
Package ‘Cardinal’
March 30, 2021

Type Package

Title A mass spectrometry imaging toolbox for statistical analysis

Version 2.8.0

Date 2020-05-01

Author Kylie A. Bemis <k.bemis@northeastern.edu>

Maintainer Kylie A. Bemis <k.bemis@northeastern.edu>

Description Implements statistical & computational tools for analyzing
mass spectrometry imaging datasets, including methods for efficient
pre-processing, spatial segmentation, and classification.

License Artistic-2.0

Depends BiocGenerics, BiocParallel, EBImage, graphics, methods,
S4Vectors (>= 0.27.3), stats, ProtGenerics

Imports Biobase, dplyr, irlba, lattice, Matrix, matter, magrittr,
mclust, nlme, parallel, signal, sp, stats4, utils, viridisLite

Suggests BiocStyle, testthat, knitr, rmarkdown

VignetteBuilder knitr

biocViews Software, Infrastructure, Proteomics, Lipidomics,
MassSpectrometry, ImagingMassSpectrometry, ImmunoOncology,
Normalization, Clustering, Classification, Regression

URL http://www.cardinalmsi.org

git_url https://git.bioconductor.org/packages/Cardinal

git_branch RELEASE_3_12

git_last_commit 2df8fad

git_last_commit_date 2020-10-27

Date/Publication 2021-03-29

R topics documented:
Cardinal-package . 3
aggregate-methods . 4
AnnotatedImage-class . 5
AnnotatedImagingExperiment-class . 6
colocalized-methods . 8

1

http://www.cardinalmsi.org

2 R topics documented:

cvApply-methods . 9
defunct . 11
deprecated . 12
findNeighbors-methods . 12
image-methods . 14
ImageList-class . 21
ImagingExperiment-class . 22
ImagingResult-class . 24
intensity.colors . 25
legacy . 27
MassDataFrame-class . 27
meansTest-methods . 28
MSContinuousImagingExperiment-class . 30
MSImagingExperiment-class . 30
MSImagingInfo-class . 32
MSProcessedImagingExperiment-class . 34
mz-methods . 35
mzAlign-methods . 36
mzBin-methods . 37
mzFilter-methods . 38
normalize-methods . 40
PCA-methods . 42
peakAlign-methods . 43
peakBin-methods . 45
peakPick-methods . 46
pixelApply-methods . 48
plot-methods . 52
PLS-methods . 58
PositionDataFrame-class . 60
process-methods . 62
readMSIData . 64
reduceBaseline-methods . 66
reexports . 67
selectROI-methods . 68
simulateSpectrum . 69
slice-methods . 72
smoothSignal-methods . 73
SparseImagingExperiment-class . 75
spatialDGMM-methods . 77
spatialFastmap-methods . 79
spatialKMeans-methods . 81
spatialShrunkenCentroids-methods . 83
subset-methods . 85
topFeatures-methods . 86
writeMSIData . 88
XDataFrame-class . 90

Index 92

Cardinal-package 3

Cardinal-package Mass spectrometry imaging tools

Description

Implements statistical & computational tools for analyzing mass spectrometry imaging datasets,
including methods for efficient pre-processing, spatial segmentation, and classification.

Details

Cardinal provides an abstracted interface to manipulating mass spectrometry imaging datasets, sim-
plifying most of the basic programmatic tasks encountered during the statistical analysis of imaging
data. These include image manipulation and processing of both images and mass spectra, and dy-
namic plotting of both.

While pre-processing steps including normalization, baseline correction, and peak-picking are pro-
vided, the core functionality of the package is statistical analysis. The package includes classifi-
cation and clustering methods based on nearest shrunken centroids, as well as traditional tools like
PCA and PLS.

Type browseVignettes("Cardinal") to view a user’s guide and vignettes of common workflows.

Options

The following options can be set via options().

• getCardinalgetCardinalBPPARAM(),setCardinalBPPARAM(BPPARAM=SerialParam()): The
default backend to use for parallel processing. By default, this is initially set to a serial back-
end (no parallelization).

• getCardinalVerbose(),setCardinalVerbose(verbose=interactive()): Should detailed
messages be printed?

• getCardinalNumBlocks(),setCardinalNumBlocks(n=20L): The default number of data
chunks used by pixelApply(), featureApply(), and spatialApply() when .blocks=TRUE.
Used by many methods internally.

• getCardinalDelayProc(),setCardinalDelayProc(delay=TRUE): Should pre-processing
functions like normalize() and peakPeak() be delayed (until process() is called)?

Logging

For support or debugging help, please provide the output of a call to CardinalLog(). By default,
this saves a log to the file "Cardinal.log" in the current working directory.

Author(s)

Kylie A. Bemis

Maintainer: Kylie A. Bemis <k.bemis@northeastern.edu>

4 aggregate-methods

aggregate-methods Calculating summary statistics

Description

These methods calculate summary statistics over subsets of an imaging experiment.

Usage

S4 method for signature 'SparseImagingExperiment'
aggregate(x, by = c("feature", "pixel"), FUN,

groups = NULL, tform = identity, as = "ImagingExperiment",
BPPARAM = getCardinalBPPARAM(), ...)

summarizeFeatures(x, FUN = "mean", ...)

summarizePixels(x, FUN = "mean", ...)

Arguments

x An imaging dataset.

by Should the summarization be performed over pixels or features?

FUN A function or list of functions that return statistical summaries. Known statistics
can be provided to be computed more efficiently than providing the equivalent
function. Known statistics include "min", "max", "mean", "sum", "sd", and
"var".

groups A grouping variable for summarization. The summary functions will be applied
within each group.

tform A unary transformation that should each row or column be transformed before
summarization is applied.

as What class of object should be returned (ImagingExperiment or DataFrame)?

BPPARAM An optional BiocParallelParam instance to be passed to bplapply().

... Additional arguments to be passed to FUN.

Value

An ImagingExperiment subclass if as=="ImagingExperiment" or a DataFrame subclass other-
wise.

