
Splicing graphs and RNA-seq data

Hervé Pagès Daniel Bindreither Marc Carlson Martin Morgan

Last modified: January 2019; Compiled: May 19, 2021

Contents

1 Introduction 1

2 Splicing graphs 2
2.1 Definitions and example . 2
2.2 Details about nodes and edges . 2
2.3 Uninformative nodes . 5

3 Computing splicing graphs from annotations 6
3.1 Choosing and loading a gene model . 6
3.2 Generating a SplicingGraphs object . 6
3.3 Basic manipulation of a SplicingGraphs object . 8
3.4 Extracting and plotting graphs from a SplicingGraphs object 12

4 Splicing graph bubbles 15
4.1 Some definitions . 15
4.2 Computing the bubbles of a splicing graph . 17
4.3 AS codes . 18
4.4 Tabulating all the AS codes for Human chromosome 14 . 19

5 Counting reads 20
5.1 Assigning reads to the edges of a SplicingGraphs object . 22
5.2 How does read assignment work? . 23
5.3 Counting and summarizing the assigned reads . 25

6 Session Information 26

1 Introduction

The SplicingGraphs package allows the user to create and manipulate splicing graphs [1] based on annotations
for a given organism. Annotations must describe a gene model, that is, they need to contain the following
information:

� The exact exon/intron structure (i.e., genomic coordinates) for the known transcripts.
� The grouping of transcripts by gene.

Annotations need to be provided as a TxDb or GRangesList object, which is how a gene model is typically
represented in Bioconductor.

1

The SplicingGraphs package defines the SplicingGraphs container for storing the splicing graphs together
with the gene model that they are based on. Several methods are provided for conveniently access the
information stored in a SplicingGraphs object. Most of these methods are described in this document.

The package also allows the user to assign RNA-seq reads to the edges of a SplicingGraphs object and to
summarize them. This requires that the reads have been previously aligned to the exact same reference
genome that the gene model is based on. RNA-seq data from an already published study is used to illustrate
this functionality. In that study [2], the authors performed transcription profiling by high throughput
sequencing of HNRNPC knockdown and control HeLa cells (Human).

2 Splicing graphs

Alternative splicing is a frequently observed complex biological process which modifies the primary RNA
transcript and leads to transcript variants of genes. Those variants can be plentiful. Especially for large
genes it is often difficult to describe their structure in a formal, logical, short and convenient way. To capture
the full variety of splicing variants of a certain gene in one single data structure, Heber at al [6] introduced
the term splicing graph and provided a formal framework for representing the different choices of the splicing
machinery.

2.1 Definitions and example

For a comprehensive explanation of the splicing graph theory, please refer to [6, 1].

A splicing graph is a directed acyclic graph (DAG) where:

� Vertices (a.k.a. nodes) represent the splicing sites for a given gene. Splicing sites are ordered by their
position from 5’ to 3’ and numbered from 1 to n. This number is the Splicing Site id. Splicing graphs
are only defined for genes that have all the exons of all their transcripts on the same chromosome
and strand. In particular, in its current form, the splicing graph theory cannot describe trans-splicing
events.

� Edges are the exons and introns between splicing sites. Their orientation follows the 5’ to 3’ direction,
i.e., they go from low to high Splicing Site ids.

Two artificial nodes that don’t correspond to any splicing site are added to the graph: the root (R) and the
leaf (L). Also artificial edges are added so that all the transcripts are represented by a path that goes from R

to L. That way the graph is connected. Not all paths in the graph are necessarily supported by a transcript.

Figure 1 shows the splicing graph representation of all known transcript variants of Human gene CIB3 (Entrez
ID 117286).

2.2 Details about nodes and edges

Splicing sites can be of the following types:

� Acceptor site (symbol: -);
� Donor site (symbol: ^);
� Transcription start site (symbol: [);
� Transcription end site (symbol:]).

2

1
6

.2
7

3
 m

b 1
6

.2
7

4
 m

b1
6

.2
7

5
 m

b 1
6

.2
7

6
 m

b1
6

.2
7

7
 m

b 1
6

.2
7

8
 m

b1
6

.2
7

9
 m

b 1
6

.2
8

 m
b1

6
.2

8
1

 m
b 1
6

.2
8

2
 m

b1
6

.2
8

3
 m

b

uc010eaf.3 uc010eae.3 uc002nds.3 uc010eag.3

●R

●1

●2

●3

●4

●5●6

●7

●8

●9

●10

●11

●12

●13

●L

Figure 1: Splicing graph representation of the four transcript variants of gene CIB3
(Entrez ID 117286). Left: transcript representation. Right: splicing graph repre-
sentation. Orange arrows are edges corresponding to exons.

3

The symbols associated with individual types of nodes shown in braces above are used for the identification
of complete alternative splicing events. For more information about gathering the alternative splicing events
and their associated codes, please refer to [6, 1].

In some cases a given splicing site can be associated with 2 types. The combinations of types for such sites
is limited. Only acceptor (-) and transcription start ([), or donor (^) and transcription end (]), can occur
as a pair of types. Such a dual-type node occurs when the start of an exon, which is not the first exon of a
transcript, falls together with the transcription start site of another transcript of the same gene. An example
of such a splicing graph is shown in Figure 2.

5
3

.9
8

 m
b

5
3

.9
9

 m
b

5
4

 m
b

uc010eqq.1uc002qbu.2

R

1

2

3

4

5

6

7

8

9

10

L

Figure 2: Splicing graph representation of the two transcript variants of Human
gene ZNF813 (Entrez ID 126017). Node 3 is a (-,[) dual-type node: acceptor (-)
for transcript uc002qbu.2, and transcription start ([) for transcript uc010eqq.1.

A similar case occurs when the end of an exon, which is not the last exon of a transcript, falls together with
the transcription end site of another transcript of the same gene.

Whether a non-artificial edge represents an exon or an intron is determined by the types of its two flanking
nodes:

4

� Exon if going from acceptor (-), or (-,[) dual-type, to donor (^), or (^,]) dual-type;
� Intron if the otherway around.

2.3 Uninformative nodes

Not all splicing sites (nodes) on the individual transcripts are alternative splicing sites. Therefore the initial
splicing graph outlined above can be simplified by removing nodes of in- and out- degree equal to one
because they are supposed to be non-informative in terms of alternative splicing. Edges associated with
such nodes get sequentially merged with the previous ones and result in longer edges capturing adjacent
exons/introns. The final splicing graph only contains nodes involved in alternative splicing. The result of
removing uninformative nodes is illustrated in Figure 3.

●R

●1

●2

●3

●4

●5●6

●7

●8

●9

●10

●11

●12

●13

●L

R

2

4

7

8

10

L

Figure 3: Nodes 1, 3, 5, 6, 9, 11, 12, and 13, are uninformative and can be removed.
Left: before removal of the uninformative nodes. Right: after their removal.

