A common application of single-cell RNA sequencing (RNA-seq) data is
to identify discrete cell types. To take advantage of the large collection
of well-annotated scRNA-seq datasets, scClassify
package implements
a set of methods to perform accurate cell type classification based on
ensemble learning and sample size calculation.
This vignette will provide an example showing how users can use a pretrained
model of scClassify to predict cell types. A pretrained model is a
scClassifyTrainModel
object returned by train_scClassify()
.
A list of pretrained model can be found in
https://sydneybiox.github.io/scClassify/index.html.
First, install scClassify
, install BiocManager
and use
BiocManager::install
to install scClassify
package.
# installation of scClassify
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("scClassify")
We assume that you have log-transformed (size-factor normalized) matrices as query datasets, where each row refers to a gene and each column a cell. For demonstration purposes, we will take a subset of single-cell pancreas datasets from one independent study (Wang et al.).
library(scClassify)
data("scClassify_example")
wang_cellTypes <- scClassify_example$wang_cellTypes
exprsMat_wang_subset <- scClassify_example$exprsMat_wang_subset
exprsMat_wang_subset <- as(exprsMat_wang_subset, "dgCMatrix")
Here, we load our pretrained model using a subset of the Xin et al. human pancreas dataset as our reference data.
First, let us check basic information relating to our pretrained model.
data("trainClassExample_xin")
trainClassExample_xin
#> Class: scClassifyTrainModel
#> Model name: training
#> Feature selection methods: limma
#> Number of cells in the training data: 674
#> Number of cell types in the training data: 4
In this pretrained model, we have selected the genes based on Differential Expression using limma. To check the genes that are available in the pretrained model:
features(trainClassExample_xin)
#> [1] "limma"
We can also visualise the cell type tree of the reference data.
plotCellTypeTree(cellTypeTree(trainClassExample_xin))
Next, we perform predict_scClassify
with our pretrained model
trainRes = trainClassExample
to predict the cell types of our
query data matrix exprsMat_wang_subset_sparse
. Here,
we used pearson
and spearman
as similarity metrics.
pred_res <- predict_scClassify(exprsMat_test = exprsMat_wang_subset,
trainRes = trainClassExample_xin,
cellTypes_test = wang_cellTypes,
algorithm = "WKNN",
features = c("limma"),
similarity = c("pearson", "spearman"),
prob_threshold = 0.7,
verbose = TRUE)
#> Performing unweighted ensemble learning...
#> Using parameters:
#> similarity algorithm features
#> "pearson" "WKNN" "limma"
#> [1] "Using dynamic correlation cutoff..."
#> [1] "Using dynamic correlation cutoff..."
#> classify_res
#> correct correctly unassigned intermediate
#> 0.704590818 0.239520958 0.000000000
#> incorrectly unassigned error assigned misclassified
#> 0.000000000 0.051896208 0.003992016
#> Using parameters:
#> similarity algorithm features
#> "spearman" "WKNN" "limma"
#> [1] "Using dynamic correlation cutoff..."
#> [1] "Using dynamic correlation cutoff..."
#> classify_res
#> correct correctly unassigned intermediate
#> 0.702594810 0.013972056 0.000000000
#> incorrectly unassigned error assigned misclassified
#> 0.001996008 0.277445110 0.003992016
#> weights for each base method:
#> numeric(0)
Noted that the cellType_test
is not a required input.
For datasets with unknown labels, users can simply leave it
as cellType_test = NULL
.
Prediction results for pearson as the similarity metric:
table(pred_res$pearson_WKNN_limma$predRes, wang_cellTypes)
#> wang_cellTypes
#> acinar alpha beta delta ductal gamma stellate
#> alpha 0 206 0 0 0 2 0
#> beta 0 0 118 0 1 0 0
#> beta_delta_gamma 0 0 0 0 25 0 0
#> delta 0 0 0 10 0 0 0
#> gamma 0 0 0 0 0 19 0
#> unassigned 5 0 0 0 70 0 45
Prediction results for spearman as the similarity metric:
table(pred_res$spearman_WKNN_limma$predRes, wang_cellTypes)
#> wang_cellTypes
#> acinar alpha beta delta ductal gamma stellate
#> alpha 0 206 0 0 0 2 2
#> beta 2 0 118 0 29 0 6
#> beta_delta_gamma 1 0 0 0 66 0 31
#> delta 0 0 0 10 0 0 2
#> gamma 0 0 0 0 0 18 0
#> unassigned 2 0 0 0 1 1 4
sessionInfo()
#> R version 4.0.3 (2020-10-10)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 18.04.5 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.12-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.12-bioc/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] scClassify_1.2.0 BiocStyle_2.18.0
#>
#> loaded via a namespace (and not attached):
#> [1] Biobase_2.50.0 viridis_0.5.1 mixtools_1.2.0
#> [4] tidyr_1.1.2 tidygraph_1.2.0 viridisLite_0.3.0
#> [7] splines_4.0.3 ggraph_2.0.3 RcppParallel_5.0.2
#> [10] statmod_1.4.35 BiocManager_1.30.10 stats4_4.0.3
#> [13] yaml_2.2.1 ggrepel_0.8.2 pillar_1.4.6
#> [16] lattice_0.20-41 glue_1.4.2 limma_3.46.0
#> [19] digest_0.6.27 polyclip_1.10-0 colorspace_1.4-1
#> [22] htmltools_0.5.0 Matrix_1.2-18 pkgconfig_2.0.3
#> [25] magick_2.5.0 bookdown_0.21 purrr_0.3.4
#> [28] scales_1.1.1 tweenr_1.0.1 hopach_2.50.0
#> [31] BiocParallel_1.24.0 ggforce_0.3.2 tibble_3.0.4
#> [34] proxy_0.4-24 mgcv_1.8-33 generics_0.0.2
#> [37] farver_2.0.3 ggplot2_3.3.2 ellipsis_0.3.1
#> [40] BiocGenerics_0.36.0 survival_3.2-7 magrittr_1.5
#> [43] crayon_1.3.4 evaluate_0.14 nlme_3.1-150
#> [46] MASS_7.3-53 segmented_1.3-0 tools_4.0.3
#> [49] minpack.lm_1.2-1 lifecycle_0.2.0 stringr_1.4.0
#> [52] S4Vectors_0.28.0 kernlab_0.9-29 munsell_0.5.0
#> [55] cluster_2.1.0 compiler_4.0.3 proxyC_0.1.5
#> [58] rlang_0.4.8 grid_4.0.3 igraph_1.2.6
#> [61] labeling_0.4.2 rmarkdown_2.5 gtable_0.3.0
#> [64] graphlayouts_0.7.1 R6_2.4.1 gridExtra_2.3
#> [67] knitr_1.30 dplyr_1.0.2 stringi_1.5.3
#> [70] parallel_4.0.3 Rcpp_1.0.5 vctrs_0.3.4
#> [73] diptest_0.75-7 tidyselect_1.1.0 xfun_0.18