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1 Introduction

GCSscore is an R package for detecting differential gene expression on whole transcrip-
tome Affymetrix microarrays. It is based on the original S-Score algorithm, described
by Zhang et al. (2002), Kerns et al. (2003), and validated by Kennedy et al. (2006b).
These are novel comparative methods for microarray based-gene expression data analysis
that utilizes the probe level data. It is based on an error model in which the detected
signal is assumed to be proportional to the probe signal for highly expressed genes, but
assumed to approach a background level (rather than 0) for genes with low levels of
expression. This error model is used to calculate relative changes in probe intensities
that converts probe signals into multiple measurements with equalized errors, which are
summed over a probe set to form the significance score (S-score). The original S-score
method required the mismatch (MM) probes to estimate non-specific binding (NSB) for
each perfect-match (PM) probes, and the MM probes were removed the arrays beginning
with the Affymetrix Whole Transcriptome (WT) style arrays. This new algorithm uses
a gc-content based NSB, thus eliminating the original algorithm’s dependence on MM
probes. The GCS-score algorithm works of all ClariomS, ClariomD, and all other Whole
Transcriptome Assays. It also works for a select number of 3 prime IVT chip types. As-
suming no expression differences between chips, the GCS-score output follows a standard
normal distribution. Thus, a separate step estimating the probe set expression summary
values is not needed and p-values can be easily calculated from the GCS-score output.
Furthermore, in previous comparisons of dilution and spike-in microarray datasets, the
original S-Score demonstrated greater sensitivity than many existing methods, without
sacrificing specificity (Kennedy et al., 2006a). The GCSscore package (Harris et al.,
2019) implements the GCS-score algorithm in the R programming environment, making
it available to users of the Bioconductor 1 project.

2 What’s new in this version

This is the second public release of the GCSscore package. In this release: there are
improvements to algorithm, multiple bug fixes, and updates to the documentation.

3 Reading in data and generating GCS-scores

Affymetrix data are generated from microarrays by analyzing the scanned image of the
chip (stored in a *.DAT file) to produce a *.CEL file. The *.CEL file contains, among
other information, a decimal number for each probe on the chip that corresponds to
its intensity. The GCS-score algorithm compares two microarrays by combining all of
the probe intensities from a probesetID / transcriptionclusterID into a single summary
statistic for each annotated gene or exon. The GCSscore package processes the data

1http://www.bioconductor.org/
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obtained from .CEL files, which must be loaded into R prior to calling the GCSscore

function. The GCSscore function utilizes the readCel function to directly access the
individual .CEL files. Additional information regarding the readCel function and de-
tailed descriptions of the structure of .CEL files can be found in the affxparser vignette.
The readCel function allows the GCSscore package to access additional variables that
are necessary for the noise and probe error estimations.

The examples in this vignette will demonstrate the functionality of the GCSscore
package. We begin with an example of the most basic GCS-score analysis, which utilize
the .CEL data files that are supplied within the GCSscore package:

> library(GCSscore)

> # get the path to example CEL files in the package directory:

> celpath1 <- system.file("extdata/","MN_2_3.CEL", package = "GCSscore")

> celpath2 <- system.file("extdata/","MN_4_1.CEL", package = "GCSscore")

> # run GCSscore() function directly on the two .CEL files above:

> GCSs.single <- GCSscore(celFile1 = celpath1, celFile2 = celpath2)

4 Important Parameters for the GCSscore function

celFile1 – character string giving the .CEL file name the directory in which the *.CEL
files are stored. If a directory is not specified, the current working directory is
used.

celTable – A CSV file containing batch submission information.

celTab.names – If set to TRUE, then the GCS-score batch output is assigned the user-
designated name, as specified in the first column of the batch input .CSV file. If
set to FALSE, when the user submits a batch job, the column name of the run in
the the batch output data.table will be: CEL-file-name1 vs CEL-file-name2.

method – This determines the method used to group and tally the probeids when cal-
culating GCS-scores. The default method is 1. For Whole Transcriptome arrays:
method = 1 is for gene-level (transcriptclusterid-based) analysis. For exon-level
(probesetid-based) analysis, set method = 2. For the older generation arrays (3
IVT-style), if a GC-content based background correction is desired on the 3 IVT
arrays, set method = 1, if a PM-MM based background correction is desired, set
method = 2 (PM-MM gives identical results to the original S-score package).