5

3 Computing splicing graphs from annotations

3.1 Choosing and loading a gene model

The starting point for computing splicing graphs is a set of annotations describing a gene model for a given
organism. In Bioconductor, a gene model is typically represented as a TxDb object. A few prepackaged
TxDb objects are available as TxDb.* annotation packages in the Bioconductor package repositories. Here
the TxDb.Hsapiens.UCSC.hg19.knownGene package is used. If there is no prepackaged TxDb object for
the genome/track that the user wants to use, such objects can easily be created by using tools from the
GenomicFeatures package.

First we load the TxDb.* package:

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

Creating the splicing graphs for all genes in the TxDb object can take a long time (up to 20 minutes or
more). In order to keep things running in a reasonable time in this vignette, we restrict the gene model to
the genes located on chromosome 14. Let’s use the isActiveSeq getter/setter for this. By default, all the
chromosomes in a TxDb object are “active”:

> isActiveSeq(txdb)[1:25]

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15

TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY chrM

TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Next we set all the values in this named logical vector to FALSE, except the value for chr14:

> isActiveSeq(txdb)[-match("chr14", names(isActiveSeq(txdb)))] <- FALSE

> names(which(isActiveSeq(txdb)))

[1] "chr14"

3.2 Generating a SplicingGraphs object

Splicing graphs are computed by calling the SplicingGraphs function on the gene model. This is the
constructor function for SplicingGraphs objects. It will compute information about all the splicing graphs (1
per gene) and store it in the returned object. By default, only genes with at least 2 transcripts are considered
(this can be changed by using the min.ntx argument of SplicingGraphs):

> library(SplicingGraphs)

> sg <- SplicingGraphs(txdb) # should take between 5 and 10 sec on

> # a modern laptop

> sg

6

SplicingGraphs object with 452 gene(s) and 1997 transcript(s)

sg is a SplicingGraphs object. It has 1 element per gene and names(sg) gives the gene ids:

> names(sg)[1:20]

[1] "10001" "100129075" "100309464" "10038" "100505967" "100506412" "100506499"

[8] "100529257" "100529261" "100874185" "100996280" "10175" "10202" "10243"

[15] "10278" "1033" "10379" "10419" "10484" "10490"

seqnames(sg) and strand(sg) return the chromosome and strand of the genes:

> seqnames(sg)[1:20]

10001 100129075 100309464 10038 100505967 100506412 100506499 100529257 100529261

chr14 chr14 chr14 chr14 chr14 chr14 chr14 chr14 chr14

100874185 100996280 10175 10202 10243 10278 1033 10379 10419

chr14 chr14 chr14 chr14 chr14 chr14 chr14 chr14 chr14

10484 10490

chr14 chr14

Levels: chr14

> strand(sg)[1:20]

10001 100129075 100309464 10038 100505967 100506412 100506499 100529257 100529261

- - + + + + - - +

100874185 100996280 10175 10202 10243 10278 1033 10379 10419

- + - + + - + + -

10484 10490

- -

Levels: + - *

> table(strand(sg))

+ - *

232 220 0

The number of transcripts per gene can be obtained with elementNROWS(sg):

> elementNROWS(sg)[1:20]

10001 100129075 100309464 10038 100505967 100506412 100506499 100529257 100529261

5 2 2 4 2 4 2 3 6

100874185 100996280 10175 10202 10243 10278 1033 10379 10419

2 2 2 4 6 3 4 2 6

10484 10490

4 3

7

elementNROWS is a core accessor for list-like objects that returns the lengths of the individual list elements.

At this point you might wonder why elementNROWS works on SplicingGraphs objects. Does this mean that
those objects are list-like objects? The answer is yes. What do the list elements look like, and how can you
access them? This is answered in the next subsection.

3.3 Basic manipulation of a SplicingGraphs object

The list elements of a list-like object can be accessed one at a time by subsetting the object with [[(a.k.a.
double-bracket subsetting). On a SplicingGraphs object, this will extract the transcripts of a given gene.
More precisely it will return an unnamed GRangesList object containing the exons of the gene grouped by
transcript:

> sg[["3183"]]

GRangesList object of length 11:

[[1]]

GRanges object with 9 ranges and 5 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank start_SSid

<Rle> <IRanges> <Rle> | <integer> <character> <integer> <integer>

[1] chr14 21737457-21737638 - | 184118 <NA> 1 2

[2] chr14 21731470-21731495 - | 184116 <NA> 2 6

[3] chr14 21702112-21702388 - | 184113 <NA> 3 11

[4] chr14 21699156-21699231 - | 184112 <NA> 4 13

[5] chr14 21698478-21698525 - | 184109 <NA> 5 17

[6] chr14 21681119-21681276 - | 184107 <NA> 6 21

[7] chr14 21679969-21680082 - | 184105 <NA> 7 24

[8] chr14 21679565-21679725 - | 184103 <NA> 8 27

[9] chr14 21677296-21679465 - | 184100 <NA> 9 30

end_SSid

<integer>

[1] 1

[2] 5

[3] 9

[4] 12

[5] 16

[6] 18

[7] 22

[8] 25

[9] 28

seqinfo: 1 sequence from hg19 genome

[[2]]

GRanges object with 5 ranges and 5 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank start_SSid

<Rle> <IRanges> <Rle> | <integer> <character> <integer> <integer>

[1] chr14 21737457-21737638 - | 184118 <NA> 1 2

[2] chr14 21731470-21731495 - | 184116 <NA> 2 6

[3] chr14 21702237-21702388 - | 184114 <NA> 3 10

[4] chr14 21679565-21679672 - | 184102 <NA> 4 27

[5] chr14 21677296-21679465 - | 184100 <NA> 5 30

end_SSid

<integer>

[1] 1

8

[2] 5

[3] 9

[4] 26

[5] 28

seqinfo: 1 sequence from hg19 genome

...

<9 more elements>

The exon-level metadata columns are:

� exon_id: The original internal exon id as stored in the TxDb object. This id was created and assigned
to each exon when the TxDb object was created. It’s not a public id like, say, an Ensembl, RefSeq,
or GenBank id. Furthermore, it’s only guaranteed to be unique within a TxDb object, but not across
TxDb objects.

� exon_name: The original exon name as provided by the annotation resource (e.g., UCSC, Ensembl, or
GFF file) and stored in the TxDb object when it was created. Set to NA if no exon name was provided.

� exon_rank: The rank of the exon in the transcript.
� start_SSid, end_SSid: The Splicing Site ids corresponding to the start and end coordinates of the

exon. (Please be cautious to not misinterpret the meaning of start and end here. See IMPORTANT
NOTE below.) Those ids were assigned by the SplicingGraphs constructor.

IMPORTANT NOTE: Please be aware that the start and end coordinates of an exon, like the start and end
coordinates of a genomic range in general, are following the almost universal convention that start is <=
end, and this regardless of the direction of transcription.