Author(s)

Kylie A. Bemis

Examples

set.seed(1)
mse <- simulateImage(preset=1, npeaks=10, dim=c(10,10))

calculate median spectrum

AnnotatedImage-class 5

aggregate(mse, by="feature", FUN=median, as="DataFrame")

summarize mean spectrum
summarizeFeatures(mse, FUN="mean", as="DataFrame")

summarize image by TIC
summarizePixels(mse, FUN=c(tic="sum"), as="DataFrame")

summarize mean spectrum grouped by pixels in/out of circle
summarizeFeatures(mse, FUN="mean", groups=mse$circle, as="DataFrame")

AnnotatedImage-class AnnotatedImage: Optical images with annotations

Description

AnnotatedImage extends the Image class from the EBImage package with metadata columns and
plotting in arbitrary coordinate systems. This facilitates annotations such as region-of-interest la-
beling, and plotting with axes reflective of real-world coordinates.

Usage

AnnotatedImage(data = array(0, dim=c(1,1)), dim, colormode, ...)

Arguments

data A vector or array with pixel intensities of an image.

dim The final dimensions of the image.

colormode Either ’Grayscale’ or ’Color’.

... Additional arguments passed to the constructor. May be used to set the offset
or resolution slots.

Details

AnnotatedImage is extends Image, so all methods defined on that class also work here.

Metadata columns with annotations can be set via mcols(). The object’s length is defined as
the product of the first two dimensions. It is assumed any additional frames represent different
measurement channels on the same spatial locations.

AnnotatedImage also facilitates integration with other imaging data such as a SparseImagingExperiment
or MSImagingExperiment by allowing plotting of the image on arbitrary coordinate systems. This
is controlled via an offset slot designating the absolute position of the top-left corner of the image
in the current plotting coordinates. The height and width of the image (as plotted) are then con-
trolled by its resolution. This is most easily changed by setting the height() and width() of the
object.

6 AnnotatedImagingExperiment-class

Slots

.Data: An array with the image data.

offset: The absolute offset of the x/y position of the top-left corner of the image when plotted.

resolution: The absolute offset of the x/y position of the top-left corner of the image when plot-
ted.

colormode: The color mode of the image. Either ’Grayscale’ or ’Color’.

elementMetadata: An optional DataFrame containing pixel-level annotations.

metadata: A list containing general metadata (such as filename, etc.).

Methods

All methods for Image also work on AnnotatedImage objects. Additional methods are documented
below:

mcols(x), mcols(x) <- value: Get or set the metadata columns.

coord(object), coord(object) <- value: Get or set the absolute offset of the top-left corner of
the image.

resolution(object), resolution(object) <- value: Get or set the pixel resolution of the im-
age. This corresponds to the number of pixels per unit step on the x/y axes when plotted.

height(x), height(x) <- value: Get or set the height of the image (as plotted).

width(x), width(x) <- value: Get or set the width of the image (as plotted).

Author(s)

Kylie A. Bemis

See Also

Image

AnnotatedImagingExperiment-class

AnnotatedImagingExperiment: Mass spectrometry imaging experi-
ments

Description

The AnnotatedImagingExperiment class is designed for mass spectrometry imaging experimental
data and metadata. It is designed to contain full MSI experiments, including multiple runs and
replicates, potentially across multiple files. Both 2D and 3D imaging experiments are supported, as
well as any type of experimental metadata such as diagnosis, subject, time point, etc.

AnnotatedImagingExperiment-class 7

Usage

AnnotatedImage list
AnnotatedImageList(...)

Instance creation
AnnotatedImagingExperiment(

imageData = AnnotatedImageList(),
featureData = DataFrame(),
phenoData = DataFrame(),
metadata = list())

Additional methods documented below

Arguments

... Either Image or AnnotatedImage objects used to create the AnnotatedImageList.

imageData An Image, an AnnotatedImage, or an AnnotatedImageList.

featureData A DataFrame with feature metadata, with a row for each channel/frame.

phenoData A DataFrame with phenotype metadata, with a row for each sample.

metadata A list with experimental-level metadata.

Details

The AnnotatedImagingExperiment class is designed as a replacement for the MSImageSet class,
using a simplified, robust implementation that should be more future-proof and enable better support
for large, high-resolution experiments, multimodal experiments, and experiments with specialized
needs such as non-gridded pixel coordinates.

Subclasses MSContinuousImagingExperiment and MSProcessedImagingExperiment exist to al-
low downstream methods to make assumptions about the underlying data storage (dense matrices
for ’continous’ format and sparse matrices for ’processed’ format), which can sometimes allow
more efficient computations.

Slots

imageData: An object inheriting from AnnotatedImageList, storing one or more AnnotatedImage
elements.

featureData: Contains feature information in a DataFrame. Each row includes the metadata as-
sociated with frame/channel of the images.

elementMetadata: Contains phenotype information in a DataFrame. Each row includes the meta-
data for a single observation (e.g., a sample).

metadata: A list containing experiment-level metadata.

Methods

All methods for ImagingExperiment also work on AnnotatedImagingExperiment objects. Ad-
ditional methods are documented below:

coord(object): Get the absolute offsets of the top-left corner of the images.

resolution(object): Get the pixel resolutions of the images. This corresponds to the number of
pixels per unit step on the x/y axes when plotted.

8 colocalized-methods

height(x): Get the heights of the images (as plotted).

width(x): Get the widths of the images (as plotted).

Author(s)

Kylie A. Bemis

See Also

ImagingExperiment, AnnotatedImage

Examples

Not run:
x <- readImage(system.file('images', 'nuclei.tif', package='EBImage'))

y <- AnnotatedImagingExperiment(x)

print(y)

End(Not run)

colocalized-methods Colocalized features

Description

Find colocalized features in an imaging dataset.

Usage

S4 method for signature 'MSImagingExperiment,missing'
colocalized(object, mz, ...)

S4 method for signature 'SparseImagingExperiment,ANY'
colocalized(object, ref, n = 10,
sort.by = c("correlation", "M1", "M2"),
threshold = median,
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpatialDGMM,ANY'
colocalized(object, ref, n = 10,
sort.by = c("Mscore", "M1", "M2"),
threshold = median,
BPPARAM = getCardinalBPPARAM(), ...)

