
An Introduction to FastqCleaner

Leandro Roser 1, Fernán Agüero 1, and Daniel Sánchez ∗1

1IIB-INTECH - UNSAM
∗learoser@gmail.com

Feb 15, 2020

Abstract

FastqCleaner is an interactive application for both quality control and pre-processing of FASTQ
files. The interface, based on a Bioconductor back-end, provides diagnostic information for
the input and output data and a series of filtering and trimming operations in an interactive
framework.

Contents

1 Launching the application . 2

2 Description of the application . 2

2.1 First panel . 2

2.2 Second panel . 5

2.3 Third panel . 6

3 A worked example: FASTQ processing in a nutshell 7

4 Advanced use of the package. 11

4.1 Main functions . 11

4.2 Auxiliary functions . 24

5 Contact information. 25

https://bioconductor.org/packages/3.13/FastqCleaner

An Introduction to FastqCleaner

1 Launching the application
The interactive application can be launched in R with the following command:
library('FastqCleaner')

launch_fqc()

As an alternative method, an RStudio addin (RStudio version 0.99.878 or higher required)
installed with the package can be found in the Addins menu (Figure 1). This button allows
the direct launch of the application with a single click.

Figure 1: addin of the app in RStudio (RStudio version >= 0.99.878 required)

2 Description of the application
The application contains three main panels, as described below.

2.1 First panel
The first panel includes two elements: a dashboard for selection of trimming and filtering
operations, and a menu for selection of the input file/s (Fig. 2).

2

An Introduction to FastqCleaner

Figure 2: Panel 1, with each compontent indicated with a number. See explanation for each
element below

2.1.1 Selecting operations

The “operations menu” (Fig. 2, elements 1 to 8) shows the available operations for file
processing:

1. Remove by N(s): removes sequences with a number of Ns (non identified bases) above
a selected threshold value

2. Remove low complexity sequences: remove sequences with a value of complexity
above a threshold value

3. Remove adapters: removes adapters and partial adapters. Adapter sequences from
both ends of single or paired read reads can be selected. Sequences can be reverse-
complemented before processing. The program also allows to consider indels and/or
anchored adapters.

4. Filter by average quality: computes the average quality of sequences and removes
those with a value below a given threshold

5. Trim low quality 3’ tails: removes the 3’ tails of sequences that are below a given
threshold

6. Trim 3’ or 5’ by a fixed number: removes a fixed number of bases from the 3’ and/or
5’ ends in the complete set of sequences

3

An Introduction to FastqCleaner

7. Filter sequences by length: removes all the sequences with a number of bases below
a threshold value

8. Remove duplicated sequences: removes duplicated reads, conserving only one copy
of each sequence present in the file

2.1.2 Loading files

The “file selection menu” (Fig. 2, elements 9 to 17) contains options to handle the input file
(type of file, file selection), buttons to run, clear and reset the aplication, and the “advanced”
submenu:

9. Single-end reads / paired-end reads: type of input files
10. “FILE” button: to select an input file
11. “RUN!” button: to run the program
12. Output format: to select whether the output file should be compressed (.gz) or not
13. “CLEAR” button: to clear the configuration of the operations menu that have been

selected in the first panel, but keeping the input file(s)
14. “RESET” button: to restart the application, removing the input file(s) and the selected

configurations
15. Selection notificator: information of the path of the selected file/s
16. Encoding notificator: information of the input file/s encoding
17. Advanced options button: to select a custom encoding and set the number of reads

included in each chunk for processing, as described below

2.1.3 Advanced options

The “advanced options submenu” (Fig. 3) allows to customize some fine aspects of the
trimming and filtering process:

Figure 3: Advanced options submenu

4

An Introduction to FastqCleaner

18. Encoding menu: in addition to the default approach used by the program (auto-
detection of file encoding), users can select a standard encoding from a list

19. Chunk size: the program takes this number of reads at random from the file (default:
1000000), for encoding detection

2.2 Second panel
The second panel (“file operations” panel, Fig. 4) shows the operations that were sucessfuly
performed on the input file after running the program.