As mentioned previously, the Splicing Site ids are assigned based on the order of the site positions from 5’
to 3’. This means that, for a gene on the plus (resp. minus) strand, the ids in the start_SSid metadata
column are always lower (resp. greater) than those in the end_SSid metadata column.

However, on both strands, the Splicing Site id increases with the rank of the exon.

The show method for GRangesList objects only displays the inner metadata columns (which are at the
exon level for an object like sg[["3183"]]). To see the outer metadata columns (transcript-level metadata
columns for objects like sg[["3183"]]), we need to extract them explicitely:

> mcols(sg[["3183"]])

DataFrame with 11 rows and 2 columns

tx_id txpath

<character> <IntegerList>

1 uc001vzw.3 1,2,5,...

2 uc001vzx.3 1,2,5,...

3 uc001vzy.3 1,2,5,...

4 uc001vzz.3 1,2,9,...

5 uc001waa.3 1,2,9,...

6 uc001wac.3 1,2,9,...

7 uc001wad.3 1,2,5,...

8 uc010ail.3 1,2,3,...

9 uc010tlq.2 1,2,5,...

10 uc010tlr.2 15,17,18,...

11 uc001wae.3 1,2,9,...

9

The transcript-level metadata columns are:

� tx_id: The original transcript id as provided by the annotation resource (e.g. UCSC, Ensembl, or
GFF file) and stored in the TxDb object when it was created.

� txpath: A named list-like object with one list element per transcript in the gene. Each list element is
an integer vector that describes the path of the transcript, i.e., the Splicing Site ids that it goes thru.

> mcols(sg[["3183"]])$txpath

IntegerList of length 11

[["uc001vzw.3"]] 1 2 5 6 9 11 12 13 16 17 18 21 22 24 25 27 28 30

[["uc001vzx.3"]] 1 2 5 6 9 10 26 27 28 30

[["uc001vzy.3"]] 1 2 5 6 9 11 12 14 16 17 18 21 22 24 25 27 28 30

[["uc001vzz.3"]] 1 2 9 11 12 13 16 17 18 21 22 24 25 27 28 30

[["uc001waa.3"]] 1 2 9 11 12 14 16 17 18 21 22 24 25 27 28 30

[["uc001wac.3"]] 1 2 9 11 12 13 16 17 18 19 23 24 25 27 28 30

[["uc001wad.3"]] 1 2 5 6 9 10 16 17 18 21 22 24 25 27 28 30

[["uc010ail.3"]] 1 2 3 4 5 6 7 8 9 11 12 14 16 17 18 21 22 24 25 27 28 30

[["uc010tlq.2"]] 1 2 5 6 9 11 12 14 20 21 22 24 25 27 28 30

[["uc010tlr.2"]] 15 17 18 21 22 24 25 29

...

<1 more element>

A more convenient way to extract this information is to use the txpath accessor:

> txpath(sg[["3183"]])

IntegerList of length 11

[["uc001vzw.3"]] 1 2 5 6 9 11 12 13 16 17 18 21 22 24 25 27 28 30

[["uc001vzx.3"]] 1 2 5 6 9 10 26 27 28 30

[["uc001vzy.3"]] 1 2 5 6 9 11 12 14 16 17 18 21 22 24 25 27 28 30

[["uc001vzz.3"]] 1 2 9 11 12 13 16 17 18 21 22 24 25 27 28 30

[["uc001waa.3"]] 1 2 9 11 12 14 16 17 18 21 22 24 25 27 28 30

[["uc001wac.3"]] 1 2 9 11 12 13 16 17 18 19 23 24 25 27 28 30

[["uc001wad.3"]] 1 2 5 6 9 10 16 17 18 21 22 24 25 27 28 30

[["uc010ail.3"]] 1 2 3 4 5 6 7 8 9 11 12 14 16 17 18 21 22 24 25 27 28 30

[["uc010tlq.2"]] 1 2 5 6 9 11 12 14 20 21 22 24 25 27 28 30

[["uc010tlr.2"]] 15 17 18 21 22 24 25 29

...

<1 more element>

The list elements of the txpath metadata column always consist of an even number of Splicing Site ids in
ascending order.

The transcripts in a GRangesList object like sg[["3183"]] can be plotted with plotTranscripts:

> plotTranscripts(sg[["3183"]])

The resulting plot is shown on figure 4.

10

21.68 mb

21.69 mb

21.7 mb

21.71 mb

21.72 mb

21.73 mb

21.74 mb

Figure 4: The 11 transcripts of gene HNRNPC (Entrez ID 3183).

SplicingGraphs objects, like most list-like objects, can be unlisted with unlist. This will extract the tran-
scripts of all the genes and return them as a named GRangesList object. The names on the object are the
gene ids:

> ex_by_tx <- unlist(sg)

> head(names(ex_by_tx))

[1] "10001" "10001" "10001" "10001" "10001" "100129075"

Because each element in the object represents a transcript (and not a gene), the names are not unique! This
means that trying to subset the object by name (e.g. with ex_by_tx["3183"] or ex_by_tx[["3183"]]) is
probably a bad idea because this will only select the first element with that name. When the names on a
vector-like object x are not unique, a safe way to select all the elements with some given names is to do
something like x[names(x) %in% c("name1", "name2")]. For example, to select all the transcripts from
genes 10001 and 100129075:

> ex_by_tx[names(ex_by_tx) %in% c("10001", "100129075")]

GRangesList object of length 7:

$`10001`

GRanges object with 8 ranges and 5 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank start_SSid

<Rle> <IRanges> <Rle> | <integer> <character> <integer> <integer>

[1] chr14 71067333-71067384 - | 186281 <NA> 1 2

[2] chr14 71064335-71064494 - | 186280 <NA> 2 4

[3] chr14 71063328-71063419 - | 186279 <NA> 3 6

[4] chr14 71060013-71060095 - | 186278 <NA> 4 8

[5] chr14 71059597-71059705 - | 186276 <NA> 5 11

[6] chr14 71057983-71058098 - | 186273 <NA> 6 15

[7] chr14 71052473-71052500 - | 186272 <NA> 7 17

11

[8] chr14 71050957-71051660 - | 186271 <NA> 8 19

end_SSid

<integer>

[1] 1

[2] 3

[3] 5

[4] 7

[5] 10

[6] 14

[7] 16

[8] 18

seqinfo: 1 sequence from hg19 genome

$`10001`

GRanges object with 8 ranges and 5 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank start_SSid

<Rle> <IRanges> <Rle> | <integer> <character> <integer> <integer>

[1] chr14 71067333-71067384 - | 186281 <NA> 1 2

[2] chr14 71064335-71064494 - | 186280 <NA> 2 4

[3] chr14 71063328-71063419 - | 186279 <NA> 3 6

[4] chr14 71060013-71060095 - | 186278 <NA> 4 8

[5] chr14 71059597-71059726 - | 186277 <NA> 5 11

[6] chr14 71057983-71058098 - | 186273 <NA> 6 15

[7] chr14 71052473-71052500 - | 186272 <NA> 7 17

[8] chr14 71050957-71051660 - | 186271 <NA> 8 19

end_SSid

<integer>

[1] 1

[2] 3

[3] 5

[4] 7

[5] 9

[6] 14

[7] 16

[8] 18

seqinfo: 1 sequence from hg19 genome

...

