The auxiliary commands which can help to the users

Selcen Ari

2020-11-26

library(ceRNAnetsim)

1. Introduction

In the other package vignettes, usage of ceRNAnetsim is explained in details. But in this vignette, some of commands which facitate to use of other vignettes.

2. Installation

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("ceRNAnetsim")

3. Selection of perturbing element from dataset

data("TCGA_E9_A1N5_tumor")
data("TCGA_E9_A1N5_normal")
data("mirtarbasegene")
data("TCGA_E9_A1N5_mirnanormal")

3.1. Selection of HIST1H3H gene at vignette How does the system behave in mirtarbase dataset without interaction factors?

TCGA_E9_A1N5_mirnanormal %>%
  inner_join(mirtarbasegene, by= "miRNA") %>%
  inner_join(TCGA_E9_A1N5_normal, 
             by = c("Target"= "external_gene_name")) %>%
  select(Target, miRNA, total_read, gene_expression) %>%
  distinct() -> TCGA_E9_A1N5_mirnagene
TCGA_E9_A1N5_tumor%>%
  inner_join(TCGA_E9_A1N5_normal, by= "external_gene_name")%>%
  select(patient = patient.x, 
         external_gene_name, 
         tumor_exp = gene_expression.x, 
         normal_exp = gene_expression.y)%>%
  distinct()%>%
  inner_join(TCGA_E9_A1N5_mirnagene, by = c("external_gene_name"= "Target"))%>%
  filter(tumor_exp != 0, normal_exp != 0)%>%
  mutate(FC= tumor_exp/normal_exp)%>%
  filter(external_gene_name== "HIST1H3H")
#> # A tibble: 13 x 8
#>    patient external_gene_n… tumor_exp normal_exp miRNA total_read
#>    <chr>   <chr>                <dbl>      <dbl> <chr>      <int>
#>  1 TCGA-E… HIST1H3H               825         27 hsa-…        193
#>  2 TCGA-E… HIST1H3H               825         27 hsa-…          7
#>  3 TCGA-E… HIST1H3H               825         27 hsa-…          3
#>  4 TCGA-E… HIST1H3H               825         27 hsa-…        450
#>  5 TCGA-E… HIST1H3H               825         27 hsa-…       1345
#>  6 TCGA-E… HIST1H3H               825         27 hsa-…         14
#>  7 TCGA-E… HIST1H3H               825         27 hsa-…          3
#>  8 TCGA-E… HIST1H3H               825         27 hsa-…         35
#>  9 TCGA-E… HIST1H3H               825         27 hsa-…        205
#> 10 TCGA-E… HIST1H3H               825         27 hsa-…        270
#> 11 TCGA-E… HIST1H3H               825         27 hsa-…         38
#> 12 TCGA-E… HIST1H3H               825         27 hsa-…          1
#> 13 TCGA-E… HIST1H3H               825         27 hsa-…          4
#> # … with 2 more variables: gene_expression <dbl>, FC <dbl>

#HIST1H3H: interacts with various miRNA in dataset, so we can say that HIST1H3H is non-isolated competing element and increases to 30-fold.

3.2. Selection of ACTB gene at vignette How does the system behave in mirtarbase dataset without interaction factors?

TCGA_E9_A1N5_tumor%>%
  inner_join(TCGA_E9_A1N5_normal, by= "external_gene_name") %>%
  select(patient = patient.x, 
         external_gene_name, 
         tumor_exp = gene_expression.x, 
         normal_exp = gene_expression.y) %>%
  distinct() %>%
  inner_join(TCGA_E9_A1N5_mirnagene, 
             by = c("external_gene_name"= "Target")) %>%
  filter(tumor_exp != 0, normal_exp != 0) %>%
  mutate(FC= tumor_exp/normal_exp) %>%
  filter(external_gene_name == "ACTB")
#> # A tibble: 46 x 8
#>    patient external_gene_n… tumor_exp normal_exp miRNA total_read
#>    <chr>   <chr>                <dbl>      <dbl> <chr>      <int>
#>  1 TCGA-E… ACTB                191469     101917 hsa-…      67599
#>  2 TCGA-E… ACTB                191469     101917 hsa-…      47266
#>  3 TCGA-E… ACTB                191469     101917 hsa-…      14554
#>  4 TCGA-E… ACTB                191469     101917 hsa-…        191
#>  5 TCGA-E… ACTB                191469     101917 hsa-…          5
#>  6 TCGA-E… ACTB                191469     101917 hsa-…      12625
#>  7 TCGA-E… ACTB                191469     101917 hsa-…       5297
#>  8 TCGA-E… ACTB                191469     101917 hsa-…       2379
#>  9 TCGA-E… ACTB                191469     101917 hsa-…       8041
#> 10 TCGA-E… ACTB                191469     101917 hsa-…       1522
#> # … with 36 more rows, and 2 more variables: gene_expression <dbl>, FC <dbl>