Figure 4: File operations panel, with its elements

The panel contains the following elements:
20. Files location: location of input and output files
21. Operations performed: operations perfomed on the input file. Each individual display

indicates the number of reads that passed the corresponding filter

5

An Introduction to FastqCleaner

2.3 Third panel
The third panel (“live results” panel, Fig. 5) shows interactive diagnostics plots for both
input and output files. The program takes a random sample of reads for construction of the
plots (default: 10000 reads).

Figure 5: Live results panel

The panel includes the following options in the menu located on the left:
22. Sample size: the sample size used for construction of the plots. Default: 10000 reads
23. Input / output: show diagnostics plots for input or output files?
24. Diagnostics plots: the plot to be shown, that can be one of the following:

• Per cycle quality : quality plots across reads for each cycle (i.e., sequence position)
• Per cycle mean quality : average quality across reads per base, for each cycle (i.e.,

sequence position)
• Mean quality distribution: Quality distribution, using for the construction of the

histogram the mean quality of each read
• % reads with Phred scores > threshold : % of reads with all the quality values >

threshold
• Per cycle base proportion: Proportion of each base (average across reads) in each

cycle. It also shows the proporion of N’s
• CG content: % CG and % AT (average across reads) for each cycle
• CG content distribution over all reads: histogram for % reads with a given % CG
• Read length distribution: % reads vs read length (bp)
• Read ocurrence distribution: % reads that ocurr at different frequencies values in

the file. The plot also includes a table
• Relative k-mer diversity : unique k-mers / all posible kmers for each cycle

25. Select k-mer size: k-mer size for the k-mers frequency plot

6

An Introduction to FastqCleaner

26. Top sequences in duplication level analysis: a list of duplicated sequences, ordered
from high to low duplication level, can be desplegated from the “read ocurrence
distribution” plot. The number selected here indicates how many sequences should be
shown. Note that the frequency of reads are relative to the sample size selected (i.e.,
fold-times in relation to those reads present only once in the sample)

27. Plot panel

3 A worked example: FASTQ processing in a nut-
shell
A sample FASTQ (gz-compressed) file ‘example.fastq.gz’ can be downloaded with the following
command in R:
download.file("https://goo.gl/hb4Kr9", "example_fastq.gz")

A direct download is provided in this link .
A tipical FastqCleaner workflow starts with the input file/s upload (Fig. 6).

Figure 6: File input menu. The example shows a single-end reads case (sample file ‘exam-
ple.fastq.gz’). For paired-end reads, the selection of the corresponding library type generates
an additional button to upload the second file.

The file encoding is automatically detected by the program, but it can also be manually
specified in the advanced submenu (Fig. 7). This menu also offers an option to customize
the chunk size used for processing.

7

https://bioconductor.org/packages/3.13/FastqCleaner

An Introduction to FastqCleaner

Figure 7: Advanced submanu

Next, the operations to be performed on the input file are selected from the operations menu
(Fig. 8).

8

An Introduction to FastqCleaner

Figure 8: Selection of operations. A dialog box shows the input expected for the program.
To use a filter, the “Use filter?” checkbox must be checked. A filter in use is indicated with a
checkmark in the filter box

The program then starts to run after pressing the “RUN!” button (Fig. 9).

Figure 9: “RUN!” button action

Post-processing results are shown in the second panel (Fig. 10).

9

An Introduction to FastqCleaner

Figure 10: Second panel of the app, showing the operations performed and the paths of the
input and output files

The type of plot to be displayed and the options for the construction of the plot are available
in the third panel (Fig. 11). This panel also show the selected plot/s.

10

An Introduction to FastqCleaner

Figure 11: Third panel, showing as example a “CG” content plot. for the output file

To clean the operations, for example to run a different configuration, the “CLEAN” i(Fig. 11)
must be pressed. The “RESET” button (Fig. 11) restarts the interface.

Additional help can be found in the “help” button located at the top-right of the app (Fig.
12).

Figure 12: help button. A webpage with information will be open

4 Advanced use of the package
FastqCleaner separates the interface from the implementation. In consequence, the processing
functions of the package can be used as standard functions from the command line. Most
of the functions make intensive use of Biostrings and ShortRead. Trimming and filtering is
performed on ShortReadQ objects. A complete documentation for the functions is available
in this link
The functions included in the package are described in the following section.