Arguments

object An imaging experiment.

mz An m/z value giving the image to use as a reference.

ref Either a numeric vector or logical mask of a region-of-interest, or the feature to
use as a reference.

cvApply-methods 9

n The number of top-ranked colocalized features to return.

sort.by The colocalization measure used to rank colocalized features. Possible options
include Pearson’s correlation ("correlation"), match score ("Mscore"), and Man-
ders’ colocalization coefficients ("M1" and "M2").

threshold A function that returns the cutoff to use for creating logical masks of numeric
references.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

... ignored.

Value

A data frame with the colocalized features.

Author(s)

Kylie A. Bemis

See Also

topFeatures

Examples

setCardinalBPPARAM(SerialParam())

set.seed(1)
data <- simulateImage(preset=2, npeaks=10, representation="centroid")

find features colocalized with first feature
colocalized(data, ref=1)

cvApply-methods Apply cross-validation to imaging analyses

Description

Apply cross-validation with an existing or a user-specified modeling function over an imaging
datasets.

Usage

S4 method for signature 'MSImagingExperiment'
crossValidate(.x, .y, .fun,

.fold = run(.x),

.predict = predict,

.process = FALSE,

.processControl = list(),

.peaks = NULL,
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SparseImagingExperiment'

10 cvApply-methods

crossValidate(.x, .y, .fun, .fold = run(.x),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SparseImagingExperiment'
cvApply(.x, .y, .fun,

.fold = run(.x),

.predict = predict,

.fitted = fitted,

.simplify = FALSE,
BPREDO = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'CrossValidated2'
summary(object, ...)

S4 method for signature 'SImageSet'
cvApply(.x, .y, .fun, .fold = sample, ...)

Arguments

.x An imaging dataset.

.y The response variable for prediction.

.fun A function for training a model where the first two arguments are the dataset and
the response.

.fold A variable determining the cross-validation folds. When specifying custom
folds, it is important to make sure that data points from the same experimen-
tal run are not split among different folds. I.e., all data points from a run should
belong to the same CV fold.

.predict A function for predicting from a trained model. The first two arguments are the
model and a new dataset.

.fitted A function for extracting the predicted values from the result of a call to .predict.

.simplify If FALSE (the default), the output of .predict is returned. If TRUE, then
.fitted is applied to the results to extract fitted values. Only the fitted values,
observed values, and basic model information is returned.

.process Should pre-processing be applied before each training and test step? This in-
cludes peak alignment and peak filtering. Peak binning is also performed if
.peaks is given.

.processControl

A list of arguments to be passed to the pre-processing steps.

.peaks A peak-picked version of the full dataset .x, for use with pre-processing between
training and test steps.

BPREDO See documentation for bplapply.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

... Additional arguments passed to .fun.

object A fitted model object to summarize.

defunct 11

Details

This method is designed to be used with the provided classification methods, but can also be used
with user-provided functions and methods as long as they fulfill certain expectations.

The function or method passed to ’.fun’ must take at least two arguments: the first argument must be
a object derived from SparseImagingExperiment or SImageSet, and the second argument must be
the response variable. The function should return an object of a class derived from ImagingResult
or ResultSet, which should have a predict method that takes arguments ’newx’ and ’newy’ in
addition to the fitted model.

For MSImagingExperiment objects, pre-processing can be performed. This is particularly useful if
there is no reference to which to align peaks, except the mean spectrum (which is calculated from
the whole dataset, and may invalidate cross-validation results).

If .process=TRUE and .peaks=NULL, then either the data should be profile spectra with no peak
picking, or it should be a peak-picked dataset before peak alignment. If the data has no peak
picking, then the pre-processing will consist of peak picking on the mean spectrum of the training
sets, followed by peak alignment and peak filtering. If the data has been peak-picked but not aligned,
then the pre-processing will consist of peak alignment to the mean spectrum of the training sets, and
peak filtering.

If .process=TRUE and .peaks is given, then the data should be a dataset consisting of profile
spectra, and .peaks should be a peak-picked version of the same dataset before peak alignment.
The pre-processing will consist of peak alignment to the mean spectrum of the training sets, peak
filtering, and peak binning the full data to the aligned peaks.

The crossValidate function calls cvApply internally and then post-processes the result to be more
easily-interpretable and space-efficient. Accuracy metrics are reported for each set of modeling
parameters.

Value

An object of class ’CrossValidated’, which is derived from ResultSet, or an object of class ’Cross-
Validated2’, which is derived from ImagingResult.

Author(s)

Kylie A. Bemis

See Also

spatialShrunkenCentroids, PLS, OPLS

defunct Defunct functions and methods in Cardinal

Description

These functions are defunct and are no longer available.

generateSpectrum: Use simulateSpectrum instead.

generateImage: Use simulateImage instead.

12 findNeighbors-methods

deprecated Deprecated functions and methods in Cardinal

Description

These functions are provided for compatibility with older versions of Cardinal, and will be defunct
at the next release.

filter Use subset or subsetFeatures instead.

select Use subset or subsetPixels instead.

summarize Use aggregate, summarizeFeatures or summarizePixels instead.

mutate No drop-in replacement provided. Use standard assignment instead.

findNeighbors-methods Find spatial neighbors and spatial weightst

Description

Methods for calculating the spatial neighbors (pixels within a certain distance) or spatial weights
for all pixels in a dataset.

Usage

Methods for Cardinal >= 2.x classes

S4 method for signature 'ImagingExperiment'
findNeighbors(x, r, groups = run(x), ...)

S4 method for signature 'PositionDataFrame'
findNeighbors(x, r, groups = run(x), dist = "chebyshev",

offsets = FALSE, matrix = FALSE, ...)

S4 method for signature 'ImagingExperiment'
spatialWeights(x, r, method = c("gaussian", "adaptive"),

dist = "chebyshev", matrix = FALSE, BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'PositionDataFrame'
spatialWeights(x, r, matrix = FALSE, ...)

