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1 Introduction

A primary strength of ReportingTools is that it provides powerful, customizable facilities for creating
rich, interactive (sortable, filterable, pagable, etc.) and aesthetically pleasing HTML tables based on many
disparate types of R objects. shiny is a Web application framework developed by RStudio, Inc. which allows
the creation, and deployment of Web applications using only R code. Often these Web applications involve
the display of R objects or output, but formatting and rendering of complex R objects is not the focus of the
shiny framework.

Using the techniques in this vignette, ReportingTools’ formatting and display capabilities, including
both the default mechanisms and the full range of customizable behavior, can be incorporated into shiny

applications, allowing the creation of powerful Web applications which involve the display of R objects
representing complex data and analysis results. This vignette assumes knowledge of the shiny framework.
Readers who are not familiar with shiny are encouraged to read the official shiny tutorial here before
continuing.

Figure 1: A shiny web application which uses ReportingTools to display R data.frame objects

The example we will discuss in this document, pictured above, gives the viewer the opportunity to
choose between three data frames and displays both a summary and a ReportingTools-powered table con-
taining the chosen data. We will discuss in detail only portions of the code specific to the interface
between shiny and ReportingTools. Full code for the application is included in our package in the
inst/examples/shinyexample directory. To run the example, copy the inst/examples/shinyexample/Ui.R

and inst/examples/shinyexample/server.R files to your working directory run the following from an R
session:

> library(shiny)

> myRunApp()

2 Changes to ui.R when using ReportingTools

The single largest change to a ui.R file in order to add ReportingTools functionality is that ReportingTools’
JavaScript and CSS files must be included in the header of the resulting page so that the ReportingTools

tables function properly.
We define a function custHeaderPanel function which accepts the title and windowTitle arguments

accepted by shiny’s headerPanel function but also accepts additional arguments js and css. These are ex-
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pected to be character vectors which specify locations of additional Javascript and CSS libraries, respectively.
These files are then read and inserted into the header as code in <script> and <style> tags, respectively.

With this function defined we are able to use it within the standard shiny page layout functions, such
as pageWithSidebar, in place of the headerPanel function. In particular, we include all (Javascript) files
in extdata/jslib and all Twitter Bootstrap based CSS files in extdata/csslib:

> custHeaderPanel("ReportingTools",

+ js = list.files(system.file("extdata/jslib", package="ReportingTools"),

+ full.names=TRUE),

+ css = list.files(system.file("extdata/csslib", package="ReportingTools"),

+ pattern="bootstrap", full.names=TRUE),

+ )

These Javascript and CSS files will be included in the header of the resulting dynamic HTML page,
allowing our ReportingTools-based output to behave correctly.

Code for specifying input controls is identical whether or not ReportingTools is being used to format
the output and is omitted here.

Finally, output elements which will be formatted by ReportingTools should be declared as htmlOutput.
We do this for the view2 element in the code below:

> mainPanel(

+ verbatimTextOutput("summary"),

+ htmlOutput("view2")

+ )

This indicates to the shiny system that the output will be HTML code ready to be inserted directly
into the specified element. With this our page layout is defined and we are ready to write the server.R code
which will populate it.

3 Changes to server.R when using ReportingTools

Our task here is to specify a rendering function which can interface with the ReportingTools publish mecha-
nism. To do this we first create a Report (within server.R, outside of any function calls) with ReportHandlers

created via the shinyHandlers constructor:

> myrep = HTMLReport(reportDirectory = "./",shortName="bigtest",

+ handlers = shinyHandlers)

These ReportHandlers will stream the HTML form of any elements added to our Report directly to
Rout (the same as the default destination of cat, and one used heavily by shiny to collate output).

We then use (or define) a custom rendering function, renderRepTools. By using this custom rendering
mechanism and ReportHandlers combination, shiny is able to “hear” elements being added to our report
and insert them into the dynamic HTML of our Web App.

To make use of this we simply publish elements to our report within the expression passed to renderRepTools:

> ###use RT to display output

> output$view2 <- renderRepTools({

+ publish(datasetInput(), htmlrep, .modifyDF = modifyInput())

+ })

The resulting web application is controlled entirely by shiny, but has the added rendering power built into
ReportingTools. Though we used a standard data.frame in this example, we can expand this application
to more general biological data and Bioconductor objects which would be difficult to effectively display
without ReportingTools. Furthermore, all customization mechanisms for the HTML output discussed in
the other vignettes are fully functional in this setting.
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