Introduction
systemPipeShiny
(SPS) extends the widely used systemPipeR
(SPR) workflow
environment with a versatile graphical user interface provided by a Shiny
App. This allows non-R users, such as
experimentalists, to run many systemPipeR’s workflow designs, control, and
visualization functionalities interactively without requiring knowledge of R.
Most importantly, SPS
has been designed as a general purpose framework for
interacting with other R packages in an intuitive manner. Like most Shiny Apps,
SPS can be used on both local computers as well as centralized server-based
deployments that can be accessed remotely as a public web service for using
SPR’s functionalities with community and/or private data. The framework can
integrate many core packages from the R/Bioconductor ecosystem. Examples of
SPS’ current functionalities include: (a) interactive creation of experimental
designs and metadata using an easy to use tabular editor or file uploader; (b)
visualization of workflow topologies combined with auto-generation of R
Markdown preview for interactively designed workflows; (c) access to a wide
range of data processing routines; (d) and an extendable set of visualization
functionalities. Complex visual results can be managed on a ‘Canvas Workbench’
allowing users to organize and to compare plots in an efficient manner combined
with a session snapshot feature to continue work at a later time. The present
suite of pre-configured visualization examples include different methods to
plot a count table. The modular design of
SPR makes it easy to design custom functions without any knowledge of Shiny,
as well as extending the environment in the future with contributions from
the community.
An example web instance for testing SPS
online is available
here. At the
time of writing, there are five interactive tutorials embedded in this instance
that users can access from the upper-right corner. Each tutorial introduces
major functionalities of SPS.
Installation
The systemPipeShiny
package can be installed from a user’s R console as follows.
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
BiocManager::install("systemPipeShiny")
# or use 'pak'
if (!requireNamespace("pak", quietly = TRUE)) install.packages("pak",
repos = "https://r-lib.github.io/p/pak/dev/")
pak::pkg_install("systemPipeShiny")
If the user’s OS is Linux then one may need to install the following dependencies
before installing SPS.
The following example applies to Ubuntu.
sudo apt-get install -y libcurl4-openssl-dev
sudo apt-get install -y libssl-dev
sudo apt-get install -y libv8-dev
# other dependencies
sudo apt-get install -y libicu-dev
sudo apt-get install -y pandoc
sudo apt-get install -y make
sudo apt-get install -y libglpk-dev
sudo apt-get install -y libgmp3-dev
sudo apt-get install -y zlib1g-dev
Most likely you only need to install first 3, libcurl4-openssl-dev may not be
required for Ubuntu > 18.04. In case any other problem happens, try to install
other system dependencies.
On other Linux distributions, the install commands may be slightly different.
Main functionalities
Currently, SPS
includes 3 main functional categories (Fig 1):
- Some pre-defined modules include:
- A workbench for designing and configuring data analysis workflows,
- Downstream analysis and visualization tools for RNA-Seq, and
- A space to make quick ggplots.
- A section with user custom tabs: users define their own shiny tabs.
- An image editing tab “Canvas” which allows users to edit plots made from
the previous two categories.
Besides, SPS provides many functions to extend the default Shiny development, like
more UI components, server functions. Also, SPS has some useful general R ulitlies
like error catching, logging, and more.
Figure 1. Design of systemPipeShiny.
The framework provides an
interactive web interface for workflow management and data visualization.
Within the functional categories, SPS
functions are modularized in
sub-components, here referred to as SPS tabs that are similar to
menu tabs in other GUI applications that organize related and inter-connected
functionalies into groups. On the backend, SPS tabs are based on Shiny modules,
that are stored in separate files. This modular structure is highly extensible
and greatly simplifies the design of new SPS
tabs by both users and/or developers.
Details about extending existing tabs and designing new ones are provided in
advanced sections on our website.
SPS example usage
The following instructions go through use each module step by step.
Please read our website: https://systempipe.org/sps/ for full instructions,
animations, videos, and advanced sections.