<5 more elements>

3.4 Extracting and plotting graphs from a SplicingGraphs object

The edges (resp. nodes) of the splicing graph of a given gene can be extracted with the sgedges (resp.
sgnodes) function. An important caveat is that this can only be done for one gene at a time, or, said
otherwise, these functions only work on a SplicingGraphs object of length 1. Here is where subsetting with
[(a.k.a. single-bracket subsetting) comes into play.

Using [on a SplicingGraphs object returns a SplicingGraphs object containing only the selected genes:

> sg[strand(sg) == "-"]

SplicingGraphs object with 220 gene(s) and 957 transcript(s)

12

> sg[1:20]

SplicingGraphs object with 20 gene(s) and 68 transcript(s)

> tail(sg) # equivalent to 'sg[tail(seq_along(sg))]'

SplicingGraphs object with 6 gene(s) and 19 transcript(s)

> sg["3183"]

SplicingGraphs object with 1 gene(s) and 11 transcript(s)

Let’s extract the splicing graph edges for gene HNRNPC (Entrez ID 3183):

> sgedges(sg["3183"])

DataFrame with 41 rows and 5 columns

from to sgedge_id ex_or_in tx_id

<character> <character> <character> <factor> <CharacterList>

1 R 1 3183:R,1 uc001vzw.3,uc001vzx.3,uc001vzy.3,...

2 1 2 3183:1,2 ex uc001vzw.3,uc001vzx.3,uc001vzy.3,...

3 2 5 3183:2,5 in uc001vzw.3,uc001vzx.3,uc001vzy.3,...

4 5 6 3183:5,6 ex uc001vzw.3,uc001vzx.3,uc001vzy.3,...

5 6 9 3183:6,9 in uc001vzw.3,uc001vzx.3,uc001vzy.3,...

...

37 20 21 3183:20,21 ex uc010tlq.2

38 R 15 3183:R,15 uc010tlr.2

39 15 17 3183:15,17 ex uc010tlr.2

40 25 29 3183:25,29 ex uc010tlr.2,uc001wae.3

41 29 L 3183:29,L uc010tlr.2,uc001wae.3

The DataFrame object returned by sgedges has 1 row per edge. Its columns are explained below.

Let’s extract the splicing graph nodes for that gene:

> sgnodes(sg["3183"])

[1] "R" "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15" "16"

[18] "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30" "L"

The character vector returned by sgnodes contains the node ids, that is, R and L for the root and leaf nodes,
and the Splicing Site ids for the other nodes. The node ids are always returned in ascending order with R

and L being always the first and last nodes, respectively.

The DataFrame object returned by sgedges has the following columns:

13

� from, to: The 2 nodes connected by the edge.
� sgedge_id: A global edge id of the form gene_id:from,to.
� ex_or_in: The type of the edge, i.e., exon, intron, or no type if it’s an artificial edge.
� tx_id: The ids of the transcripts that support the edge.

Alternatively the edges and ranges of all the genes can be extracted with sgedgesByGene:

> edges_by_gene <- sgedgesByGene(sg)

In this case the edges are returned in a GRangesList object where they are grouped by gene. edges_by_gene
has the length and names of sg, that is, the names on it are the gene ids and are guaranteed to be unique.
Let’s look at the edges for gene 3183:

> edges_by_gene[["3183"]]

GRanges object with 37 ranges and 5 metadata columns:

seqnames ranges strand | from to sgedge_id ex_or_in

<Rle> <IRanges> <Rle> | <character> <character> <character> <factor>

[1] chr14 21737457-21737638 - | 1 2 3183:1,2 ex

[2] chr14 21731496-21737456 - | 2 5 3183:2,5 in

[3] chr14 21731470-21731495 - | 5 6 3183:5,6 ex

[4] chr14 21702389-21731469 - | 6 9 3183:6,9 in

[5] chr14 21702112-21702388 - | 9 11 3183:9,11 ex

...

[33] chr14 21702389-21730759 - | 8 9 3183:8,9 in

[34] chr14 21681204-21699116 - | 14 20 3183:14,20 in

[35] chr14 21681119-21681203 - | 20 21 3183:20,21 ex

[36] chr14 21698478-21698532 - | 15 17 3183:15,17 ex

[37] chr14 21678927-21679725 - | 25 29 3183:25,29 ex

tx_id

<CharacterList>

[1] uc001vzw.3,uc001vzx.3,uc001vzy.3,...

[2] uc001vzw.3,uc001vzx.3,uc001vzy.3,...

[3] uc001vzw.3,uc001vzx.3,uc001vzy.3,...

[4] uc001vzw.3,uc001vzx.3,uc001vzy.3,...

[5] uc001vzw.3,uc001vzy.3,uc001vzz.3,...

... ...

[33] uc010ail.3

[34] uc010tlq.2

[35] uc010tlq.2

[36] uc010tlr.2

[37] uc010tlr.2,uc001wae.3

seqinfo: 1 sequence from hg19 genome

The edge-level metadata columns are the same as the columns of the DataFrame object returned by sgedges.
An important difference though is that the artificial edges (i.e., edges starting from the root node (R) or
ending at the leaf node (L)) are omitted!

Finally, to plot a given splicing graph:

> plot(sg["3183"])

> plot(sgraph(sg["3183"], tx_id.as.edge.label=TRUE))

14

The resulting plots are shown on figure 5.

R

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

2223

24

25

26

27

2829

30

L

R

1

2

3

4

5

6

7

8

9

10

11

12

1314

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29

30

L

uc001vzw.3,uc001vzx.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wac.3,uc001wad.3,uc010ail.3,uc010tlq.2,uc001wae.3uc010tlr.2

uc001vzw.3,uc001vzx.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wac.3,uc001wad.3,uc010ail.3,uc010tlq.2,uc001wae.3

uc010ail.3

uc001vzw.3,uc001vzx.3,uc001vzy.3,uc001wad.3,uc010tlq.2

uc001vzz.3,uc001waa.3,uc001wac.3,uc001wae.3

uc010ail.3

uc010ail.3

uc001vzw.3,uc001vzx.3,uc001vzy.3,uc001wad.3,uc010ail.3,uc010tlq.2

uc010ail.3

uc001vzw.3,uc001vzx.3,uc001vzy.3,uc001wad.3,uc010tlq.2uc010ail.3

uc010ail.3

uc001vzx.3,uc001wad.3

uc001vzw.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wac.3,uc010ail.3,uc010tlq.2,uc001wae.3

