionSet containing, at minimum, count data accessible by exprs.

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

Value

A renormalized ExpressionSet object of the same type as the provided object.

Author(s)

Russell Bainer

ct.normalizeNTC 29

Examples

data('es')

#Build the sample key and library sizes for visualization
library(Biobase)
sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference"))
names(sk) <- row.names(pData(es))
ls <- colSums(exprs(es))

es.norm <- ct.normalizeMedians(es, lib.size= ls)
ct.gRNARankByReplicate(es, sampleKey = sk, lib.size= ls)
ct.gRNARankByReplicate(es.norm, sampleKey = sk, lib.size= ls)

ct.normalizeNTC Normalize sample abundance estimates by the median values of non-
targeting control guides

Description

This function normalizes Crispr gRNA abundance estimates by equalizing the median abundances
of the nontargeting gRNAs within each sample. The normalized values are returned as normalized
counts in the ’exprs’ slot of the input eset. Note that this method may be unstable if the screening
library contains relatively few nontargeting gRNAs.

Usage

ct.normalizeNTC(eset, annotation, lib.size = NULL, geneSymb = NULL)

Arguments

eset An ExpressionSet object containing, at minimum, count data accessible by exprs.

annotation An annotation dataframe indicating the nontargeting controls in the geneID col-
umn.

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

geneSymb The geneSymbol identifier in annotation that corresponds to nontargeting gR-
NAs. If absent, ct.gRNARankByReplicate will attempt to infer nontarget-
ing guides by searching for "no_gid" or NA in the appropriate columns via
ct.prepareAnnotation().

Value

A normalized eset.

30 ct.normalizeSpline

Author(s)

Russell Bainer

Examples

data('es')
data('ann')

#Build the sample key and library sizes for visualization
library(Biobase)
sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference"))
names(sk) <- row.names(pData(es))
ls <- colSums(exprs(es))

es.norm <- ct.normalizeNTC(es, ann, lib.size = ls, geneSymb = 'NoTarget')

ct.gRNARankByReplicate(es, sk, lib.size = ls)
ct.gRNARankByReplicate(es.norm, sk, lib.size = ls)

ct.normalizeSpline Normalize sample abundance estimates by a spline fit to the nontar-
geting controls

Description

This function normalizes Crispr gRNA abundance estimates by fiting a smoothed spline to the
nontargeting gRNAs within each sample and then equalizing these curves across the experiment.
Specifically, the algorithm ranks the gRNA abundance estimates within each sample and uses a
smoothed spline to determine a relationship between the ranks of nontargeting guides and their
abundance estimates. It then removes the spline trend from each sample, centering each experiment
around the global median abundance; these values are returned as normalized counts in the ’exprs’
slot of the input eset.

Usage

ct.normalizeSpline(eset, annotation, geneSymb = NULL, lib.size = NULL)

Arguments

eset An ExpressionSet object containing, at minimum, count data accessible by exprs.

annotation An annotation dataframe indicating the nontargeting controls in the geneID col-
umn.

geneSymb The geneSymbol identifier in annotation that corresponds to nontargeting gR-
NAs. If absent, ct.gRNARankByReplicate will attempt to infer nontargeting
guides by searching for "no_gid" or NA in the appropriate columns.

ct.PantherPathwayEnrichment 31

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

Value

A normalized eset.

Author(s)

Russell Bainer

Examples

data('es')
data('ann')

#Build the sample key and library sizes for visualization
library(Biobase)
sk <- (relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference"))
names(sk) <- row.names(pData(es))
ls <- colSums(exprs(es))

es.norm <- ct.normalizeSpline(es, ann, 'NoTarget', lib.size = ls)
ct.gRNARankByReplicate(es, sk, lib.size = ls)
ct.gRNARankByReplicate(es.norm, sk, lib.size = ls)

ct.PantherPathwayEnrichment

Run a (limited) Pathway Enrichment Analysis on the results of a Crispr
experiment.

Description

This function enables some limited geneset enrichment-type analysis of data derived from a pooled
Crispr screen using the PANTHER pathway database. Specifically, it identifies the set of targets
significantly enriched or depleted in a summaryDF object returned from ct.generateResults and
compares that set to the remaining targets in the screening library using a hypergeometric test.