#ACTB: interacts with various miRNA in dataset, so ACTB is not isolated node in network and increases to 1.87-fold.

4. Determination of ACTB gene perturbation efficiency with different expression level changes

Firstly, clean dataset as individual gene has one expression value. And then filter genes which have expression values greater than 10.

TCGA_E9_A1N5_mirnagene %>%    
  group_by(Target) %>%        
  mutate(gene_expression= max(gene_expression)) %>%
  distinct() %>%
  ungroup() -> TCGA_E9_A1N5_mirnagene

TCGA_E9_A1N5_mirnagene%>%
  filter(gene_expression > 10)->TCGA_E9_A1N5_mirnagene

We can determine perturbation efficiency of an element on entire network as following:

TCGA_E9_A1N5_mirnagene %>% 
  priming_graph(competing_count = gene_expression, 
                miRNA_count = total_read)%>%
  calc_perturbation(node_name= "ACTB", cycle=10, how= 1.87,limit = 0.1)

On the other hand, the perturbation eficiency of ATCB gene is higher, when this gene is regulated with 30-fold upregulation like in HIST1H3H.

TCGA_E9_A1N5_mirnagene %>% 
  priming_graph(competing_count = gene_expression, 
                miRNA_count = total_read)%>%
  calc_perturbation(node_name= "ACTB", cycle=10, how= 30,limit = 0.1)

5. Session Info

sessionInfo()
#> R version 4.0.3 (2020-10-10)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 18.04.5 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.12-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.12-bioc/R/lib/libRlapack.so
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] ceRNAnetsim_1.2.1 tidygraph_1.2.0   dplyr_1.0.2      
#> 
#> loaded via a namespace (and not attached):
#>  [1] Rcpp_1.0.5         pillar_1.4.7       compiler_4.0.3     viridis_0.5.1     
#>  [5] tools_4.0.3        digest_0.6.27      viridisLite_0.3.0  evaluate_0.14     
#>  [9] lifecycle_0.2.0    tibble_3.0.4       gtable_0.3.0       pkgconfig_2.0.3   
#> [13] rlang_0.4.9        igraph_1.2.6       cli_2.2.0          ggrepel_0.8.2     
#> [17] yaml_2.2.1         parallel_4.0.3     xfun_0.19          gridExtra_2.3     
#> [21] furrr_0.2.1        stringr_1.4.0      knitr_1.30         graphlayouts_0.7.1
#> [25] generics_0.1.0     vctrs_0.3.5        globals_0.14.0     grid_4.0.3        
#> [29] tidyselect_1.1.0   glue_1.4.2         listenv_0.8.0      R6_2.5.0          
#> [33] ggraph_2.0.4       fansi_0.4.1        parallelly_1.21.0  rmarkdown_2.5     
#> [37] polyclip_1.10-0    farver_2.0.3       tweenr_1.0.1       tidyr_1.1.2       
#> [41] purrr_0.3.4        ggplot2_3.3.2      magrittr_2.0.1     MASS_7.3-53       
#> [45] scales_1.1.1       codetools_0.2-18   ellipsis_0.3.1     htmltools_0.5.0   
#> [49] assertthat_0.2.1   ggforce_0.3.2      colorspace_2.0-0   future_1.20.1     
#> [53] utf8_1.1.4         stringi_1.5.3      munsell_0.5.0      crayon_1.3.4