uc001wad.3 uc001vzx.3

uc001vzw.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wac.3,uc010ail.3,uc010tlq.2,uc001wae.3

uc001vzw.3,uc001vzz.3,uc001wac.3,uc001wae.3uc001vzy.3,uc001waa.3,uc010ail.3,uc010tlq.2

uc001vzw.3,uc001vzz.3,uc001wac.3,uc001wae.3uc001vzy.3,uc001waa.3,uc010ail.3

uc010tlq.2

uc010tlr.2

uc001vzw.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wac.3,uc001wad.3,uc010ail.3,uc001wae.3

uc001vzw.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wac.3,uc001wad.3,uc010ail.3,uc010tlr.2,uc001wae.3

uc001wac.3uc001vzw.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wad.3,uc010ail.3,uc010tlr.2,uc001wae.3

uc001wac.3

uc010tlq.2

uc001vzw.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wad.3,uc010ail.3,uc010tlq.2,uc010tlr.2,uc001wae.3

uc001vzw.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wad.3,uc010ail.3,uc010tlq.2,uc010tlr.2,uc001wae.3uc001wac.3

uc001vzw.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wac.3,uc001wad.3,uc010ail.3,uc010tlq.2,uc010tlr.2,uc001wae.3

uc001vzw.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wac.3,uc001wad.3,uc010ail.3,uc010tlq.2uc010tlr.2,uc001wae.3

uc001vzx.3

uc001vzw.3,uc001vzx.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wac.3,uc001wad.3,uc010ail.3,uc010tlq.2

uc001vzw.3,uc001vzx.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wac.3,uc001wad.3,uc010ail.3,uc010tlq.2uc010tlr.2,uc001wae.3

uc001vzw.3,uc001vzx.3,uc001vzy.3,uc001vzz.3,uc001waa.3,uc001wac.3,uc001wad.3,uc010ail.3,uc010tlq.2

Figure 5: Splicing graph representation of gene HNRNPC (Entrez ID 3183). Left:
unlabelled edges. Right: edge labelled with the transcript ids (or names).

4 Splicing graph bubbles

4.1 Some definitions

The definition of a bubble provided in Sammeth’s paper [1] is quite obfuscated. Here we try to give a simpler
one. We start by introducing the notion of a valid path between 2 nodes of a splicing graph: a “valid path”
between 2 nodes s and t (s < t) of a splicing graph is a path followed by at least 1 transcript (see the txpath
function in previous section for how to extract the transcript paths).

Let’s illustrate this by looking at the splicing graph for gene 7597 (Entrez ID). This gene is made of 3
transcripts: uc001xhg.3, uc001xhc.3, and uc001xhf.3. Its splicing graph is shown on figure 6.

Path {2,11,12,15,16,L} in that graph is followed by transcript uc001xhc.3 and thus is valid. However
path {2,11,12,13,14,L} is not followed by any known transcript and thus is not valid.

15

R

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

L

uc001xhc.3,uc001xhg.3 uc001xhf.3

uc001xhc.3,uc001xhg.3

uc001xhg.3

uc001xhc.3

uc001xhf.3

uc001xhf.3

uc001xhg.3

uc001xhg.3

uc001xhg.3

uc001xhg.3

uc001xhg.3

uc001xhg.3

uc001xhc.3,uc001xhf.3,uc001xhg.3

uc001xhf.3,uc001xhg.3 uc001xhc.3

uc001xhf.3,uc001xhg.3

uc001xhf.3,uc001xhg.3

uc001xhc.3

uc001xhc.3

Figure 6: Splicing graph representation of gene 7597 (Entrez ID). Valid paths be-
tween nodes 2 and L are: {2,5,6,7,8,9,10,11,12,13,14,L} (followed by tran-
script uc001xhg.3), and {2,11,12,15,16,L} (followed by transcript uc001xhc.3).
Paths {2,5,6,7,8,9,10,11,12,15,16,L} or {2,11,12,13,14,L} are not followed
by any known transcript and thus are not valid paths.

16

Now the definition of a bubble: there is a “bubble” between 2 nodes s and t (s < t) of a splicing graph if (a)
there are at least 2 distinct valid paths between s and t, and (b) no other nodes than s and t are shared by
all the valid paths between them. Nodes s and t are said to be the “source” and “sink” of the bubble. The
number of distinct valid paths between s and t is the “dimension” of the bubble.

For example, there is a bubble between nodes R and 11 of gene 7597 (see figure 6) because the 3 valid paths
between the 2 nodes and these paths share those 2 nodes only. The dimension of this bubble is 3. However,
there is no bubble between nodes 2 and L because the 2 valid paths between the 2 nodes also share nodes
11 and 12.

The set of all valid paths that form a bubble describes a“complete alternative splicing event”(a.k.a. “complete
AS event”, or simply“complete event”). The individual valid paths that form the bubble are sometimes called
the “variants” of the bubble or event.

4.2 Computing the bubbles of a splicing graph

Like with the sgedges and sgnodes functions, the bubbles can only be computed for one gene (or graph) at
a time. Let’s compute the bubbles for gene 7597 (Entrez ID) (represented on figure 6):

> bubbles(sg["7597"])

DataFrame with 3 rows and 7 columns

source sink d partitions

<character> <character> <integer> <CharacterList>

1 R 11 3 {uc001xhc.3},{uc001xhg.3},{uc001xhf.3}

2 2 11 2 {uc001xhc.3},{uc001xhg.3}

3 12 L 2 {uc001xhf.3,uc001xhg..,{uc001xhc.3}

paths AScode description

<CharacterList> <character> <character>

1 {1,2},{1,2,5,6,7,8,9,10},{3,4} 1[2^,1[2^5-6^7-8^9-1.. NA

2 {},{5,6,7,8,9,10} 0,1-2^3-4^5-6^ skip 3 exons

3 {13,14},{15,16} 1-2],3-4] 2 alternative last e..

The DataFrame object returned by bubbles has 1 row per bubble in the graph and the following columns:

� source, sink: The source and sink of the bubble.
� d: The dimension of the bubble.
� partitions, paths: The latter contains the valid paths between the source and sink of the bubble

(note that the source and sink nodes are not reported in the paths). The former contains the list of
transcripts associated with each of these paths.

� AScode, description: The AS code (Alternative Splicing code) and its verbose description. More on
these in the next subsection.

Bubbles can be nested, i.e., contain (or be contained in) other bubbles of smaller (or higher) dimensions. For
example, in gene 7597, the bubble between nodes R and 11 (1st bubble in the DataFrame object returned
by bubbles) is of dimension 3 and contains the smaller bubble between nodes 2 and 11 (2nd bubble in the
DataFrame object returned by bubbles) which is of dimension 2.

Bubbles can also overlap without one containing any of the others.