Methods for Cardinal 1.x classes

S4 method for signature 'iSet'
findNeighbors(x, r, groups = x$sample, ...)

S4 method for signature 'IAnnotatedDataFrame'
findNeighbors(x, r, groups = x$sample, dist = "chebyshev",

offsets = FALSE, matrix = FALSE, ...)

findNeighbors-methods 13

S4 method for signature 'iSet'
spatialWeights(x, r, method = c("gaussian", "adaptive"),

matrix = FALSE, ...)

S4 method for signature 'IAnnotatedDataFrame'
spatialWeights(x, r, matrix = FALSE, ...)

Arguments

x An imaging dataset or data frame with spatial dimensions.

r The spatial radius or distance.

groups A factor giving which pixels should be treated as spatially-independent. Pixels
in the same group are assumed to have a spatial relationship.

dist The type of distance metric to use. The options are ‘radial’, ‘manhattan’, ‘minkowski’,
and ‘chebyshev’ (the default).

offsets Should the coordinate offsets from the center of each neighborhood be returned?

matrix Should the result be returned as a sparse matrix instead of a list?

method The method to use to calculate the spatial weights. The ’gaussian’ method refers
to Gaussian-distributed distance-based weights (alpha weights), and ’adaptive’
refers to structurally-adaptive weights for bilaterla filtering (beta weights).

... Addtional arguments to be passed to next method.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Value

Either a list of neighbors/weights or a sparse matrix (sparse_mat) giving the neighbors and weights
for each pixel.

For spatialWeights, two types of weights are calculated and returned as a list:

The alpha weights are distance-based, following a Gaussian distributed that produces smaller
weights for larger distances. The beta weights are adaptive weights used for bilateral filtering,
which are based on the difference in the feature-vectors between pixels.

If method="gaussian" only the alpha weights are calcualated and the beta weights are all set to
1. If matrix=TRUE, the alpha and beta weights are multiplied together to produce the weights for
the matrix; otherwise, both are returned separately.

Author(s)

Kylie A. Bemis

See Also

image

Examples

coord <- expand.grid(x=1:9, y=1:9)
values <- rnorm(nrow(coord))
pdata <- PositionDataFrame(coord=coord, values=values)

find spatial neighbors
findNeighbors(pdata, r=1)

14 image-methods

calculate distance-based weights
spatialWeights(pdata, r=1)

visualize weight matrix
W <- spatialWeights(pdata, r=1, matrix=TRUE)
image(as.matrix(W), col=bw.colors(100))

image-methods Plot an image of the pixel data of an imaging dataset

Description

Create and display images for the pixel data of an imaging dataset using a formula interface.

Usage

S4 method for signature 'formula'
image(x, data = environment(x), ...,

xlab, ylab, zlab, subset)

Methods for Cardinal >= 2.x classes

S4 method for signature 'PositionDataFrame'
image(x, formula,

groups = NULL,
superpose = FALSE,
strip = TRUE,
key = superpose || !is.null(groups),
normalize.image = c("none", "linear"),
contrast.enhance = c("none", "suppression", "histogram"),
smooth.image = c("none", "gaussian", "adaptive"),
...,
xlab, xlim,
ylab, ylim,
zlab, zlim,
asp = 1,
layout,
col = discrete.colors,
colorscale = viridis,
colorkey = !key,
alpha.power = 1,
subset = TRUE,
add = FALSE)

S4 method for signature 'SparseImagingExperiment'
image(x, formula,

feature,
feature.groups,
groups = NULL,
superpose = FALSE,

image-methods 15

strip = TRUE,
key = superpose || !is.null(groups),
fun = mean,
normalize.image = c("none", "linear"),
contrast.enhance = c("none", "suppression", "histogram"),
smooth.image = c("none", "gaussian", "adaptive"),
...,
xlab, xlim,
ylab, ylim,
zlab, zlim,
asp = 1,
layout,
col = discrete.colors,
colorscale = viridis,
colorkey = !key,
alpha.power = 1,
subset = TRUE,
add = FALSE)

S4 method for signature 'SparseImagingExperiment'
image3D(x, formula, ..., alpha.power = 2)

S4 method for signature 'MSImagingExperiment'
image(x, formula,

feature = features(x, mz=mz),
feature.groups,
mz,
plusminus,
...)

S4 method for signature 'SparseImagingResult'
image(x, formula,

model = modelData(x),
superpose = is_matrix,
...,
column,
colorscale = cividis,
colorkey = !superpose,
alpha.power = 2)

S4 method for signature 'PCA2'
image(x, formula,

values = "scores", ...)

S4 method for signature 'PLS2'
image(x, formula,

values = c("fitted", "scores"), ...)

S4 method for signature 'SpatialFastmap2'
image(x, formula,

values = "scores", ...)

16 image-methods

S4 method for signature 'SpatialKMeans2'
image(x, formula,

values = "cluster", ...)

S4 method for signature 'SpatialShrunkenCentroids2'
image(x, formula,

values = c("probability", "class", "scores"), ...)

S4 method for signature 'SpatialDGMM'
image(x, formula,

values = c("probability", "class", "mean"), ...)

S4 method for signature 'MeansTest'
image(x, formula,

values = "mean", jitter = TRUE, ...)

S4 method for signature 'SegmentationTest'
image(x, formula,

values = c("mean", "mapping"), jitter = TRUE, ...)

S4 method for signature 'AnnotatedImage'
image(x, frame = 1, offset = coord(x),

height, width,
layout = !add,
native = TRUE,
interpolate = TRUE,
add = FALSE, ...)

S4 method for signature 'AnnotatedImageList'
image(x, i, frame = 1,

strip = TRUE,
layout = !add,
native = TRUE,
interpolate = TRUE,
add = FALSE, ...)

S4 method for signature 'AnnotatedImagingExperiment'
image(x, i, frame = 1, ...)