Note that many Crispr gRNA libraries specifically target biased sets of genes, often focusing on
genes involved in a particular pathway or encoding proteins with a shared biological property. Con-
sequently, the enrichment results returned by this function represent the pathways containing genes
disproportionately targeted *within the context of the screen*, and may or may not be informative
of the underlying biology in question. This means that pathways not targeted by a Crispr library will
obviously never be enriched within the positive target set regardless of their biological relevance,
and pathways enriched within a focused library screen are similarly expected to partially reflect the
composition of the library and other confounding issues (e.g., number of targets within a pathway).

32 ct.PantherPathwayEnrichment

Analysts should therefore use this function with care. For example, it might be unsurprising to
detect pathways related to histone modification within a screen employing a crispr library targeting
epigenetic regulators.

Usage

ct.PantherPathwayEnrichment(
summaryDF,
pvalue.cutoff = 0.01,
enrich = TRUE,
organism = "human",
db.cut = 10

)

Arguments

summaryDF A dataframe summarizing the results of the screen, returned by the function
ct.generateResults.

pvalue.cutoff A gene-level p-value cutoff defining targets of interest within the screen. Note
that this is a nominal p-value cutoff to preserve end-user flexibility.

enrich Logical indicating whether to consider guides that are enriched (default) or de-
pleted within the screen.

organism The species of the cell line used in the screen; currently only ’human’ or ’mouse’
are supported.

db.cut Minimum number of genes annotated to a given to a pathway within the screen
in order to consider it in the enrichment test.

Value

A dataframe of enriched pathways.

Author(s)

Russell Bainer, Steve Lianoglou

Examples

data('resultsDF')
ct.PantherPathwayEnrichment(resultsDF, organism = 'mouse')

ct.PRC 33

ct.PRC Generate a Precision-Recall Curve from a CRISPR screen

Description

Given a set of targets of interest, this function generates a Precision Recall curve from the results of
a CRISPR screen. Specifically, it orders the target elements in the screen by the specified statistic,
and then plots the recall rate (proportion of true targets identified) against the precision (proportion
of identified targets that are true targets).

Note that ranking statistics in CRISPR screens are (usually) permutation-based, and so some gran-
ularity in the rankings is expected. This function does a little extra work to ensure that hits are
counted as soon as the requisite value of the ranking statistic is reached regardless of where the
gene is located within the block of equally-significant genes. Functionally, this means that the
drawn curve is somewhat anticonservative in cases where the gene ranks are not well differentiated.

Usage

ct.PRC(
summaryDF,
target.list,
stat = c("enrich.p", "deplete.p", "enrich.fc", "deplete.fc", "enrich.rho",
"deplete.rho"),

plot.it = TRUE
)

Arguments

summaryDF A dataframe summarizing the results of the screen, returned by the function
ct.generateResults.

target.list A character vector containing the names of the targets to be tested. Only targets
contained in the geneID column of the provided summaryDF are considered.

stat The statistic to use when ordering the genes. Must be one of "enrich.p",
"deplete.p", "enrich.fc", or "deplete.fc".

plot.it Logical value indicating whether to plot the curves.

Value

A list containing the the x and y coordinates of the curve.

Author(s)

Russell Bainer

34 ct.prepareAnnotation

Examples

data('resultsDF')
data('essential.genes') #Note that this is an artificial example.
pr <- ct.PRC(resultsDF, essential.genes, 'enrich.p')
str(pr)

ct.prepareAnnotation Check and optionally subset an annotation file for use in a Crispr
Screen

Description

This function processes a supplied annotation object for use in a pooled screening experiment.
Originally this was processed into something special, but now it essentially returns the original
annotation object in which the geneSymbol column has been factorized. This is primarily used
internally during a call to the ct.generateResults() function. Also performs some minor func-
tionality checking.

Valid annotations contain both ‘geneID‘ and ‘geneSymbol‘ columns. This is because there is often a
distinction between the official gene that is being targeted and a coherent set of gRNAs that make up
a testing cohort. For example, multiple sets of guides may target distinct promoters, exons, or other
entities that are expected to produce distinct biological phenomena related to the gene that should be
interpreted separately. For this reason, the ‘geneID‘ column encodes the official gene designation
(typically an ensembl or entrez gene identifier) while the ‘geneSymbol‘ column contains a human-
readable descriptor of the gRNA target (such as a gene symbol or promoter name).