Load package
Load the systemPipeShiny
package in your R session.
library(systemPipeShiny)
Initialize SPS
project
Before launching the SPS
application, a project environment needs to be created with the
following command.
spsInit()
For this toy example, the project directory structure is written to a temporary
directory on a user’s system. For a real project, it should be written to a
defined and user controlled location on a system rather than a temporary
directory.
sps_tmp_dir <- tempdir()
spsInit(app_path = sps_tmp_dir, change_wd = FALSE, project_name = "SPSProject")
## [SPS-INFO] 2021-03-15 22:41:28 Start to create a new SPS project
## [SPS-INFO] 2021-03-15 22:41:28 Create project under /tmp/RtmpPuhZSz/SPSProject
## [SPS-INFO] 2021-03-15 22:41:28 Now copy files
## [SPS-INFO] 2021-03-15 22:41:28 SPS project setup done!
sps_dir <- file.path(sps_tmp_dir, "SPSProject")
SPS project structure
The file and directory structure of an SPS project is organized as follows.
SPS_xx/
├── server.R |
├── global.R | Most important server, UI and global files, unless special needs, `global.R` is the only file you need to edit manually
├── ui.R |
├── deploy.R | Deploy helper file
├── config | Important app config files. Do not edit them if you don't know
│ ├── sps.db | SPS database
│ ├── sps_options.yaml | SPS default option list
│ └── tabs.csv | SPS tab information
├── data | App example data files
│ ├── xx.csv
├── R | All SPS additional tab files and helper R function files
│ ├── tab_xx.R
├── README.md
├── results | Not in use for this current version, you can store some data been generated from the app
│ └── README.md
└── www | Internet resources
├── about | About tab information
│ └── xx.md
├── css | CSS files
│ └── sps.css
├── img | App image resources
│ └── xx.png
├── js | Javascripts
│ └── xx.js
├── loading_themes | Loading screen files
│ └── xx.html
└── plot_list | Image files for plot gallery
└── plot_xx.jpg
Launch SPS
By default, the working directory will be set inside the project folder automatically.
To launch the SPS
Shiny application, one only needs to execute the following command.
shiny::runApp()
After the SPS app has been launched, clicking the “Continue to app” button
on the welcome screen will open the main dashboard (Fig.2).
Figure 2: Snapshot of SPS’ UI.
- Welcome screen.
- Module tabs.
- User defined custom tabs.
- The Canvas tab.
- All SPS tabs has this description on top. It is highly recommend to click here
to expand and read the full the description for the first time.
Alternatively, when using RStudio one can click the Run App
button in the top right corner.
In addition, in Rstudio the global.R file will be automatically
opened when the SPS
project is created. Custom changes can be made inside this file
before the app launches. The advanced section explains how
to change and create new custom tabs.
Workflow management
The workflow management module in SPS
allows one to modify or create the
configuration files required for running data analysis workflows in
systemPipeR (SPR). This includes
three types of important files: a sample metadata (targets) file, a
workflow file (in R Markdown format) defining the workflow steps, and workflow running
files in Common Workflow Language (CWL) format. In SPS, one can easily create
these files under the “Workflow Management” module, located in navigation bar
on the left of the dashboard (Fig2 - 2).
The current version of SPS
allows to:
- create a workflow environment;
- create and/or check the format of targets / workflow / CWL files;
- download the prepared workflow files to run elsewhere, like a cluster;
- directly execute the workflow from SPS.
1. setup a workflow
Figure 3. A. Workflow Management - Targets File
- In the workflow module, read the instructions and choose step 1. Step 1 should be
automatically opened for you on start.
- Choose a folder where you want to create the workflow environment.
- Choose a workflow template. These are SPR workflows and mainly are next-generation
sequencing workflows.
- Click “Gen workflow” to create the workflow project.
- You should see a pop-up saying about the project path and other information.
Clicking the pop-up will jump you to the step 2. The status tracker and banner for
step 1 should all turn green.
2. Prepare a target file
The targets file defines all input file paths and other sample information of
analysis workflows. To better undertand the structure of this file, one can
consult the “Structure of targets
file”
section in the SPR vignette. Essentially, this is the tabular file representation
of the colData
slot in an SummarizedExperiment
object which stores sample
IDs and other meta information.