4.1 Main functions
• adapter_filter

Based on the Biostrings trimLRPatterns functions. It can remove adapters and partial adapters
from the 3’ and 5’ sequence ends. Adapters can be anchored or not. When indels are allowed,
the method is based on the “edit distance” of the sequences.
Examples

require("Biostrings")

require("ShortRead")

require("FastqCleaner")

create sequences

set.seed(10)

nota that the use of set.seed before the call to the

random generators allows reproducibility of the

examples

11

https://bioconductor.org/packages/3.13/FastqCleaner
https://bioconductor.org/packages/3.13/Biostrings
https://bioconductor.org/packages/3.13/ShortRead
docs/reference/index.html
https://bioconductor.org/packages/3.13/Biostrings

An Introduction to FastqCleaner

input <- random_seq(6, 43)

input

DNAStringSet object of length 6:

width seq

[1] 43 TGGTCCGGTGTTCTGGCGGAATAGGTACAGTCCAGTAATTGCC

[2] 43 TCCCGCAGACGCTGGGTCCGGAATGCCCTTTCTGAGCAGCTCC

[3] 43 AGCCGTTTGACTTCGCGGAAAGTGAACTTAGATTCGGTCCTGA

[4] 43 AACACGGTACTTCCACAGTCAACCCGCCGACTTGGAGAATTTA

[5] 43 TTAGCCGGGCGGTTATTCCCCTAGTGATCTTACTAAGATTTGC

[6] 43 AATACCTAAGCGAAGTGACAGATATGTTCGTCATTCATCCAGG

create qualities of width 50

set.seed(10)

input_q <- random_qual(c(30,40), slength = 6, swidth = 50,

encod = "Sanger")

create names

input_names <- seq_names(length(input))

FULL ADAPTER IN 3'

adapter <- "ATCGACT"

Create sequences with adapter

my_seqs <- paste0(input, adapter)

my_seqs <- DNAStringSet(my_seqs)

my_seqs

DNAStringSet object of length 6:

width seq

[1] 50 TGGTCCGGTGTTCTGGCGGAATAGGTACAGTCCAGTAATTGCCATCGACT

[2] 50 TCCCGCAGACGCTGGGTCCGGAATGCCCTTTCTGAGCAGCTCCATCGACT

[3] 50 AGCCGTTTGACTTCGCGGAAAGTGAACTTAGATTCGGTCCTGAATCGACT

[4] 50 AACACGGTACTTCCACAGTCAACCCGCCGACTTGGAGAATTTAATCGACT

[5] 50 TTAGCCGGGCGGTTATTCCCCTAGTGATCTTACTAAGATTTGCATCGACT

[6] 50 AATACCTAAGCGAAGTGACAGATATGTTCGTCATTCATCCAGGATCGACT

create ShortReadQ object

my_read <- ShortReadQ(sread = my_seqs, quality = input_q, id = input_names)

trim adapter

filtered <- adapter_filter(my_read, Lpattern = adapter)

sread(filtered)

DNAStringSet object of length 6:

width seq

[1] 50 TGGTCCGGTGTTCTGGCGGAATAGGTACAGTCCAGTAATTGCCATCGACT

[2] 50 TCCCGCAGACGCTGGGTCCGGAATGCCCTTTCTGAGCAGCTCCATCGACT

[3] 50 AGCCGTTTGACTTCGCGGAAAGTGAACTTAGATTCGGTCCTGAATCGACT

[4] 50 AACACGGTACTTCCACAGTCAACCCGCCGACTTGGAGAATTTAATCGACT

[5] 50 TTAGCCGGGCGGTTATTCCCCTAGTGATCTTACTAAGATTTGCATCGACT

[6] 50 AATACCTAAGCGAAGTGACAGATATGTTCGTCATTCATCCAGGATCGACT

12

An Introduction to FastqCleaner

PARTIAL ADAPTER IN 5'

adapter <- "ATCGACT"

subadapter <- subseq(adapter, 1, 4)