17

4.3 AS codes

See [1] for how AS codes are generated.

Let’s illustrate this by looking at how the AS code for the 2nd bubble in gene 7597 is obtained. In 3 steps:

1. The paths reported for this bubble are {} and {5,6,7,8,9,10}. All the nodes involved in these paths
are re-numbered starting at 1 so nodes 5, 6, 7, 8, 9, 10 become 1, 2, 3, 4, 5, 6, respectively.

2. Then, for each path, a string is generated by putting together the new node numbers and node types in
that path. By convention, this string is set to 0 if the path is empty. So paths {} and {5,6,7,8,9,10}

generate strings 0 and 1-2^3-4^5-6^, respectively.
3. Finally, the strings obtained previously are sorted lexicographically and concatenated together sepa-

rated by commas (,). This gives the final AS code: 0,1-2^3-4^5-6^.

Verbose descriptions (in the English language) of the AS codes are obtained by looking them up through
the ASCODE2DESC predefined object. ASCODE2DESC is a named character vector that contains the verbose
descriptions for the AS codes of the 50 most frequent patterns of internal complete events found in Human
as reported in Table 1 of Sammeth’s paper [1].

> codes <- bubbles(sg["7597"])$AScode

> data.frame(AScode=codes, description=ASCODE2DESC[codes], row.names=NULL)

AScode description

1 1[2^,1[2^5-6^7-8^9-10^,3[4^ <NA>

2 0,1-2^3-4^5-6^ skip 3 exons

3 1-2],3-4] 2 alternative last exons

> codes <- bubbles(sg["10202"])$AScode

> data.frame(AScode=codes, description=ASCODE2DESC[codes], row.names=NULL)

AScode description

1 1[2^,3[4^ 2 alternative first exons

2 1-,2- 2 alternative acceptors

3 0,1-2^3-4^6-7^8-9],1-2^3-5^6-7^8-9] <NA>

4 1^,2^ 2 alternative donors

ASCODE2DESC only contains the 50 code descriptions reported in Table 1 of Sammeth’s paper [1]. Therefore,
looking up codes through ASCODE2DESC will inevitably return an NA for some codes. For example, even simple
codes like 0,1[2^ or 0,1-2^3-4] (which mean ”skip the first exon” or ”skip the last 2 exons”, respectively)
are not in Sammeth’s table, because, as its title indicates, only internal complete events are reported in that
table (a complete event, or bubble, being considered “internal” when its source and sink nodes are not R or
L, or, equivalently, when its code has no [or] in it).1

1Despite its title (“50 Most Frequent Patterns of Internal Complete Events Found in Human”), Table 1 of Sammeth’s paper
[1] actually contains AS codes that seem to correspond to complete events that are not internal. For example, the 16th AS
code in the table is 1*2^,3*4^ and its description is "2 alternative first exons", which indicates that the event is internal.
This raises at least 2 questions: why is it in the table? and why does the code contain * instead of [? A third question could
be: why exclude complete events that are not internal in the first place?

18

4.4 Tabulating all the AS codes for Human chromosome 14

To extract all the bubbles from all the genes on Human chromosome 14 and tabulate their codes, we do the
following:

> AScode_list <- lapply(seq_along(sg), function(i) bubbles(sg[i])$AScode)

> names(AScode_list) <- names(sg)

> AScode_table <- table(unlist(AScode_list))

> AScode_table <- sort(AScode_table, decreasing=TRUE)

> AScode_summary <- data.frame(AScode=names(AScode_table),

+ NbOfEvents=as.vector(AScode_table),

+ Description=ASCODE2DESC[names(AScode_table)])

> nrow(AScode_summary)

[1] 956

> head(AScode_summary, n=10)

AScode NbOfEvents Description

1 0,1-2^ 454 skip 1 exon

2 1-,2- 146 2 alternative acceptors

3 1^,2^ 88 2 alternative donors

4 0,1^2- 53 retain 1 intron

5 1[2^,3[4^ 51 2 alternative first exons

6 0,1[2^ 29 <NA>

7 0,1-2^3-4^ 28 skip 2 exons

8 1^3-4],2] 23 alternative poly-adenylation site in the retained last intron

9 1[2^4-,3[18 alternative transcription start in the first intron

10 0,1-2^,3-4^ 15 include 0 or 1 of 2 alternative exons

Amongst the 956 distinct complete events we observe on Human chromosome 14, the most frequent one is
described as “skip 1 exon”. At this point it should be mentioned that not all splicing events have descriptions
in the English language since there are a variety of different events.

Another interesting question we can ask now is how many complete events is observed in each gene. To
answer this question we first need to count the number of bubbles within each gene.

> nb_bubbles_per_gene <- elementNROWS(AScode_list)

Below the genes with the most observed splicing events are shown.

> head(sort(nb_bubbles_per_gene, decreasing=TRUE))

4287 23224 317749 80017 5265 57862

68 39 27 25 20 20

Next we want to see which genes show the highest heterogeneity of splicing events. We check for the number
of unique splicing events for each gene.

19

> nb_unique_bubbles_per_gene <- elementNROWS(unique(CharacterList(AScode_list)))

Below the genes with the highest heterogeneity in observed splicing events are shown

> head(sort(nb_unique_bubbles_per_gene, decreasing=TRUE))

4287 23224 317749 80017 3183 57096

56 29 23 20 18 18

R

1

2

34

5

6

7 8

9

10 11

12

13

14

15

16

17

18 19

20 21

22

23

24

25 26

27

28

29

30

31

32

33

34 35

36

L

Figure 7: Splicing graph representation of gene 4287 (Entrez ID). This is the gene
with the most observed splicing events on Human chromosome 14.

5 Counting reads

In this section, we illustrate how RNA-seq reads can be assigned to the exonic and intronic edges of a
SplicingGraphs object, and how these assignments can be summarized in a table of counts. The reads we’re
going to assign are stored as BAM files available in the RNAseqData.HNRNPC.bam.chr14 package. They’ve

20

been aligned to the hg19 reference genome from UCSC, which is also the reference genome of the gene model
in our SplicingGraphs object sg. As a general rule, the aligned reads and the annotations should always be
based on the same reference genome.

Let’s start by loading the RNAseqData.HNRNPC.bam.chr14 package:

> library(RNAseqData.HNRNPC.bam.chr14)

> bam_files <- RNAseqData.HNRNPC.bam.chr14_BAMFILES

> names(bam_files) # the names of the runs

[1] "ERR127306" "ERR127307" "ERR127308" "ERR127309" "ERR127302" "ERR127303" "ERR127304"

[8] "ERR127305"

Another important question about RNA-seq reads is whether they are single- or paired-end. This can be
checked with the quickBamFlagSummary utility from the Rsamtools package:

> quickBamFlagSummary(bam_files[1], main.groups.only=TRUE)

group | nb of | nb of | mean / max

of | records | unique | records per

records | in group | QNAMEs | unique QNAME

All records........................ A | 800484 | 393300 | 2.04 / 10

o template has single segment.... S | 0 | 0 | NA / NA

o template has multiple segments. M | 800484 | 393300 | 2.04 / 10

- first segment.............. F | 400242 | 393300 | 1.02 / 5

- last segment............... L | 400242 | 393300 | 1.02 / 5

- other segment.............. O | 0 | 0 | NA / NA

Note that (S, M) is a partitioning of A, and (F, L, O) is a partitioning of M.