Methods for Cardinal 1.x classes

S4 method for signature 'SImageSet'
image(x, formula = ~ x * y,

feature,
feature.groups,
groups = NULL,
superpose = FALSE,
strip = TRUE,
key = superpose,
fun = mean,
normalize.image = c("none", "linear"),
contrast.enhance = c("none", "suppression", "histogram"),

image-methods 17

smooth.image = c("none", "gaussian", "adaptive"),
...,
xlab, xlim,
ylab, ylim,
zlab, zlim,
layout,
asp = 1,
col = rainbow(nlevels(groups)),
col.regions = intensity.colors(100),
colorkey = !is3d,
subset = TRUE,
lattice = FALSE)

S4 method for signature 'SImageSet'
image3D(x, formula = ~ x * y * z, ...)

S4 method for signature 'MSImageSet'
image(x, formula = ~ x * y,

feature = features(x, mz=mz),
feature.groups,
mz,
plusminus,
...)

S4 method for signature 'ResultSet'
image(x, formula,

model = pData(modelData(x)),
feature,
feature.groups,
superpose = TRUE,
strip = TRUE,
key = superpose,
...,
column,
col = if (superpose) rainbow(nlevels(feature.groups)) else "black",
lattice = FALSE)

S4 method for signature 'CrossValidated'
image(x, fold = 1:length(x), layout, ...)

S4 method for signature 'PCA'
image(x, formula = substitute(mode ~ x * y),

mode = "scores",
...)

S4 method for signature 'PLS'
image(x, formula = substitute(mode ~ x * y),

mode = c("fitted", "scores", "y"),
...)

S4 method for signature 'OPLS'
image(x, formula = substitute(mode ~ x * y),

18 image-methods

mode = c("fitted", "scores", "Oscores", "y"),
...)

S4 method for signature 'SpatialFastmap'
image(x, formula = substitute(mode ~ x * y),

mode = "scores",
...)

S4 method for signature 'SpatialShrunkenCentroids'
image(x, formula = substitute(mode ~ x * y),

mode = c("probabilities", "classes", "scores"),
...)

S4 method for signature 'SpatialKMeans'
image(x, formula = substitute(mode ~ x * y),

mode = "cluster",
...)

Arguments

x An imaging dataset.

formula A formula of the form ’z ~ x * y | g1 * g2 * ...’ (or equivalently, ’z ~ x + y | g1 +
g2 + ...’), indicating a LHS ’y’ (on the y-axis) versus a RHS ’x’ (on the x-axis)
and conditioning variables ’g1, g2, ...’.
Usually, the LHS is not supplied, and the formula is of the form ’~ x * y |
g1 * g2 * ...’, and the y-axis is implicityl assumed to be the feature vectors
corresponding to each pixel in the imaging dataset specified by the object ’x’.
However, a variable evaluating to a vector of pixel values, or a sequence of such
variables, can also be supplied.
The RHS is evaluated in pData(x) and should provide values for the xy-axes.
These must be spatial coordinates.
The conditioning variables are evaluated in fData(x). These can be specified in
the formula as ’g1 * g2 * ...’. The argument ’feature.groups’ allows an alternate
way to specify a single conditioning variable. Conditioning variables specified
using the formula interface will always appear on separate plots. This can be
combined with ’superpose = TRUE’ to both overlay plots based on a condition-
ing variable and use conditioning variables to create separate plots.

data A list or data.frame-like object from which variables in formula should be
taken.

mz The m/z value(s) for which to plot the ion image(s).

plusminus If specified, a window of m/z values surrounding the one given by coord will
be included in the plot with fun applied over them, and this indicates the range
of the window on either side.

feature The feature or vector of features for which to plot the image. This is an expres-
sion that evaluates to a logical or integer indexing vector.

feature.groups An alternative way to express a single conditioning variable. This is a variable
or expression to be evaluated in fData(x), expected to act as a grouping vari-
able for the features specified by ’feature’, typically used to distinguish different
groups or ranges of features. Pixel vectors of images from features in the same
feature group will have ’fun’ applied over them; ’fun’ will be applied to each

image-methods 19

feature group separately, usually for averaging. If ’superpose = FALSE’ then
these appear on separate plots.

groups A variable or expression to be evaluated in pData(x), expected to act as a group-
ing variable for the pixel regions in the image(s) to be plotted, typically used to
distinguish different image regions by varying graphical parameters like color
and line type. By default, if ’superpose = FALSE’, these appear overlaid on the
same plot.

superpose Should feature vectors from different feature groups specified by ’feature.groups’
be superposed on the same plot? If ’TRUE’ then the ’groups’ argument is ig-
nored.

strip Should strip labels indicating the plotting group be plotting along with the each
panel? Passed to ’strip’ in levelplot is ’lattice = TRUE’.

key A logical, or list containing components to be used as a key for the plot. This
is passed to ’key’ in levelplot if ’lattice = TRUE’.

fun A function to apply over pixel vectors of images grouped together by ’fea-
ture.groups’. By default, this is used for averaging over features.

normalize.image

Normalization function to be applied to each image. The function can be user-
supplied, of one of ’none’ or ’linear’. The ’linear’ normalization method nor-
malized each image to the same intensity range using a linear transformation.

contrast.enhance

Contrast enhancement function to be applied to each image. The function can be
user-supplied, or one of ’none’, ’histogram’, or ’suppression’. The ’histogram’
equalization method flatterns the distribution of intensities. The hotspot ’sup-
pression’ method uses thresholding to reduce the intensities of hotspots.

smooth.image Image smoothing function to be applied to each image. The function can be user-
supplied, or one of ’none’, ’gaussian’, or ’adaptive’. The ’gaussian’ smoothing
method smooths images with a simple gaussian kernel. The ’adaptive’ method
uses bilateral filtering to preserve edges.

xlab Character or expression giving the label for the x-axis.

ylab Character or expression giving the label for the y-axis.

zlab Character or expression giving the label for the z-axis. (Only used for plotting
3D images.)

xlim A numeric vector of length 2 giving the left and right limits for the x-axis.

ylim A numeric vector of length 2 giving the top and bottom limits for the y-axis.

zlim A numeric vector of length 2 giving the lower and upper limits for the z-axis
(i.e., the range of colors to be plotted).

layout The layout of the plots, given by a length 2 numeric as c(ncol,nrow). This is
passed to levelplot if ’lattice = TRUE’. For base graphics, this defaults to one
plot per page.

asp The aspect ratio of the plot.

col A specification for the default plotting color(s) for groups.

colorscale The color scale to use for the z-axis of image intensities. This may be either
a vector of colors or a function which takes a single numeric argument n and
generates a vector of colors of length n.

col.regions The default plotting color(s) for the z-axis of image intensities. Thus must be a
vector of colors.