Create sequences with adapter

my_seqs <- paste0(input, subadapter)

my_seqs <- DNAStringSet(my_seqs)

my_seqs

DNAStringSet object of length 6:

width seq

[1] 47 TGGTCCGGTGTTCTGGCGGAATAGGTACAGTCCAGTAATTGCCATCG

[2] 47 TCCCGCAGACGCTGGGTCCGGAATGCCCTTTCTGAGCAGCTCCATCG

[3] 47 AGCCGTTTGACTTCGCGGAAAGTGAACTTAGATTCGGTCCTGAATCG

[4] 47 AACACGGTACTTCCACAGTCAACCCGCCGACTTGGAGAATTTAATCG

[5] 47 TTAGCCGGGCGGTTATTCCCCTAGTGATCTTACTAAGATTTGCATCG

[6] 47 AATACCTAAGCGAAGTGACAGATATGTTCGTCATTCATCCAGGATCG

create ShortReadQ object

my_read <- ShortReadQ(sread = my_seqs, quality = subseq(input_q, 1, 47),

id = input_names)

trim adapter

filtered <- adapter_filter(my_read, Rpattern = adapter)

sread(filtered)

DNAStringSet object of length 6:

width seq

[1] 43 TGGTCCGGTGTTCTGGCGGAATAGGTACAGTCCAGTAATTGCC

[2] 43 TCCCGCAGACGCTGGGTCCGGAATGCCCTTTCTGAGCAGCTCC

[3] 43 AGCCGTTTGACTTCGCGGAAAGTGAACTTAGATTCGGTCCTGA

[4] 43 AACACGGTACTTCCACAGTCAACCCGCCGACTTGGAGAATTTA

[5] 43 TTAGCCGGGCGGTTATTCCCCTAGTGATCTTACTAAGATTTGC

[6] 43 AATACCTAAGCGAAGTGACAGATATGTTCGTCATTCATCCAGG

Documentation of the function

• complex_filter

Removes low complexity sequences, computing the entropy with the dinucleotide frequency:

Hi = −
∑

di ∗ log2(di)

where: di = Di/
∑n

i Di represents the frequency of dinucleotides of the sequence i relative
to the frequency in the whole pool of sequences.
The relation Hi/Hr between Hi and a reference entropy value Hr is computed, and the
obtained relations are compared with a given complexity threshold. By default the program
uses a reference entropy of 3.908, that corresponds to the entropy of the human genome in
bits, and a complexity threshold of 0.5.

create sequences of different width

13

docs/reference/adapter_filter.html

An Introduction to FastqCleaner

set.seed(10)

input <- lapply(c(0, 6, 10, 16, 20, 26, 30, 36, 40),

function(x) random_seq(1, x))

create repetitive "CG" sequences with length adequante

for a total length input + CG = 40

CG <- lapply(c(20, 17, 15, 12, 10, 7, 5, 2, 0),

function(x) paste(rep("CG", x), collapse = ""))

concatenate input and CG

input <- mapply("paste", input, CG, sep = "")

input <- DNAStringSet(input)

input

DNAStringSet object of length 9:

width seq

[1] 40 CG

[2] 40 TGGTCCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG

[3] 40 GGTGTTCTGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG

[4] 40 CGGAATAGGTACAGTCCGCGCGCGCGCGCGCGCGCGCGCG

[5] 40 CAGTAATTGCCTCCCGCAGACGCGCGCGCGCGCGCGCGCG

[6] 40 CGCTGGGTCCGGAATGCCCTTTCTGACGCGCGCGCGCGCG

[7] 40 GCAGCTCCAGCCGTTTGACTTCGCGGAAAGCGCGCGCGCG

[8] 40 TGAACTTAGATTCGGTCCTGAAACACGGTACTTCCACGCG

[9] 40 CAGTCAACCCGCCGACTTGGAGAATTTATTAGCCGGGCGG

plot relative entropy (E, Shannon 1948)

H_plot <- function(x, H_max = 3.908135) {

freq <- dinucleotideFrequency(x)

freq <- freq /rowSums(freq)

H <- -rowSums(freq * log2(freq), na.rm = TRUE)

plot(H/H_max, type="l", xlab = "Sequence", ylab= "E")

points(H/H_max, col = "#1a81c2", pch = 16, cex = 2)

}

H_plot(input)