Indentation reflects this.

Doing this for the 8 BAM files confirms that all the reads in the files are paired-end. This means that they
should be loaded with the readGAlignmentPairs function from the GenomicAlignments package. As a quick
example, we load the reads located on the first 20 million bases of chromosome 14:

> param <- ScanBamParam(which=GRanges("chr14", IRanges(1, 20000000)))

> galp <- readGAlignmentPairs(bam_files[1], param=param)

> length(galp) # nb of alignment pairs

[1] 3092

> galp

GAlignmentPairs object with 3092 pairs, strandMode=1, and 0 metadata columns:

seqnames strand : ranges -- ranges

<Rle> <Rle> : <IRanges> -- <IRanges>

21

[1] chr14 + : 19069583-19069654 -- 24932002-24932073

[2] chr14 - : 19363755-19363826 -- 19363738-19363809

[3] chr14 + : 19369799-19369870 -- 19369828-19369899

[4] chr14 + : 19411097-19411168 -- 19411108-19411179

[5] chr14 + : 19411459-19411530 -- 19411582-19411653

...

[3088] chr14 - : 19988540-19988611 -- 19988439-19988510

[3089] chr14 - : 19988549-19988620 -- 19988436-19988507

[3090] chr14 - : 19988549-19988620 -- 19988443-19988514

[3091] chr14 - : 19988550-19988621 -- 19988443-19988514

[3092] chr14 - : 19988551-19988622 -- 19988439-19988510

seqinfo: 93 sequences from an unspecified genome

The result is a GAlignmentPairs object with 1 element per alignment pair (alignment pair = pair of BAM
records). Although paired-end reads could also be loaded with readGAlignments (also from the Genom-
icRanges package), they should be loaded with the readGAlignmentPairs: this actually pairs the BAM
records and returns the pairs in a GAlignmentPairs object. Otherwise the records won’t be paired and will
be returned in a GAlignments object.

5.1 Assigning reads to the edges of a SplicingGraphs object

We can use the assignReads function to assign reads to the the exonic and intronic edges of sg. The same
read can be assigned to more than one exonic or intronic edge. For example, a junction read with 1 junction
(i.e., 1 N in its CIGAR) can be assigned to an intron and its 2 flanking exons, and this can happen for one
or more transcripts, from the same gene or from different genes.

We’re going to loop on the BAM files to assign the reads from 1 run at a time. When we load the files, we want
to filter out secondary alignments, reads not passing quality controls, and PCR or optical duplicates. This
is done by preparing a ScanBamParam object that we’ll pass to readGAlignmentPairs (see ScanBamParam

in the Rsamtools package for more information about this):

> flag0 <- scanBamFlag(isSecondaryAlignment=FALSE,

+ isNotPassingQualityControls=FALSE,

+ isDuplicate=FALSE)

> param0 <- ScanBamParam(flag=flag0)

Loop:

> ## The following loop takes about 7 minutes on a modern laptop/desktop...

> for (i in seq_along(bam_files)) {

+ bam_file <- bam_files[i]

+ cat("Processing run ", names(bam_file), " ... ", sep="")

+ galp <- readGAlignmentPairs(bam_file, use.names=TRUE, param=param0)

+ sg <- assignReads(sg, galp, sample.name=names(bam_file))

+ cat("OK\n")

+ }

The assignments to the exonic and intronic edges of a given gene can be retrieved by extracting the edges
grouped by transcript for that gene. This is achieved by calling sgedgesByTranscript on the subsetted

22

SplicingGraphs object. sgedgesByTranscript is similar to sgedgesByGene (introduced in Section 3), except
that it groups the edges by transcript instead of by gene. By default the edge-level metadata columns are
the same as with sgedgesByGene so we use with.hits.mcols=TRUE to get the additional metadata columns
containing the assignments:

> edges_by_tx <- sgedgesByTranscript(sg["3183"], with.hits.mcols=TRUE)

> edge_data <- mcols(unlist(edges_by_tx))

> colnames(edge_data)

[1] "from" "to" "sgedge_id" "ex_or_in" "tx_id"

[6] "ERR127306.hits" "ERR127307.hits" "ERR127308.hits" "ERR127309.hits" "ERR127302.hits"

[11] "ERR127303.hits" "ERR127304.hits" "ERR127305.hits"

There is 1 hits column per run (or sample). They appear in the order they were created. Each of them is a
CharacterList object that contains the reads from that run (or sample) that were assigned to the individual
edges. Let’s look at the hits column for the first run (ERR127306):

> head(edge_data[, c("sgedge_id", "ERR127306.hits")])

DataFrame with 6 rows and 2 columns

sgedge_id ERR127306.hits

<character> <CharacterList>

3183 3183:1,2 ERR127306.14143335,ERR127306.23395242,ERR127306.26790344,...

3183 3183:2,5 ERR127306.14143335,ERR127306.23395242,ERR127306.26790344,...

3183 3183:5,6 ERR127306.329023,ERR127306.9471404,ERR127306.11461405,...

3183 3183:6,9 ERR127306.329023,ERR127306.9471404,ERR127306.11461405,...

3183 3183:9,11 ERR127306.6268951,ERR127306.12789886,ERR127306.13671541,...

3183 3183:11,12

5.2 How does read assignment work?

[TODO: Complete this subsection.]

For the purpose of explaining how reads from run ERR127306 were assigned to the edges of gene 3183, we
load the reads that are in the region of that gene and contain at least 1 junction:

> param <- ScanBamParam(flag=flag0, which=range(unlist(sg[["3183"]])))

> reads <- readGAlignmentPairs(bam_files[1], use.names=TRUE, param=param)

> junction_reads <- reads[njunc(first(reads)) + njunc(last(reads)) != 0L]

and we plot the genomic region chr14:21675000-21702000:

> plotTranscripts(sg[["3183"]], reads=junction_reads, from=21675000, to=21702000)

The resulting plot is shown on figure 8.

Figure 9 is a zoom on genomic region chr14:21698400-21698600 that was obtained with:

23

21.68 mb

21.685 mb

21.69 mb

21.695 mb

21.7 mb

co
mp

ati
ble

 re
ad

s

Figure 8: Plot of the genomic region chr14:21675000-21702000 showing the 11 tran-
scripts of gene HNRNPC (Entrez ID 3183) and the reads in that region. Reads
that are “compatible” with the splicing of a transcript are plotted in dark blue.
Incompatible reads are in light blue.