20 image-methods

colorkey Should a coloykey describing the z-axis be drawn with the plot?

alpha.power Opacity scaling factor (1 is linear).

jitter Should a small amount of noise be added to the image values before plotting
them?

subset An expression that evaluates to a logical or integer indexing vector to be evalu-
ated in pData(x).

... Additional arguments passed to the underlying plot functions.

i Which data element should be plotted.

frame Which frame of an image should be plotted.

offset Absolute offset in x/y coordinates of the top-left corner of the image (from the
origin).

height The height of the plotted image.

width The width of the plotted image.

native Should a native raster (using integer color codes) be produced, or an rgb raster
(using character color codes)?

interpolate Should any linear interpolation be done when plotting the image?

fold What folds of the cross-validation should be plotted.

model A vector or list specifying which fitted model to plot. If this is a vector, it
should give a subset of the rows of modelData(x) to use for plotting. Otherwise,
it should be a list giving the values of parameters in modelData(x).

mode What kind of results should be plotted. This is the name of the object to plot in
the ResultSet object.

values What kind of results should be plotted. This is the name of the object to plot in
the ImagingResult object. Renamed from mode to avoid ambiguity.

column What columns of the results should be plotted. If the results are a matrix, this
corresponds to the columns to be plotted, which can be indicated either by nu-
meric index or by name.

lattice Should lattice graphics be used to create the plot?

add Should the method call plot.new() or be added to the current plot?

Note

In most cases, calling image3D(obj) is equivalent to image(obj,~ x * y * z).

Author(s)

Kylie A. Bemis

See Also

plot, selectROI

ImageList-class 21

Examples

setCardinalBPPARAM(SerialParam())

set.seed(1)
x <- simulateImage(preset=2, npeaks=10, dim=c(10,10))
m <- mz(metadata(x)$design$featureData)

image(x, mz=m[1], plusminus=0.5)
image(x, mz=m[1], smooth.image="gaussian", contrast.enhance="histogram")
image(x, mz=m[1], colorscale=col.map("grayscale"))
image(x, mz=m[4:7], colorscale=col.map("cividis"))
image(x, mz=m[c(1,8)], normalize.image="linear", superpose=TRUE)

sm <- summarizePixels(x, FUN=c(tic="sum"), as="DataFrame")
pData(x)$tic <- sm$tic

image(x, tic ~ x * y, colorscale=magma)

ImageList-class ImageList: Abstract image data list

Description

The ImageList virtual class provides an formal abstraction for the imageData slot of ImagingExperiment
objects. It is analogous to the Assays classes from the SummarizedExperiment package.

The ImageArrayList virtual class specializes the ImageList abstraction by assuming the array-
like data elements all have conformable dimensions.

The SimpleImageList and SimpleImageArrayList subclasses are the default implementations.

The MSContinuousImagingSpectraList and MSProcessedImagingSpectraList classes are sub-
classes of SimpleImageArrayList that make certain assumptions about how the underlying data
elements are stored (i.e., either dense or sparse). They are intended to be used with mass spectrom-
etry imaging data.

Usage

Create a SimpleImageList
ImageList(data)

Create a SimpleImageArrayList
ImageArrayList(data)

ImageArrayList class for 'continuous' (dense) MS imaging data
MSContinuousImagingSpectraList(data)

ImageArrayList class for 'processed' (sparse) MS imaging data
MSProcessedImagingSpectraList(data)

Arguments

data A SimpleList or list of array-like data elements, or an array-like object.

22 ImagingExperiment-class

Details

ImageList and ImageArrayList objects have list-like semantics where the elements are array-
like (i.e., have dim), where ImageArrayList makes the additional assumption that the array-like
elements have identical dims for at least the first two dimensions.

The ImageList class includes:

• (1) The ImageList() and ImageArrayList() constructor functions.

• (2) Lossless back-and-forth coercion from/to SimpleList. The coercion method need not and
should not check the validity of the returned object.

• (3) length, names, names<-, and `[[`, `[[<-` methods for ImageList, as well as `[`,
`[<-`, rbind, and cbind methods for ImageArrayList.

See the documentation for the Assays class in the SummarizedExperiment package for additional
details, as the implementation is quite similar, with the main difference being that all assumptions
about the dimensions of the array-like data elements is contained in the ImageArrayList subclass.
This is intended to allow subclasses of the ImageList class to handle images stored as arrays with
non-conformable dimensions.

These classes are intended to eventually replace the ImageData classes.

Author(s)

Kylie A. Bemis

See Also

SimpleList

Examples

create an ImageList object
data0 <- matrix(1:9, nrow=3)
data1 <- matrix(10:18, nrow=3)
data2 <- matrix(19:27, nrow=3)
idata <- ImageArrayList(list(d0=data0, d1=data1, d2=data2))

subset all arrays at once
idataS <- idata[1:2,1:2]
all.equal(idataS[["d0"]], data0[1:2,1:2])

combine over "column" dimension
idataB <- cbind(idata, idata)
all.equal(idataB[["d0"]], cbind(data0, data0))

ImagingExperiment-class

ImagingExperiment: Abstract class for imaging experiments

ImagingExperiment-class 23

Description

The ImagingExperiment class is a virtual class for biological imaging experiments. It includes
slots for sample/pixel metadata and for feature metadata. The class makes very few assumptions
about the structure of the underlying imaging data, including the dimensions.