14

An Introduction to FastqCleaner

2 4 6 8

0.
4

0.
6

0.
8

1.
0

Sequence

E

Figure 13: Relative entropy plot for the sequences before the operation
create qualities of widths 40

set.seed(10)

input_q <- random_qual(c(30,40), slength = 9, swidth = 40,

encod = "Sanger")

create names

input_names <- seq_names(9)

create ShortReadQ object

my_read <- ShortReadQ(sread = input, quality = input_q, id = input_names)

apply the filter,

filtered <- complex_filter(my_read)

sread(filtered)

DNAStringSet object of length 7:

width seq

[1] 40 GGTGTTCTGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG

[2] 40 CGGAATAGGTACAGTCCGCGCGCGCGCGCGCGCGCGCGCG

[3] 40 CAGTAATTGCCTCCCGCAGACGCGCGCGCGCGCGCGCGCG

[4] 40 CGCTGGGTCCGGAATGCCCTTTCTGACGCGCGCGCGCGCG

[5] 40 GCAGCTCCAGCCGTTTGACTTCGCGGAAAGCGCGCGCGCG

[6] 40 TGAACTTAGATTCGGTCCTGAAACACGGTACTTCCACGCG

[7] 40 CAGTCAACCCGCCGACTTGGAGAATTTATTAGCCGGGCGG

H_plot(sread(filtered))

15

An Introduction to FastqCleaner

1 2 3 4 5 6 7

0.
6

0.
7

0.
8

0.
9

1.
0

Sequence

E

Figure 14: Relative entropy plot for the sequences after the operation
Documentation of the function

• fixed_filter

Removes the specified number of bases from 3’ or 5’.

create sequences, qualities and names of width 20

set.seed(10)

input <- random_seq(6, 20)

input

DNAStringSet object of length 6:

width seq

[1] 20 TGGTCCGGTGTTCTGGCGGA

[2] 20 ATAGGTACAGTCCAGTAATT

[3] 20 GCCTCCCGCAGACGCTGGGT

[4] 20 CCGGAATGCCCTTTCTGAGC

[5] 20 AGCTCCAGCCGTTTGACTTC

[6] 20 GCGGAAAGTGAACTTAGATT

set.seed(10)

input_q <- random_qual(c(30,40), slength = 6, swidth = 20,

encod = "Sanger")

input_names <- seq_names(6)

create ShortReadQ object

my_read <- ShortReadQ(sread = input, quality = input_q, id = input_names)

apply the filter

filtered3 <- fixed_filter(my_read, trim5 = 5)

sread(filtered3)

DNAStringSet object of length 6:

width seq

16

docs/reference/complex_filter.html

An Introduction to FastqCleaner

[1] 15 TGGTCCGGTGTTCTG

[2] 15 ATAGGTACAGTCCAG

[3] 15 GCCTCCCGCAGACGC

[4] 15 CCGGAATGCCCTTTC

[5] 15 AGCTCCAGCCGTTTG

[6] 15 GCGGAAAGTGAACTT

filtered5 <- fixed_filter(my_read, trim3 = 5)

sread(filtered5)

DNAStringSet object of length 6:

width seq

[1] 15 CGGTGTTCTGGCGGA

[2] 15 TACAGTCCAGTAATT

[3] 15 CCGCAGACGCTGGGT

[4] 15 ATGCCCTTTCTGAGC

[5] 15 CAGCCGTTTGACTTC

[6] 15 AAGTGAACTTAGATT

filtered3and5 <- fixed_filter(my_read, trim3 = 10, trim5 = 5)

sread(filtered3and5)

DNAStringSet object of length 6:

width seq

[1] 5 TTCTG

[2] 5 TCCAG

[3] 5 GACGC

[4] 5 CTTTC

[5] 5 GTTTG

[6] 5 AACTT

Documentation of the function

• length_filter

Removes sequences with a length lower than minimum threshold value or/and higher than a
maximum threshold value.

create ShortReadQ object width widths between 1 and 60

set.seed(10)

input <- random_length(10, widths = 1:60)

sread(input)