Usage

ct.prepareAnnotation(ann, object = NULL, controls = TRUE, throw.error = TRUE)

Arguments

ann A data.frame containing an annotation object with gRNA-level information
encoded as rows. The row.names attribute should correspond to the individ-
ual gRNAs, and it should at minimum contain columns named "geneID" and
"geneSymbol" indicating the corresponding gRNA target gene ID and symbol,
respectively.

object If supplied, an object with row.names to be used to subset the supplied annota-
tion frame for downstream analysis.

controls The name of a value in the geneSymbol column of ann that corresponds to non-
targeting control gRNAs. May also be supplied as a logical value, in which case
the function will try to identify and format nontargeting guides.

throw.error Logical indicating whether to throw an error when controls is TRUE but no
nontargeting gRNAs are detected.

ct.rawCountDensities 35

Value

A new annotation data frame, usually with nontargeting controls and NA values reformatted to
NoTarget (and geneID set to 'no_gid'), and the "geneSymbol" column of ann factorized. If
supplied with an object, the gRNAs not present in the object will be omitted.

Author(s)

Russell Bainer

Examples

data('ann')
data('es')
es <- ct.filterReads(es)
newann <- ct.prepareAnnotation(ann, es)

ct.rawCountDensities Visualization of Raw gRNA Count Densities

Description

This function plots the per-sample densities of raw gRNA read counts on the log10 scale. The
curve colors are assigned based on a user- specified sampleKey. This function is primarily useful to
determine whether libraries are undersequenced (low mean raw gRNA counts), contaminated (many
low-abundance gRNAs present), or if PCR artifacts may be present (subset of extremely abundant
guides, multiple gRNA distribution modes). In most well-executed experiments the majority of
gRNAs will form a tight distribution around some reasonably high average read count (hundreds
of reads), at least among the control samples. Excessively low raw count values can compromise
normalization steps and subsequent estimation of gRNA levels, especially in screens in which most
gRNAs have minimal effects on cell viability.

Usage

ct.rawCountDensities(eset, sampleKey = NULL, lib.size = NULL)

Arguments

eset An ExpressionSet object containing, at minimum, count data accessible by ex-
prs() and some phenoData.

sampleKey A sample key, supplied as a (possibly ordered) factor linking the samples to
experimental variables. The names attribute should exactly match those present
in eset, and the control set is assumed to be the first level.

lib.size Optional named vector of library sizes (total reads within the library) to enable
normalization

Value

A density plot as specified on the default device.

36 ct.resultCheck

Author(s)

Russell Bainer

Examples

data('es')

#Build the sample key
library(Biobase)
sk <- relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference")
names(sk) <- row.names(pData(es))

ct.rawCountDensities(es, sk)

ct.resultCheck Determine whether a supplied object contains the results of a Pooled
Screen

Description

Many gCrisprTools functions operate on a data.frame of results generated by a CRISPR screen.
This function takes in a supplied object and returns a logical indicating whether the object can be
treated as one of these data.frames for the purposes of downstream analyses. This is largely used
internally, but can be useful if a user needs to build a result object for some reason.

Usage

ct.resultCheck(summaryDF)

Arguments

summaryDF A data.frame, usually returned by ct.generateResults. if you need to gen-
erate one of these by hand for some reason, see the example resultsDF object
loaded in the example below.

Value

A logical indicating whether the object is of the appropriate format.

Author(s)

Russell Bainer

Examples

data('resultsDF')
ct.resultCheck(resultsDF)

ct.ROC 37

ct.ROC Generate a Receiver-Operator Characteristic (ROC) Curve from a
CRISPR screen

Description

Given a set of targets of interest, this function generates a ROC curve and associated statistics
from the results of a CRISPR screen. Specifically, it orders the elements targeted in the screen by
the specified statistic, and then plots the cumulative proportion of positive hits on the y-axis. The
corresponding vectors and Area Under the Curve (AUC) statistic are returned as a list.

Note that ranking statistics in CRISPR screens are (usually) permutation-based, and so some gran-
ularity is expected. This function does a little extra work to ensure that hits are counted as soon as
the requisite value of the ranking statistic is reached regardless of where the gene is located within
the block of equally-significant genes. Functionally, this means that the drawn curve is somewhat
anticonservative in cases where the gene ranks are not well differentiated.