The GCSscore function returns an object of class ExpressionSet, a format defined
in the Biobase package. The GCS-score differential expression values are contained in
the assayData[["exprs"]] section of the ExpressionSet. The full set of annotation
information is included in the featureData@data section of the ExpressionSet. For
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viewing and exporting, it is often desirable to extract the relevant information from
the ExpressionSet into an well structured object, such as a data.table. The class
data.table is described in the data.table package, which is available on CRAN.

> # view class of output:

> class(GCSs.single)[1]

[1] "ExpressionSet"

> # convert GCSscore single-run from ExpressionSet to data.table:

> GCSs.single.dt <-

+ data.table::as.data.table(cbind(GCSs.single@featureData@data,

+ GCSs.single@assayData[["exprs"]]))

> # show all column names included in the output:

> colnames(GCSs.single.dt)

[1] "transcriptclusterid" "symbol" "name"

[4] "ref_id" "db.symbol" "db.name"

[7] "chr" "start" "stop"

[10] "nProbes" "locustype" "category"

[13] "Sscore"

> # show simplified output of select columns and rows:

> GCSs.single.dt[10000:10005,

+ c("transcriptclusterid","symbol",

+ "ref_id","Sscore")]

transcriptclusterid symbol ref_id Sscore

1: TC0300000948.mm.2 Hfe2 NM_027126 -1.1175008

2: TC0300000949.mm.2 Txnip NM_001009935 0.8790560

3: TC0300000950.mm.2 Gm16253 ENSMUST00000148290 -0.1314328

4: TC0300000951.mm.2 Ankrd34a NM_001024851 -2.9600225

5: TC0300000952.mm.2 Lix1l NM_001163170 1.4886249

6: TC0300000953.mm.2 Rbm8a NM_001102407 1.2087873

5 Using the Batch Functionality of GCSscore

The GCSscore function is able to output mulitple GCS-score results into a single file.
This is done by leaving the celFile1 and celFile2 variables empty, and using the
celTable argument instead. The celTable argument accepts a three column data.table

object, that is read into R from a .CSV file via the fread function from the data.table
package.
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> # get the path to example CSV file in the package directory:

> celtab_path <- system.file("extdata",

+ "GCSs_batch_ex.csv",

+ package = "GCSscore")

> # read in the .CSV file with fread():

> celtab <- data.table::fread(celtab_path)

> # view structure of 'celTable' input:

> celtab

run_name CelFile1 CelFile2

1: example01 MN_2_3.CEL MN_4_1.CEL

2: example02 MN_2_3.CEL MN_4_2.CEL

3: example03 MN_2_3.CEL MN_4_3.CEL

4: example04 MN_4_1.CEL MN_4_2.CEL

5: example05 MN_4_1.CEL MN_4_3.CEL

6: example06 MN_4_2.CEL MN_4_3.CEL

In these examples, the .CEL files will not be within the working directory. Therefore,
the path to the .CEL files must be added to allow the GCSscore function to locate the
files. This is not necessary if the .CEL files are in the working directory:

> path <- system.file("extdata", package = "GCSscore")

> celtab$CelFile1 <- celtab[,paste(path,CelFile1,sep="/")]

> celtab$CelFile2 <- celtab[,paste(path,CelFile2,sep="/")]

The GCSscore function will process all of the runs listed in .CSV and each GCS-score
run is assigned to a column in the output. If the celTab.names is set to TRUE, the
column names of each run will correspond to the run name assigned in the first column of
the .CSV batch input file. In this example, all four .CEL files included with the package
are run in pairwise fashion.

> # run GCSscore using using all info from the batch file:

> GCSs.batch <- GCSscore(celTable = celtab, celTab.names = TRUE)

The ExpressionSet returned from the GCSscore package can easily be converted
back to a data.table structure. This matches the structure of the .CSV file that is
created if the fileout option is set to TRUE. The conversion of the ExpressionSet

object to data.table is as follows:

> # view class of output:

> class(GCSs.batch)[1]

[1] "ExpressionSet"
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> # converting GCS-score output from'ExpressionSet' to 'data.table':

> GCSs.batch.dt <-

+ data.table::as.data.table(cbind(GCSs.batch@featureData@data,

+ GCSs.batch@assayData[["exprs"]]))

> # show all column names included in the output:

> colnames(GCSs.batch.dt)

[1] "transcriptclusterid" "symbol" "name"

[4] "ref_id" "db.symbol" "db.name"

[7] "chr" "start" "stop"

[10] "nProbes" "locustype" "category"

[13] "example01" "example02" "example03"

[16] "example04" "example05" "example06"

> # show simplified output of select columns and rows:

> GCSs.batch.dt[10000:10005,

+ c("transcriptclusterid","symbol",

+ "example01","example02","example03")]

transcriptclusterid symbol example01 example02 example03

1: TC0300000948.mm.2 Hfe2 -1.1175008 -0.87256331 -0.06293231

2: TC0300000949.mm.2 Txnip 0.8790560 1.52472374 1.53629101

3: TC0300000950.mm.2 Gm16253 -0.1314328 -0.87339382 0.52384165

4: TC0300000951.mm.2 Ankrd34a -2.9600225 -2.36873229 -2.85869949

5: TC0300000952.mm.2 Lix1l 1.4886249 -0.29257447 0.80216835

6: TC0300000953.mm.2 Rbm8a 1.2087873 0.04885971 1.18225661

>

6 Natural Statistics of GCS-scores for Differential Gene

Expression Analysis

Under conditions of no differential expression, the GCS-Score output follows a standard
normal (Gaussian) distribution with a mean of 0 and standard deviation of 1. This
makes it straightforward to calculate p-values corresponding to rejection of the null
hypothesis and acceptance of the alternative hypothesis of differential gene expression.
Cutoff values for the GCS-scores can be set to achieve the desired level of significance.
As an example, an absolute GCS-score value of 3 (signifying 3 standard deviations from
the mean, a typical cutoff value) would correspond to a p-value of 0.003. While the
GCS-score algorithm does account for the correlations among probes within a two-chip
comparison, it does not adjust for multiple comparisons when comparing more than
one pair of chips. The additional steps for producing multiple test corrected lists of
differentially expressed genes (DEGs) for a given study are covered in the next section.
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7 Using GCS-scores to produce DEGs in experimental datasets

For a more biologically relevant situation, the next example will cover how to use the
GCSscore package to produce DEGs with multiple test corrections, using the Significance
Analysis of Microrrarys (SAM) method. The data used in the next example is easily
obtained from the GEO database. Here, we will investigate a dataset of ClariomS mouse
arrays taken from GSE103380. Further information regarding the experimental design
can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103880.

This section of the vignette requires the following additional packages from the ’sug-
gests’ section of the package DESCRIPTION file: siggenes , GEOquery , and R.utils.

Begin by creating a temporary directory to store the downloaded files. For clarity,
the directory will have the name of the GEO identifer.

> GEO <- "GSE103380"

> dir.geo <- paste(tempdir(),GEO,sep="/")

> dir.create(dir.geo, showWarnings = FALSE)

For this example, select files will be downloaded into the temporary directory. Here,
these files are listed by the GSM ids for individual .CEL files:

� GSM2769665 (Näıve Microglia bio replicate 1)

� GSM2769666 (Näıve Microglia bio replicate 2)

� GSM2769667 (Näıve Microglia bio replicate 3)

� GSM2769668 (Näıve Microglia bio replicate 4)

� GSM2769669 (Day4 microglia bio replicate 1)

� GSM2769670 (Day4 microglia bio replicate 6)

� GSM2769671 (Day4 microglia bio replicate 7)

� GSM2769672 (Day4 microglia bio replicate 8)

The compressed CEL files are downloaded directly from GEO using the GEOquery
package.

> list.cels <- c("GSM2769665","GSM2769666","GSM2769667","GSM2769668",

+ "GSM2769669","GSM2769670","GSM2769671","GSM2769672")

> # create function for pulling down the compressed .CEL files:

> cels.get <- function(x)

+ GEOquery::getGEOSuppFiles(GEO = x,

+ makeDirectory = FALSE,

+ baseDir = dir.geo,

+ filter_regex = "*.CEL.gz")

7



Download the data files from GEO, into the dir.geo temp directory and unzip all of the
.CEL files.

> lapply(list.cels,cels.get)

> files.geo <- paste(dir.geo,list.files(path=dir.geo,

+ pattern = ".gz"),sep="/")

> # create function to gunzip the compressed data files:

> fun.gunzip <- function(x)

+ R.utils::gunzip(filename = x,

+ overwrite=TRUE,

+ remove=FALSE)

> # apply the gunzip function across the vector of compressed CEL files:

> lapply(files.geo,fun.gunzip)

Get the path to example CSV file in the package directory.