DNAStringSet object of length 10:

width seq

[1] 43 TCTGGCGGAATAGGTACAGTCCAGTAATTGCCTCCCGCAGACG

[2] 9 CTGGGTCCG

[3] 10 GAATGCCCTT

[4] 48 TCTGAGCAGCTCCAGCCGTTTGACTTCGCGGAAAGTGAACTTAGATTC

[5] 12 GGTCCTGAAACA

[6] 55 CGGTACTTCCACAGTCAACCCGCCGACTTGGAGAATTTATTAGCCGGGCGGTTAT

[7] 8 TCCCCTAG

[8] 54 TGATCTTACTAAGATTTGCAATACCTAAGCGAAGTGACAGATATGTTCGTCATT

17

docs/reference/fixed_filter.html

An Introduction to FastqCleaner

[9] 39 CATCCAGGCAAGTGCGCGGACATCAATTACCACACAATT

[10] 19 AAATATGACTCGCGTATCG

apply the filter, removing sequences with length < 5 or length> 30

filtered <- length_filter(input, rm.min = 5, rm.max = 30)

sread(filtered)

DNAStringSet object of length 5:

width seq

[1] 9 CTGGGTCCG

[2] 10 GAATGCCCTT

[3] 12 GGTCCTGAAACA

[4] 8 TCCCCTAG

[5] 19 AAATATGACTCGCGTATCG

Documentation of the function

• n_filter

Wrapper of the ShortRead nFilter function. Removes all those sequences with a number of
N’s > a given threshold.
create 10 sequences of width 20

set.seed(10)

input <- random_seq(10, 20)

input

DNAStringSet object of length 10:

width seq

[1] 20 TGGTCCGGTGTTCTGGCGGA

[2] 20 ATAGGTACAGTCCAGTAATT

[3] 20 GCCTCCCGCAGACGCTGGGT

[4] 20 CCGGAATGCCCTTTCTGAGC

[5] 20 AGCTCCAGCCGTTTGACTTC

[6] 20 GCGGAAAGTGAACTTAGATT

[7] 20 CGGTCCTGAAACACGGTACT

[8] 20 TCCACAGTCAACCCGCCGAC

[9] 20 TTGGAGAATTTATTAGCCGG

[10] 20 GCGGTTATTCCCCTAGTGAT

inject N's

set.seed(10)

input <- inject_letter_random(input, how_many_seqs = 1:5,

how_many = 1:10)

input

DNAStringSet object of length 10:

width seq

[1] 20 TGGTCCGGTGTTCTGGCGGA

[2] 20 ATAGGTACAGTCCAGTAATT

[3] 20 GCCTCCCGCAGACGCTGGGT

[4] 20 CCGGAATGCCCTTTCTGAGC

[5] 20 AGCTCCAGCCGTTTGACTTC

[6] 20 GCGGAAAGTGAACTTAGATT

18

docs/reference/length_filter.html
https://bioconductor.org/packages/3.13/ShortRead

An Introduction to FastqCleaner

[7] 20 CNGTCNNNAANCNNNNTACN

[8] 20 NCCANANTCAACNCGCCNAC

[9] 20 TTGGAGNATNTATTNGCNNN

[10] 20 GCGGTTATTCCCCTAGTGAT

#'

hist(letterFrequency(input, "N"), breaks = 0:10,

main = "Ns Frequency", xlab = "# Ns",

col = "#1a81c2")

Ns Frequency

Ns

F
re

qu
en

cy

0 2 4 6 8 10

0
1

2
3

4
5

6
7

Figure 15: N’s histogram for the sequences before the filtering operation

Create qualities, names and ShortReadQ object

set.seed(10)

input_q <- random_qual(10, 20)

input_names <- seq_names(10)

my_read <- ShortReadQ(sread = input, quality = input_q, id = input_names)

Apply the filter

filtered <- n_filter(my_read, rm.N = 3)

sread(filtered)

DNAStringSet object of length 7:

width seq

[1] 20 TGGTCCGGTGTTCTGGCGGA

[2] 20 ATAGGTACAGTCCAGTAATT

[3] 20 GCCTCCCGCAGACGCTGGGT

[4] 20 CCGGAATGCCCTTTCTGAGC

[5] 20 AGCTCCAGCCGTTTGACTTC

[6] 20 GCGGAAAGTGAACTTAGATT

[7] 20 GCGGTTATTCCCCTAGTGAT

hist(letterFrequency(sread(filtered), "N"),

main = "Ns distribution", xlab = "",

col = "#1a81c2")