Usage

ct.ROC(
summaryDF,
target.list,
stat = c("enrich.p", "deplete.p", "enrich.fc", "deplete.fc", "enrich.rho",
"deplete.rho"),

condense = TRUE,
plot.it = TRUE

)

Arguments

summaryDF A dataframe summarizing the results of the screen, returned by the function
ct.generateResults.

target.list A character vector containing the names of the targets to be tested. Only targets
contained in the geneID column of the provided summaryDF are considered.

stat The statistic to use when ordering the genes. Must be one of "enrich.p",
"deplete.p", "enrich.fc", "deplete.fc", "enrich.rho", or "deplete.rho".

condense Logical indicating whether the returned x and y coordinates should be "con-
densed", returning only the points at which the detected proportion of target.list
changes. If set to FALSE, the returned x and y vectors will explicitly indicate
the curve value at every position (useful for performing curve arithmetic down-
stream).

plot.it Logical value indicating whether to plot the curves.

Value

A list containing the the x and y coordinates of the curve, and the AUC statistic (invisibly).

38 ct.signalSummary

Author(s)

Russell Bainer

Examples

data('resultsDF')
data('essential.genes') #Note that this is an artificial example.
roc <- ct.ROC(resultsDF, essential.genes, 'deplete.p')
str(roc)

ct.signalSummary Generate a Figure Summarizing Overall Signal for One or More Tar-
gets

Description

Given one or more targets of interest, this function generates a summary image contextualizing
the corresponding signals within the contest of the provided contrast. This takes the form of an
annotated ranking curve of target-level signals, supplemented with horizontal Q-value cutoffs and
an inset volcano plot of gRNA behavior.

Limited annotation is provided for the specified targets using the following logic:

- If a character vector is provided, up to five targets are annotated; longer lists are highlighted
without specifying individual elements. - If a list is provided, the ‘names‘ element is used as the
annotation. This is similarly constrained to a total of 5 annotated elements.

Usage

ct.signalSummary(
summaryDF,
targets,
direction = c("enrich", "deplete"),
callout = FALSE

)

Arguments

summaryDF A dataframe summarizing the results of the screen, returned by the function
ct.generateResults.

targets A list or character vector containing the names of the targets to be displayed.
Only targets contained in the geneSymbol column of the provided summaryDF
are considered. Plotting priority (e.g., the points to plot last in the case of over-
lapping signals) is given to earlier elements in the list.

direction Should enrichment or depletion be considered? Must be one of "enrich" or
"deplete".

callout Logical indicating whether lines should be plotted indicating individual gene
sets to augment the point highlighting.

ct.stackGuides 39

Value

A summary plot on the current device.

Author(s)

Russell Bainer

Examples

data('resultsDF')
ct.signalSummary(resultsDF, list('CandidateA' = 'Target229', 'Pathway3' = resultsDF$geneSymbol[c(42,116,1138,5508)]), 'enrich')
data('es')
data('ann')
data('fit')

ct.GCbias(es, ann)
ct.GCbias(fit, ann)

ct.stackGuides View a stacked representation of the most variable targets or individ-
ual guides within an experiment, as a percentage of the total aligned
reads

Description

This function identifies the gRNAs or targets that change the most from sample to sample within an
experiment as a percentage of the entire library. It then plots the abundance of the top nguides as a
stacked barplot for all samples in the experiment. The purpose of this algorithm is to detect potential
distortions in the library composition that might not be properly controlled by sample normalization,
and so the most variable entites are defined by calculating the percent of aligned reads that they
contribute to each sample, and then ranking each entity by the range of these percentages across all
samples. Consequently, gRNAs or Targets that are highly abundant in at least one condition will be
are more likely to be identified.