For a concrete subclass, see the SparseImagingExperiment class, which assumes that the image
data can be represented as a matrix where columns represent pixels and rows represent features. The
MSImagingExperiment subclass is further specialized for analysis of mass spectrometry imaging
experiments.

Slots

imageData: An object inheriting from ImageList, storing one or more array-like data elements.
No assumption is made about the shape of the arrays.

featureData: Contains feature information in a DataFrame. Each row includes the metadata for
a single feature (e.g., a color channel, a molecular analyte, or a mass-to-charge ratio).

elementMetadata: Contains sample or pixel information in a DataFrame. Each row includes the
metadata for a single observation (e.g., a sample or a pixel).

metadata: A list containing experiment-level metadata.

Methods

imageData(object), imageData(object) <- value: Get and set the imageData slot.

iData(object, i), iData(object, i, ...) <- value: Get or set the element i from the imageData.
If i is missing, the first data element is returned.

phenoData(object), phenoData(object) <- value: Get and set the elementMetadata slot.

sampleNames(object), sampleNames(object) <- value: Get and set the row names of the elementMetadata
slot.

pData(object), pData(object) <- value: A shortcut for phenoData(object) and phenoData(object)<-.

pixelData(object), pixelData(object) <- value: In subclasses where columns represent pix-
els, get and set the elementMetadata slot.

pixelNames(object), pixelNames(object) <- value: In subclasses where columns represent
pixels, get and set the row names of the elementMetadata slot.

featureData(object), featureData(object) <- value: Get and set the featureData slot.

featureNames(object), featureNames(object) <- value: Get and set the row names of the
featureData slot.

fData(object), fData(object) <- value: A shortcut for featureData(object) and featureData(object)<-.

dim: The dimensions of the object, as determined by the number of features (rows in featureData)
and the number of samples/pixels (rows in elementMetadata).

object$name, object$name <- value: Get and set the name column in pixelData.

object[[i]], object[[i]] <- value: Get and set the column i (a string or integer) in pixelData.

object[i, j, ..., drop]: Subset based on the rows (fData) and the columns (pData). The result
is the same class as the original object.

rbind(...), cbind(...): Combine ImagingExperiment objects by row or column.

Author(s)

Kylie A. Bemis

24 ImagingResult-class

See Also

SparseImagingExperiment, MSImagingExperiment

Examples

cannot create an ImagingExperiment object
try(new("ImagingExperiment"))

create an ImagingExperiment derived class
MyImagingExperiment <- setClass("MyImagingExperiment", contains="ImagingExperiment")
MyImagingExperiment()

removeClass("MyImagingExperiment")

ImagingResult-class ImagingResult: Results of statistical analysis of imaging experiments

Description

The ImagingResult class is a virtual class for containing the results of statistical analyses applied to
imaging experiments. It includes the pixel and feature metadata of the original imaging experiment,
but the image data may be missing. The results are stored as a list, where each element contains the
results of a single model or parameter set. Results from multiple models or parameter sets may be
stored together.

The SparseImagingResult subclass inherits from both SparseImagingExperiment and ImagingResult.

Slots

imageData: An object inheriting from ImageArrayList, storing one or more array-like data ele-
ments with conformable dimensions. This may be empty.

featureData: Contains feature information in a XDataFrame. Each row includes the metadata for
a single feature (e.g., a color channel, a molecular analyte, or a mass-to-charge ratio).

elementMetadata: Contains pixel information in a PositionDataFrame. Each row includes the
metadata for a single observation (e.g., a pixel), including specialized slot-columns for track-
ing pixel coordinates and experimental runs.

resultData: A List containing the results of statistical analysis. Each element contains the results
of a single model or parameter set.

modelData: A DataFrame providing details about the models or parameters used in the analysis.
Must have the same number of rows as the length of resultData.

metadata: A list containing experiment-level metadata.

Methods

All methods for ImagingExperiment also work on ImagingResult objects. Additional methods
are documented below:

modelData(object), modelData(object) <- value: Get or set the modelData.

resultData(object, i, j), resultData(object, i) <- value: Get or set the corresponding el-
ement of resultData.

resultNames(object): Get the names of the components of resultData.

intensity.colors 25

Author(s)

Kylie A. Bemis

See Also

ImagingExperiment, SparseImagingExperiment

intensity.colors Color palettes for imaging

Description

Create a vector of n continuous or discrete colors.

Usage

color.map(map = c("redblack", "greenblack", "blueblack",
"viridis", "cividis", "magma", "inferno", "plasma",
"rainbow", "darkrainbow", "grayscale",
"jet", "hot", "cool"), n = 100)

col.map(...)

intensity.colors(n = 100, alpha = 1)

jet.colors(n = 100, alpha = 1)

divergent.colors(n = 100, start = "#00AAEE",
middle = "#FFFFFF", end = "#EE2200", alpha = 1)

risk.colors(n = 100, alpha = 1)

gradient.colors(n = 100, start = "#000000",
end = "#00AAFF", alpha = 1)

bw.colors(n = 100, alpha = 1)

discrete.colors(n = 2, chroma = 150, luminance = 65, alpha = 1)

alpha.colors(col, n = 100,
alpha = (seq_len(n)/n)^alpha.power,
alpha.power = 2)

darkmode(default = TRUE)

lightmode(default = TRUE)

26 intensity.colors

Arguments

map the name of the colormap

n the number of colors

... arguments passed to color.map()

alpha a vector of alpha values between 0 and 1

start the start color value

middle the middle color value

end the end color value

chroma the chroma of the color

luminance the luminance of the color

col the color(s) to expand with transparency

alpha.power how the alpha should ramp as it increases

default Should this be set as the default plotting mode?

Details

Most of these functions return a vector of colors.

Several of the options made available by color.map are borrowed from the viridisLite package,
including ’viridis’, ’cividis’, ’magma’, ’inferno’, and ’plasma’. The original functions for these
color palettes are also re-exported for use by users. See the documention for them in that package.

The darkmode and lightmode functions change the graphical parameters for the current graphics
device accordingly. The new themes will be used for any subsequent plots.

Value

A palette of colors.