19

An Introduction to FastqCleaner

Ns distribution

F
re

qu
en

cy

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
1

2
3

4
5

6
7

Figure 16: N’s histogram for the sequences after the filtering operation
Documentation of the function

• qmean_filter

Removes those sequences with quality < a give threshold.

create 30 sequences of width 20, 15 with low quality and 15 with high quality

set.seed(10)

input <- random_seq(30, 20)

set.seed(10)

my_qual_H <- random_qual(c(30,40), slength = 15, swidth = 20,

encod = "Sanger")

set.seed(10)

my_qual_L <- random_qual(c(5,30), slength = 15, swidth = 20,

encod = "Sanger")

input_q<- c(my_qual_H, my_qual_L)

input_names <- seq_names(30)

my_read <- ShortReadQ(sread = input, quality = input_q, id = input_names)

Plot of average qualities

qual_plot <- function(x, cutoff) {

q <- alphabetScore(x) / width(x)

plot(q, type="l", xlab = "Sequence", ylab= "Average quality", ylim = c(0, 40))

points(q, col = "#1a81c2", pch = 16, cex = 2)

lines(seq_along(q), rep(cutoff, length(q)), type="l", col = "red", lty=2)

text(length(q), cutoff+2, cutoff)

}

#' Average qualities before

qual_plot(my_read, cutoff = 30)

20

docs/reference/n_filter.html

An Introduction to FastqCleaner

0 5 10 15 20 25 30

0
10

20
30

40

Sequence

A
ve

ra
ge

 q
ua

lit
y

30

Figure 17: Average qualities before the filtering operation
Apply the filter

filtered <- qmean_filter(my_read, minq = 30)

Average qualities after

qual_plot(filtered, cutoff = 30)

2 4 6 8 10 12 14

0
10

20
30

40

Sequence

A
ve

ra
ge

 q
ua

lit
y

30

Figure 18: Average qualities after the filtering operation
Documentation of the function

• seq_filter

Removes sequences that match those passed as argument.

Generate random sequences

set.seed(10)

input <- random_length(30, 3:7)

21

docs/reference/qmean_filter.html

An Introduction to FastqCleaner

Remove sequences that contain the following patterns:

rm.seq = c("TGGTC", "CGGT", "GTTCT", "ATA")

match_before <- unlist(lapply(rm.seq, function(x) grep(x,

as.character(sread(input)))))

match_before

[1] 14 17 27

filtered <- seq_filter(input,rm.seq = rm.seq)

Verify that matching sequences were removed

match_after <- unlist(lapply(rm.seq, function(x) {

grep(x, as.character(sread(filtered)))}))

match_after

[1] 14 26

Documentation of the function

• trim3q_filter

Removes from the 3’ ends in-tandem nucleotides with a quality < a threshold value.

Create 6 sequences of width 20

set.seed(10)

input <- random_seq(6, 20)

input

DNAStringSet object of length 6:

width seq

[1] 20 TGGTCCGGTGTTCTGGCGGA

[2] 20 ATAGGTACAGTCCAGTAATT

[3] 20 GCCTCCCGCAGACGCTGGGT

[4] 20 CCGGAATGCCCTTTCTGAGC

[5] 20 AGCTCCAGCCGTTTGACTTC

[6] 20 GCGGAAAGTGAACTTAGATT

Create Phred+33 qualities of width 15 and paste to qualities of length

5 used for the tails.

for three of the sequences, put low qualities in tails

set.seed(10)

my_qual <- random_qual(c(30,40), slength = 6, swidth = 15,

encod = "Sanger")

set.seed(10)

tails <- random_qual(c(30,40), slength = 6, swidth = 5,

encod = "Sanger")

Low quality tails in sequences 2, 3 & 4

set.seed(10)

tails[2:4] <- random_qual(c(3, 20), slength = 3, swidth = 5,

encod = "Sanger")

my_qual <- paste0(my_qual, tails)

input_q <- BStringSet(my_qual)