Usage

ct.stackGuides(
eset,
sampleKey = NULL,
nguides = 20,
plotType = "gRNA",
annotation = NULL,
ylimit = NULL,
subset = NULL

)

40 ct.targetSetEnrichment

Arguments

eset An ExpressionSet object containing, at minimum, a matrix of gRNA abundances
extractable with the exprs() function, and a metadata object containing a col-
umn named SAMPLE_LABEL containing unique identifers for each sample. The
colnames should be syntactically

sampleKey An optional sample key, supplied as an ordered factor linking the samples to
experimental variables. The names attribute should exactly match those present
in eset, and the control set is assumed to be the first level.

nguides The number of guides (or targets) to display.
plotType A string indicating whether the individual guides should be displayed ("gRNA"),

or if they should be aggregated into target-level estimates ("Target") according
to the geneSymbol column in the annotation object.

annotation An optional data.frame containing an annotation object to be used to aggregate
the guides into targets. gRNAs are annotated by row, and must minimally con-
tain a column geneSymbol indicating the target elements.

ylimit An optional numeric vector of length 2 specifying the y limits for the plot, useful
in comparin across studies.

subset An optional character vector containing the sample labels to be used in the anal-
ysis; all elements must be contained in the colnames of the specified eset.

Value

A stacked barplot displaying the appropriate entities on the default device.

Author(s)

Russell Bainer

Examples

data('es')
data('ann')
ct.stackGuides(es, nguides = 20, plotType = "Target", annotation = ann, ylimit = NULL, subset = NULL)

ct.targetSetEnrichment

Test Whether a Specified Target Set is Enriched Within a Pooled Screen

Description

This function takes in a resultsDF and a vector of targets (contained in the geneID column of
resultsDF) and determines whether the specified targets are enriched within the set of all signif-
icantly altered targets. It does this by iteratively testing whether targets are more likely to be
among the set of enriched or depleted targets at various significance thresholds using a hypergeo-
metric test. Note that the returned Hypergeometric P-values are not corrected for multiple testing.

Returns a list detailing the targets used in the tests, and tables indicating the results of the hyper-
geometric test at various significance thresholds.

ct.topTargets 41

Usage

ct.targetSetEnrichment(summaryDF, targets, enrich = TRUE, ignore = NULL)

Arguments

summaryDF A dataframe summarizing the results of the screen, returned by the function
ct.generateResults.

targets A character vector containing the names of the targets to be tested. Only targets
contained in the geneID column of the provided summaryDF are considered.

enrich Logical indicating whether to consider guides that are enriched (default) or de-
pleted within the screen.

ignore Optionally, a character vector containing elements of the geneID column of the
provided summaryDF that should be ignored in the analysis (e.g., unassignable or
nonfunctional targets, such as nontargeting controls). By default, this function
omits targets with geneSymbol ’NoTarget’.

Value

A named list containing the tested target set and tables detailing the hypergeometric test results
using various P-value and Q-value thresholds.

Author(s)

Russell Bainer

Examples

data(resultsDF)
tar <- sample(unique(resultsDF$geneID), 20)
res <- ct.targetSetEnrichment(resultsDF, tar)

ct.topTargets Display the log2 fold change estimates and associated standard devi-
ations of the guides targeting the top candidates in a crispr screen

Description

This is a function for displaying candidates from a crispr screen, using the information summa-
rized in the corresponding fit and the output from ct.generateResults(). The fold change
and standard deviation estimates for each gRNA associated with each target (extracted from the
coefficients and stdev.unscaled slot of fit) are plotted on the y axis. Targets are selected on
the basis of their gene-level enrichment or depletion P-values; in the case of ties, they are ranked on
the basis of their corresponding Rho statistics.

42 ct.topTargets

Usage

ct.topTargets(
fit,
summaryDF,
annotation,
targets = 10,
enrich = TRUE,
contrast.term = NULL

)

Arguments

fit An object of class MArrayLM containing, at minimum, a coefficents slot with
coefficients from the comparison, and a stdev.unscaled slot with the corre-
sponding standard deviation of the coefficent estimates. The row.names at-
tribute should ideally match that which is found in annotation.

summaryDF A data.frame summarizing the results of the screen, returned by the function
ct.generateResults.

annotation An annotation object for the experiment. gRNAs are annotated by row, and must
minimally contain a column geneSymbol.

targets Either the number of top targets to display, or a list of geneSymbols contained
in the geneSymbol slot of the annotation object.

enrich Logical indicating whether to display guides that are enriched (default) or de-
pleted within the screen. If a vector of geneSymbols is specified, this controls
the left-t0-right ordering of the corresponding gRNAs.

contrast.term If a fit object with multiple coefficients is passed in, a string indiating the coef-
ficient of interest.