24

> plotTranscripts(sg[["3183"]], reads=junction_reads, from=21698400, to=21698600)

21.69845 mb

21.6985 mb

21.69855 mb

co
mp

ati
ble

 re
ad

s

Figure 9: Zoom on genomic region chr14:21698400-21698600 of figure 8.

[TODO: To be continued.]

5.3 Counting and summarizing the assigned reads

We use countReads to count the number of reads assigned to each (non-artificial) edge in sg for each run:

> sg_counts <- countReads(sg)

The returned object is a DataFrame with one row per unique splicing graph edge and one column of counts
per run. Two additional columns contain the splicing graph edge ids and the type of edge (exon or intron):

> dim(sg_counts)

[1] 13483 10

> head(sg_counts[1:5])

25

DataFrame with 6 rows and 5 columns

sgedge_id ex_or_in ERR127306 ERR127307 ERR127308

<character> <factor> <integer> <integer> <integer>

1 10001:1,2 ex 7 7 1

2 10001:2,3 in 7 7 1

3 10001:3,4 ex 32 41 29

4 10001:4,5 in 20 37 26

5 10001:5,6 ex 37 66 51

6 10001:6,7 in 23 36 31

Total number of hits per run:

> sapply(sg_counts[-(1:2)], sum)

ERR127306 ERR127307 ERR127308 ERR127309 ERR127302 ERR127303 ERR127304 ERR127305

632444 728648 691039 642086 565818 598047 610521 654658

[TODO: Suggest some possible downstream statistical analysis that take the output of countReads() as a
starting point.]

6 Session Information

All of the output in this vignette was produced under the following conditions:

> sessionInfo()

R version 4.1.0 RC (2021-05-10 r80283)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server x64 (build 17763)

Matrix products: default

locale:

[1] LC_COLLATE=C LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] grid stats4 parallel stats graphics grDevices utils datasets

[9] methods base

other attached packages:

[1] RNAseqData.HNRNPC.bam.chr14_0.29.0 SplicingGraphs_1.32.0

[3] Rgraphviz_2.36.0 graph_1.70.0

[5] GenomicAlignments_1.28.0 Rsamtools_2.8.0

[7] Biostrings_2.60.0 XVector_0.32.0

[9] SummarizedExperiment_1.22.0 MatrixGenerics_1.4.0

[11] matrixStats_0.58.0 TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2

[13] GenomicFeatures_1.44.0 AnnotationDbi_1.54.0

[15] Biobase_2.52.0 GenomicRanges_1.44.0

26

[17] GenomeInfoDb_1.28.0 IRanges_2.26.0

[19] S4Vectors_0.30.0 BiocGenerics_0.38.0

loaded via a namespace (and not attached):

[1] ProtGenerics_1.24.0 bitops_1.0-7 bit64_4.0.5

[4] filelock_1.0.2 RColorBrewer_1.1-2 progress_1.2.2

[7] httr_1.4.2 backports_1.2.1 tools_4.1.0

[10] utf8_1.2.1 R6_2.5.0 rpart_4.1-15

[13] lazyeval_0.2.2 Hmisc_4.5-0 DBI_1.1.1

[16] Gviz_1.36.0 colorspace_2.0-1 nnet_7.3-16

[19] gridExtra_2.3 tidyselect_1.1.1 prettyunits_1.1.1

[22] bit_4.0.4 curl_4.3.1 compiler_4.1.0

[25] htmlTable_2.2.1 DelayedArray_0.18.0 rtracklayer_1.52.0

[28] checkmate_2.0.0 scales_1.1.1 rappdirs_0.3.3

[31] stringr_1.4.0 digest_0.6.27 foreign_0.8-81

[34] dichromat_2.0-0 htmltools_0.5.1.1 base64enc_0.1-3

[37] jpeg_0.1-8.1 pkgconfig_2.0.3 ensembldb_2.16.0

[40] dbplyr_2.1.1 fastmap_1.1.0 BSgenome_1.60.0

[43] htmlwidgets_1.5.3 rlang_0.4.11 rstudioapi_0.13

[46] RSQLite_2.2.7 BiocIO_1.2.0 generics_0.1.0

[49] BiocParallel_1.26.0 dplyr_1.0.6 VariantAnnotation_1.38.0

[52] RCurl_1.98-1.3 magrittr_2.0.1 GenomeInfoDbData_1.2.6

[55] Formula_1.2-4 Matrix_1.3-3 Rcpp_1.0.6

[58] munsell_0.5.0 fansi_0.4.2 lifecycle_1.0.0

[61] stringi_1.6.2 yaml_2.2.1 zlibbioc_1.38.0

[64] BiocFileCache_2.0.0 blob_1.2.1 crayon_1.4.1

[67] lattice_0.20-44 splines_4.1.0 hms_1.1.0

[70] KEGGREST_1.32.0 knitr_1.33 pillar_1.6.1

[73] igraph_1.2.6 rjson_0.2.20 biomaRt_2.48.0

[76] XML_3.99-0.6 glue_1.4.2 biovizBase_1.40.0

[79] latticeExtra_0.6-29 data.table_1.14.0 png_0.1-7

[82] vctrs_0.3.8 gtable_0.3.0 purrr_0.3.4

[85] assertthat_0.2.1 cachem_1.0.5 ggplot2_3.3.3

[88] xfun_0.23 AnnotationFilter_1.16.0 restfulr_0.0.13

[91] survival_3.2-11 tibble_3.1.2 snow_0.4-3

[94] memoise_2.0.0 cluster_2.1.2 ellipsis_0.3.2

References

[1] Michael Sammeth. Complete Alternative Splicing Events Are Bubbles in Splicing Graphs Computational
Biology, 16, 1117-1140, 2010.

[2] Kathi Zarnack and Julian Konig and Mojca Tajnik and Inigo Martincorena and Sebastian Eustermann
and Isabelle Stevant and Alejandro Reyes and Simon Anders and Nicholas M. Luscombe and Jernej Ule
Direct Competition between hnRNP C and U2AF65 Protects the Transcriptome from the Exonization of
Alu Elements Cell, 2012, Europe PMC 23374342.

[3] LI, Bo and Dewey, Colin. RSEM: accurate transcript quantification from RNA-Seq data with or without
a reference genome BMC Bioinformatics, 12(1), 323, 2011.

[4] Roberts, Adam and Pimentel, Harold and Trapnell, Cole and Pachter, Lior. Identification of novel
transcripts in annotated genomes using RNA-Seq BIOINFORMATICS, 2011

[5] Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data Genome
Biology, 11, R106, 2010.

27

[6] Heber, Steffen and Alekseyev, Max and Sze, Sing-Hoi and Tang, Haixu and Pevzner, Pavel A. Splicing
graphs and EST assembly problem Bioinformatics, 18(suppl 1), S181-S188, 2002.

28