22

docs/reference/seq_filter.html

An Introduction to FastqCleaner

input_q

BStringSet object of length 6:

width seq

[1] 20 EGFEDIBEH@C@DD?EAAID

[2] 20 I?EGDHIBEG?BHFG,%),4

[3] 20 ACCFBBFCI?I@HBC402+,

[4] 20 CGIAFGB@?AIDF@I14)2+

[5] 20 IB@ACAAC?AGEDDHC?BEB

[6] 20 BH?GFFHHG?DABECFEEDE

Watch qualities before filtering

as.matrix(PhredQuality(input_q))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]

[1,] 36 38 37 36 35 40 33 36 39 31 34 31 35 35

[2,] 40 30 36 38 35 39 40 33 36 38 30 33 39 37

[3,] 32 34 34 37 33 33 37 34 40 30 40 31 39 33

[4,] 34 38 40 32 37 38 33 31 30 32 40 35 37 31

[5,] 40 33 31 32 34 32 32 34 30 32 38 36 35 35

[6,] 33 39 30 38 37 37 39 39 38 30 35 32 33 36

[,15] [,16] [,17] [,18] [,19] [,20]

[1,] 30 36 32 32 40 35

[2,] 38 11 4 8 11 19

[3,] 34 19 15 17 10 11

[4,] 40 16 19 8 17 10

[5,] 39 34 30 33 36 33

[6,] 34 37 36 36 35 36

Create names and ShortReadQ object

input_names <- seq_names(6)

my_read <- ShortReadQ(sread = input, quality = input_q, id = input_names)

Apply the filter

filtered <- trim3q_filter(my_read, rm.3qual = 28)

sread(filtered)

DNAStringSet object of length 6:

width seq

[1] 20 TGGTCCGGTGTTCTGGCGGA

[2] 15 ATAGGTACAGTCCAG

[3] 15 GCCTCCCGCAGACGC

[4] 15 CCGGAATGCCCTTTC

[5] 20 AGCTCCAGCCGTTTGACTTC

[6] 20 GCGGAAAGTGAACTTAGATT

Documentation of the function

• unique_filter

Wrapper of the ShortRead occurrenceFilter function. that removes duplicated sequences.

23

docs/reference/trim3q_filter.html
https://bioconductor.org/packages/3.13/ShortRead

An Introduction to FastqCleaner

Create duplicated sequences

s <- random_seq(10, 10)

s <- sample(s, 30, replace = TRUE)

Create a ShortReadQ object

q <- random_qual(30, 10)

n <- seq_names(30)

my_read <- ShortReadQ(sread = s, quality = q, id = n)

Check presence of duplicates

isUnique(as.character(sread(my_read)))

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[25] FALSE FALSE FALSE FALSE FALSE TRUE

Apply the filter

filtered <- unique_filter(my_read)

isUnique(as.character(sread(filtered)))

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Documentation of the function

4.2 Auxiliary functions
• random_seq

Create a vector of random sequences, for a set of specificied parameters.
Documentation of the function

• random_qual

Create a vector of random qualities for a given encoding and a set of specified parameters.
Documentation of the function

• seq_names

Create a vector of names for a set of sequences.
Documentation of the function

• random_length

Create a set of sequences with random lengths.
Documentation of the function

• inject_letter_random

24

docs/reference/unique_filter.html
docs/reference/random_seq.html
docs/reference/random_qual.html
docs/reference/seq_names.html
docs/reference/seq_names.html

An Introduction to FastqCleaner

Inject a character (e.g., ‘N’) at random positions, given a set of parameters.
Documentation of the function

• check_encoding

The function allows to check quality encoding. It detects encodings with the following formats:

Format Expected range
Sanger [0, 40]
Illumina 1.8 [0, 41]
Illumina 1.5 [0, 40]
Illumina 1.3 [3, 40]
Solexa [-5, 40]

Documentation of the function

5 Contact information
Mantainer: Leandro Roser - learoser@gmail.com

25

docs/reference/inject_letter_random.html
docs/reference/check_encoding.html
mailto:learoser@gmail.com

	1 Launching the application
	2 Description of the application
	2.1 First panel
	2.2 Second panel
	2.3 Third panel

	3 A worked example: FASTQ processing in a nutshell
	4 Advanced use of the package
	4.1 Main functions
	4.2 Auxiliary functions

	5 Contact information