Value

An image on the default device indicating each gRNA’s log2 fold change and the unscaled standard
deviation of the effect estimate, derived from the MArrayLM object.

Author(s)

Russell Bainer

Examples

data('fit')
data('resultsDF')
data('ann')

ct.topTargets(fit, resultsDF, ann)

ct.viewControls 43

ct.viewControls View nontargeting guides within an experiment

Description

This function tries to identify, and then plot the abundance of, the full set of non-targeting controls
from an ExpressionSet object. Ideally, the user will supply a geneSymbol present in the appropriate
annotation file that uniquely identifies the nontargeting gRNAs. Absent this, the the function will
search for common identifier used by nontargeting controls (geneID "no_gid", or geneSymbol NA).

Usage

ct.viewControls(
eset,
annotation,
sampleKey,
geneSymb = NULL,
normalize = TRUE,
lib.size = NULL

)

Arguments

eset An ExpressionSet object containing, at minimum, a matrix of gRNA abundances
extractable with the exprs function.

annotation An annotation data.frame for the experiment. gRNAs are annotated by row, and
must minimally contain columns geneSymbol and geneID.

sampleKey A sample key, supplied as an ordered factor linking the samples to experimental
variables. The names attribute should exactly match those present in eset, and
the control condition is assumed to be the first level.

geneSymb The geneSymbol identifier in annotation that corresponds to nontargeting gR-
NAs. If absent, ct.ViewControls will attempt to infer nontargeting guides by
searching for "no_gid" or NA in the appropriate columns.

normalize Logical indicating whether to attempt to normalize the data in the eset by DE-
Seq size factors present in the metadata. If TRUE, then the metadata must contain
a column containing these factors, named sizeFactor.crispr-gRNA.

lib.size An optional vector of voom-appropriate library size adjustment factors, usually
calculated with calcNormFactors and transformed to reflect the appropriate
library size. These adjustment factors are interpreted as the total library sizes
for each sample, and if absent will be extrapolated from the columnwise count
sums of the exprs slot of the eset.

Value

An image of nontargeting control gRNA abundances on the default device.

44 ct.viewGuides

Author(s)

Russell Bainer

Examples

data('es')
data('ann')

#Build the sample key
library(Biobase)
sk <- ordered(relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference"))
names(sk) <- row.names(pData(es))

ct.viewControls(es, ann, sk, geneSymb = NULL, normalize = FALSE)
ct.viewControls(es, ann, sk, geneSymb = NULL, normalize = TRUE)

ct.viewGuides Generate a Plot of individual gRNA Pair Data in a Crispr Screen

Description

This function generates a visualization of the effect estimates from a MArrayLM model result for all
of the individual guides targeting a particular element, specified somewhere in the library annotation
file. The estimated effect size and variance is plotted relative to zero for the specified contrast, with
the color of the dot indicating the relative scale of the of the guide intercept within the model
framework, with warmer colors indicating lowly expressed guides. For comparison, the density of
gRNA fold change estimates is privided in a pane on the right, with white lines indicating the exact
levels of the individual guides.

Usage

ct.viewGuides(
gene,
fit,
ann,
type = "geneSymbol",
contrast.term = NULL,
ylims = NULL

)

Arguments

gene the name of the target element of interest, contained within the "type" column
of the annotation file.

fit An object of class MArrayLM containing, at minimum, an "Amean" slot con-
taining the guide level abundances, a "coefficients" slot containing the effect
estimates for each guide, and an "stdev.unscaled" slot giving the coefficient stan-
dard Deviations.

es 45

ann A data.frame object containing the gRNA annotations. At mimimum, it should
have a column with the name specified by the type argument, containing the
element targeted by each guide.

type A character string indicating the column in ann containing the target of interest.

contrast.term If a fit object with multiple coefficients is passed in, a string indiating the coef-
ficient of interest.

ylims An optional numeric vector of length 2 indicating the extremes of the y-axis
scale.

Value

An image summarizing gRNA behavior within the specifed gene on the default device.

Author(s)

Russell Bainer

Examples

data('fit')
data('ann')
ct.viewGuides('Target1633', fit, ann)

es ExpressionSet of count data from a Crispr screen with strong selection

Description

Expressionset of raw counts from a screen in mouse cells performed at Genentech, Inc. All sample,
gRNA, and Gene information has been anonymized and randomized.