The following step-by-step instructions explain how to create and/or modify targets
files using RNA-Seq as an example (Fig.3 A):
- Your project targets file is loaded for you, but you can choose to upload a different one.
- You can edit, right click to add/remove rows/columns (The first row is treated as column names).
- SPR target file includes a header block, that can also be edited in the SPS app. Each headers needs to start with a “#”. Header is only useful for RNA-Seq workflow in current SPR. You can define sample comparison groups
here. Leave it as default for other projects.
- The section on the left provides sample statistics and information whether files exist inside the workflow project’s
data
directory. Choose any column you want from the dropdown to check and watch the statistics bar change in this section.
- statistic status bar.
- Clicking on “Add to task” can help you to check if your target file has any formatting problem. You should see a green success pop-up if everything is right. Now your target file is ready and you can click “save” to download it and later use in a SPR project.
Figure 3. A. Workflow Management - Targets File
3. Prepare a workflow file
In SPR, workflows are defined in Rmarkdown files, you can read details and obtain them here.
Now let us follow the order below to see how SPS helps you to prepare a workflow file for a RNAseq project (Fig.3 B):
- Your project workflow file is loaded for you, but you can choose to upload a different one.
- The workflow structure is displayed in a tree-leaf-like plot.
- Check all steps in the workflow that you want to include. You can skip (uncheck) some steps but it may cause the workflow to fail. Read more SPR instructions before do so.
- Clicking on the “Plot steps” will show a flow chart of what the step execution orders will be when you run the workflow in SPR.
- Clicking “Report preview” generates a preview of what the final report will look like for current RNAseq workflow (hidden in Fig 3.B), but in the preview, no code is evaluated.
- If you are satisfied with your workflow file, click “Add to task” to save your workflow file.
Figure 3. B. Workflow Management - Workflow File
4. Prepare CWL files (optional)
In the new version of SPR, all individual system workflow steps are called by the
CWL files. Each SPR workflow has a set of CWL files and normally users do not need
to make any change. In case you want to learn more about CWL and create some new
CWL files, Step 4 is a good place to practice.
To run a CWL step in SPR, 3 files are required:
- targets: to determine how many samples will be run and sample names.
- CWL running file: can be translated to bash code;
- CWL input: variables to inject into the running file
SPR is the parser between R and CWL by injecting sample information from targets
to CWL input
file and then CWL parser translates it to bash code.
- Most people are not familiar this part, so read instructions carefully.
- Your project targets has been loaded for you, and an example CWL running and input
for hisat2 is also loaded for you. Directly parse the code. See what commandline
code you get.
- Change the targets injecting column, and parse again, see what has changed.
- You can edit the CWL running and input files
- Try to parse the new file and see what has changed.
- If new CWL files has been created, you can edit workflow Rmd files by adding your
new steps.
Figure 3. C. Workflow Management - CWL File
5. Run or finish workflow preparation
Up until this step, congratulations, the workflow is prepared. You can choose to
download the workflow project files as a bundle or continue to run the workflow.
Figure 4.A.B Workflow Runner
- On step 5 you can choose to download the prepared workflow or directly run the
workflow. However, if you do not have the required commandline tools, workflow will
most likely fail. Make sure you system has these tools (Read about these tools).
- Open up the runner. It is a “Rstudio-like” interface.
- Code editor. Required workflow running code is pre-entered for you. You can simply
hit “Run” to start. Of course, you can delete the default code and run random R
code.
- Output R console.
- Workflow running log.
- View any plot output. and send a copy of your current plot to SPS Canvas tab or
download it.
RNA-Seq Module
This is a module which takes a raw count table to do normalization,
Differential gene expression (DEG) analysis, and finally helps users to generate
different plots to visualize the results.
Process raw count
If this UI is displayed, that means your targets and count table are accepted by
SPS (Fig 6). On this sub-tab, you can choose:
- Transform your count data with “raw”, “rlog” or “VST” and visualize the results
in other sub-tabs.