> celtab_path <- system.file("extdata",

+ "GSE103380_batch.csv",

+ package = "GCSscore")

> # read in the .CSV file with fread():

> celtab <- data.table::fread(celtab_path)

> # adds path to celFile names in batch input:

> # NOTE: this is not necessary if the .CEL files

> # are in the working directory:

> celtab$CelFile1 <- celtab[,paste(dir.geo,CelFile1,sep="/")]

> celtab$CelFile2 <- celtab[,paste(dir.geo,CelFile2,sep="/")]

> # run GCSscore using using all info from the batch file:

> GCSs.GSE103380 <- GCSscore(celTable = celtab, celTab.names = TRUE)

> # convert GCS-score output from'ExpressionSet' to 'data.table':

> GCSs.GSE103380.dt <-

+ data.table::as.data.table(cbind(GCSs.GSE103380@featureData@data,

+ GCSs.GSE103380@assayData[["exprs"]]))

Create 4 averages of each experimental sample with each control. The SAM analysis
will be performed using these 4 averages.

> GCSs.GSE103380.dt[, day4_1_vs_naive :=

+ rowMeans(GCSs.GSE103380.dt[

+ ,day4_1_vs_naive_1:day4_1_vs_naive_4])]

> GCSs.GSE103380.dt[, day4_2_vs_naive :=

+ rowMeans(GCSs.GSE103380.dt[

+ ,day4_2_vs_naive_1:day4_1_vs_naive_4])]

> GCSs.GSE103380.dt[, day4_3_vs_naive :=

+ rowMeans(GCSs.GSE103380.dt[
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+ ,day4_3_vs_naive_1:day4_1_vs_naive_4])]

> GCSs.GSE103380.dt[, day4_4_vs_naive :=

+ rowMeans(GCSs.GSE103380.dt[

+ ,day4_4_vs_naive_1:day4_1_vs_naive_4])]

>

Remove TCids without a clear symbol/name before running SAM.

> GCSs.GSE103380.dt <- GCSs.GSE103380.dt[!is.na(symbol)]

> # Set the SAM 'gene.names' to be either ('TCid' or 'symbol'):

> GCSs.GSE103380.dt.SAM <-

+ siggenes::sam(GCSs.GSE103380.dt[

+ ,day4_1_vs_naive:day4_4_vs_naive],

+ cl = rep(1,4),rand=123,

+ gene.names = GCSs.GSE103380.dt$symbol)

We're doing 16 complete permutations

View the details of SAM analysis and write it to file.

> GCSs.GSE103380.dt.SAM

SAM Analysis for the One-Class Case

Delta p0 False Called FDR

1 0.1 0.12 8092.688 18995 0.05119

2 8.4 0.12 201.375 1673 0.01446

3 16.6 0.12 51.750 502 0.01239

4 24.9 0.12 13.000 205 0.00762

5 33.2 0.12 4.625 74 0.00751

6 41.4 0.12 1.688 27 0.00751

7 49.7 0.12 0.312 5 0.00751

8 58.0 0.12 0.125 2 0.00751

9 66.2 0.12 0.062 1 0.00751

10 74.5 0.12 0.062 1 0.00751

> # create name and path of SAM results:

> sam.path <- paste(dir.geo,

+ "GSE103380_ex_SAM_16_6.csv",

+ sep = "/")

> # Save TCids with delta >= 16.6:

> siggenes::sam2excel(GCSs.GSE103380.dt.SAM,

+ delta = 16.6,

+ file = sam.path)
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Output is stored in D:\biocbuild\bbs-3.13-bioc\tmpdir\Rtmpmue2ny/GSE103380/GSE103380_ex_SAM_16_6.csv

Read the SAM output back into R and view the top 10 DEGs from the experiment.

> sam.results <- data.table::fread(sam.path)

> # View the top 10 DEGs output by SAM:

> head(sam.results,10)

Row d.value stdev rawp q.value R.fold Name

1: 20111 85.7 0.00485 5.63e-06 0.015 NA Clic1

2: 7609 69.7 0.03658 1.13e-05 0.015 NA Apobec1

3: 6270 65.1 0.03884 1.69e-05 0.015 NA Naaa

4: 1086 63.4 0.06162 2.25e-05 0.015 NA AI607873

5: 926 60.4 0.01498 2.81e-05 0.015 NA Rnpep

6: 14938 57.0 0.04817 3.38e-05 0.015 NA Tmem106a

7: 4500 56.4 0.05877 3.94e-05 0.015 NA Stmn1

8: 14989 56.2 0.03549 4.50e-05 0.015 NA Milr1

9: 11251 55.7 0.03863 5.07e-05 0.015 NA Rps27l

10: 9699 54.6 0.08193 5.63e-05 0.015 NA Mki67

The list of DEG gene symbols produced in the SAM analysis can be used for func-
tional enrichment, using tools such as ToppFun. Likewise, the treatment responsive
transcriptonclusterids can be input directly into software, such as Ingenity Pathway
Analysis, to get information on pathway enrichment. Further exploration of these re-
sults will be investigated in an accompanying publication.
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