Source

Genentech, Inc.

See Also

Please see ‘vignettes/Crispr_example_workflow.R’ for details.

Examples

data("es")
print(es)

46 fit

essential.genes Artificial list of ’essential’ genes in the example Crispr screen included
for plotting purposes

Description

Example gene list, designed to demonstrate ROC and PRC functions All sample, gRNA, and Gene
information has been anonymized and randomized.

Source

Russell Bainer

See Also

Please see ‘vignettes/Crispr_example_workflow.R’ for details.

Examples

data("essential.genes")
essential.genes

fit Precalculated contrast fit from a Crispr screen

Description

A precalculated fit object (class MArrayLM) comparing the death and control expansion arms of a
crispr screen performed at Genentech, Inc. All sample, gRNA, and Gene information has been
anonymized and randomized.

Source

Genentech, Inc.

See Also

Please see ‘vignettes/Crispr_example_workflow.R’ for model details.

Examples

data("fit")
show(fit)

resultsDF 47

resultsDF Precalculated gene-level summary of a crispr screen

Description

A precalculated summary Dataframe comparing the death and control expansion arms of the pro-
vided example Crispr screen (using 8 cores, seed = 2). All sample, gRNA, and Gene information
has been anonymized and randomized.

Source

Genentech, Inc.

See Also

Please see ‘vignettes/Crispr_example_workflow.R’ for model details.

Examples

data("resultsDF")
head(resultsDF)

Index

aln, 3
ann, 4

calcNormFactors, 10, 14, 19, 25–29, 31, 43
ct.alignmentChart, 4
ct.applyAlpha, 5
ct.buildSE, 6
ct.CAT, 7
ct.DirectionalTests, 8
ct.filterReads, 9
ct.GCbias, 10
ct.generateResults, 7, 11, 17, 21, 32, 33,

37, 38, 41, 42
ct.GREATdb, 13
ct.gRNARankByReplicate, 14, 19
ct.guideCDF, 15
ct.inputCheck, 16
ct.makeContrastReport, 17
ct.makeQCReport, 18
ct.makeReport, 20
ct.makeRhoNull, 21
ct.multiGSEA, 22
ct.normalizeBySlope, 23, 27
ct.normalizeFactoredQuantiles, 24
ct.normalizeFQ, 25
ct.normalizeGuides, 26
ct.normalizeMedians, 27, 28
ct.normalizeNTC, 27, 29
ct.normalizeSpline, 27, 30
ct.PantherPathwayEnrichment, 31
ct.PRC, 33
ct.prepareAnnotation, 19, 34
ct.rawCountDensities, 35
ct.resultCheck, 36
ct.ROC, 37
ct.RRAaPvals, 12
ct.signalSummary, 38
ct.stackGuides, 39
ct.targetSetEnrichment, 40
ct.topTargets, 41

ct.viewControls, 19, 43
ct.viewGuides, 44

es, 45
essential.genes, 46

fit, 46

gCrisprTools-package, 3

resultsDF, 47

voom, 24, 26

48

	gCrisprTools-package
	aln
	ann
	ct.alignmentChart
	ct.applyAlpha
	ct.buildSE
	ct.CAT
	ct.DirectionalTests
	ct.filterReads
	ct.GCbias
	ct.generateResults
	ct.GREATdb
	ct.gRNARankByReplicate
	ct.guideCDF
	ct.inputCheck
	ct.makeContrastReport
	ct.makeQCReport
	ct.makeReport
	ct.makeRhoNull
	ct.multiGSEA
	ct.normalizeBySlope
	ct.normalizeFactoredQuantiles
	ct.normalizeFQ
	ct.normalizeGuides
	ct.normalizeMedians
	ct.normalizeNTC
	ct.normalizeSpline
	ct.PantherPathwayEnrichment
	ct.PRC
	ct.prepareAnnotation
	ct.rawCountDensities
	ct.resultCheck
	ct.ROC
	ct.signalSummary
	ct.stackGuides
	ct.targetSetEnrichment
	ct.topTargets
	ct.viewControls
	ct.viewGuides
	es
	essential.genes
	fit
	resultsDF
	Index