- Do DEG analysis.
These two options are independent.
Figure 6 RNAseq Normalization
- At step 1 panel, choose how SPS can help you, count transformation or DEG analysis.
The former will jump you to step 2, latter will jump to step 3.
- There are many options. If you are not clear, hover your mouse on the option,
and some tips will show up.
- To start data transformation or DEG analysis.
- A gallery of different plot options will show up when the data process is done.
- When the data process is done, you can download results from the right side panel.
Check all items you want and SPS will help you to zip it into one file to download.
- If at least one item is checked, downloading is enabled.
- Progress timeline will also change upon successful data process.
- Different visualization options will be enabled depending on the data process options.
Plot options
SPS RNAseq module provides 6 different plot options to cluster transformed count table.
Figure 6 RNAseq plots
- Change plot options to customize your plots.
- Most plots are Plotly plots, which means you can interact
with these plots, like hiding/show groups, zoom in/out, etc.
- All SPS plots are resizable. Dragging the bottom-right corner icon to resize your
plot.
- Click “To canvas” to take a screenshot of current plot and edit it in
SPS Canvas
tab. Or clicking the down-arrow button to directly save current plot to a png or jpg.
DEG report
This is a special sub-tab designed to filter and visualize DEG results. This sub-tab
can be accessed once the DEG is calculated on the “Normalize Data” sub-tab.
Figure 7 RNAseq DEG
- DEG summary plot. You can view what are the DEG results across different comparision
groups.
- Switch to view a ggplot friendly table. Different from the table you could download from
“Normalize Data” subtab, this DEG table is rearranged so you can easily make a ggplot from it.
- You can change the filter settings here, so DEGs will be re-filtered and you do not need
to go back to “Normalize Data” subtab to recalculate DEG.
- DEG plotting options. Choose from a volcano plot, an upset plot (intersection),
a MA plot or a heatmap.
Interact with other bioconductor packages.
Locally
If you are familiar with R and want to continue other analysis after these, simple stop SPS:
- After count transformation, there is a
spsRNA_trans
object stored in your R
environment. raw
method gives you a normalized count table. Other two methods
give you a DESeq2
class object. You can use it for other analysis.
- After DEG analysis, SPS stores a global object called
spsDEG.
It is a summerizedExperiment
object which has all individual tables from all
DEG comparisons. You can use it for other downstream analysis.
Remotely
If you are using SPS from a remote server, you can choose to download results from
“Normalize Data” sub-tab. Choose results in tabular format or summerizedExperiment
format which is saved in a .rds
file.
Quick {ggplot} module
This module enables you to quickly upload datasets and make a {ggplot}
in a second by using some functionalities from {Esquisse}.
Figure 8 Quick ggplot
- Provide a tabular data table by uploading or use example.
- Drag variables from into different ggplot aesthetic boxes to make a ggplot.
- Change to different plot types.
- Customize other different plotting options.
For a more specific guide, read Esquisse official guide.
Canvas
SPS Canvas is a place to display and edit scrennshots from different plots. To start
to use Canvas, you need to take some screenshots but clicking “To Canvas” buttons
on different tabs/modules. After clicking, the screenshots will be automatically sent
from these places to this Canvas.
Figure 9 Canvas
- The Canvas area.
- Canvas drawing grids. By default, your objects are limited to these drawing grids, but you can change it from top options inside “canvas”.
The grid area size is automatically calculated to fit your screen size when you start SPS.
- Object information. When you select any object on the Canvas, a bounding box will show to display the object’s dimensions, scale, angle and other information.
You can disable them in the “View” menu
- To edit your screenshots, simply drag your screenshots from left to Canvas working area.
- You can add text or titles, and change the font color, decorations in this panel.
- Different Canvas options. Several menus and buttons help you to better control the Canvas.
Hover your mouse on buttons will display a tooltip of their functionality.
Keyboard shortcuts are also enabled with SPS Canvas. Go to “help” menu to see these
options.
Advanced features
To read the detailed advanced features, please to go our website.