Author(s)

Kylie A. Bemis

See Also

viridis, cividis, magma, inferno, plasma

Examples

col <- gradient.colors(100^2)
if (interactive())
image(matrix(1:(100^2), nrow=100), col=col)

legacy 27

legacy Legacy classes and methods in Cardinal

Description

These classes and methods are deprecated and should no longer be used.

The class definitions will remain for compatibility with CardinalWorkflows datasets and other
older serialized datasets.

Objects of these classes should be updated to a supported version of the class.

For example, for an object of class MSImageSet:

object <-as(object,"MSImagingExperiment")

MassDataFrame-class MassDataFrame: data frame with mass-to-charge ratio metadata

Description

An MassDataFrame is an extension of the XDataFrame class with a special slot-column for observed
mass-to-charge ratios.

Usage

MassDataFrame(mz, ..., row.names = NULL, check.names = TRUE)

Arguments

mz A numeric vector of mass-to-charge ratios.

... Named arguments that will become columns of the object.

row.names Row names to be assigned to the object; no row names are assigned if this is
NULL.

check.names Should the column names be checked for syntactic validity?

Details

MassDataFrame is designed for mass spectrometry data. It includes a slot-column for the mass-
to-charge ratio. It is intended to annotate either a single mass spectrum or an experiment where
each mass spectrum share the same mass-to-charge ratios. The m/z values can be get and set by the
mz(object) accessor, and are assumed to be unique and sorted in increasing order.

Methods

mz(object), mz(object) <- value: Get or set the mass-to-charge ratio slot-column.

resolution(object), resolution(object) <- value: Get or set the estimated mass resolution
of the mass-to-charge ratios. Typically, this should not be set manually.

isCentroided(object): Guess whether the data are centroided or not, based on the m/z values.

as.list(x, ..., slots = TRUE): Coerce the object to a list, where the slot-columns are in-
cluded by default. Use slots=FALSE to exclude the slot-columns.

28 meansTest-methods

Author(s)

Kylie A. Bemis

See Also

XDataFrame

Examples

create an MassDataFrame object
mz <- mz(from=200, to=220, by=200)
values <- runif(length(mz))
fdata <- MassDataFrame(mz=mz, values=values)

check the mass-to-charge ratio properties
head(mz(fdata))
resolution(fdata)

meansTest-methods Linear model-based testing for summarized imaging experiments

Description

Performs hypothesis testing for imaging experiments by fitting linear mixed models to summariza-
tions or segmentations.

Usage

S4 method for signature 'SparseImagingExperiment'
meansTest(x, fixed, random, groups = run(x),

BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SparseImagingExperiment'
segmentationTest(x, fixed, random, groups = run(x),

classControl = c("Ymax", "Mscore"),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpatialDGMM'
segmentationTest(x, fixed, random, model = modelData(x),

classControl = c("Ymax", "Mscore"),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'MeansTest'
summary(object, ..., BPPARAM = getCardinalBPPARAM())

S4 method for signature 'SegmentationTest'
summary(object, ..., BPPARAM = getCardinalBPPARAM())

meansTest-methods 29

Arguments

x An imaging dataset or segmented/summarized imaging dataset.

fixed A one-sided formula giving the fixed effects of the model on the RHS. The
response will added to the LHS, and the formula will be passed to the underlying
modeling function.

random A one-sided formula giving the random effects of the model on the RHS. See
lme for the allowed specifications.

groups The summarization units. Pixels from different groups will be segmented/summarized
separately. Each distinct observational unit (e.g., tissue sample) should be as-
signed to a unique group.

model An integer vector or list specifying which fitted model to plot. If this is an in-
teger vector, it should give the rows indices of modelData(x) to use for plotting.
Otherwise, it should be a list giving the values of parameters in modelData(x).

classControl Either the method used to match segmented classes to the fixed effects, or a list
where each element is a vector of name-value pairs giving the mapping between
groups and classes (e.g., c(group1=class1, group2=class2, ...)). For automated
matching methods, ’Ymax’ means to use the classes with the highest mean re-
sponse for each group, and ’Mscore’ means to select classses based on a match
score quantifying the overlap between classes and fixed effects.

... Passed to internal linear modeling methods.

object A fitted model object to summarize.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Value

An object of class MeansTest or SegmentationTest, which is a ImagingResult, where each ele-
ment of the resultData slot contains at least the following components:

model: A linear model fitted using either lm or lme.

data: The summarized data used to fit the model.

Author(s)

Dan Guo and Kylie A. Bemis

See Also

lm, lme, spatialDGMM

Examples

set.seed(1)
x <- simulateImage(preset=4, nruns=3, npeaks=10,

dim=c(10,10), peakheight=5, peakdiff=2,
representation="centroid")

groups <- replace(run(x), !(x$circleA | x$circleB), NA)

fit <- meansTest(x, ~ condition, groups=groups)

summary(fit)

30 MSImagingExperiment-class

MSContinuousImagingExperiment-class

MSContinuousImagingExperiment: "Continuous" mass spectrometry
imaging experiments

Description

The MSContinuousImagingExperiment class is a simple extension of MSImagingExperiment for
dense spectra. All methods for that class apply. In addition, each data element must be stored as an
ordinary R matrix or a column-major matter_mat.

Author(s)

Kylie A. Bemis

See Also

MSImagingExperiment, MSProcessedImagingExperiment

MSImagingExperiment-class

MSImagingExperiment: Mass spectrometry imaging experiments

Description

The MSImagingExperiment class is designed for mass spectrometry imaging experimental data and
metadata. It is designed to contain full MSI experiments, including multiple runs and replicates,
potentially across multiple files. Both 2D and 3D imaging experiments are supported, as well as
any type of experimental metadata such as diagnosis, subject, time point, etc.

Usage

Instance creation
MSImagingExperiment(

imageData = matrix(nrow=0, ncol=0),
featureData = MassDataFrame(),
pixelData = PositionDataFrame(),
metadata = list(),
processing = SimpleList(),
centroided = FALSE)

Additional methods documented below

Arguments

imageData Either a matrix-like object with number of rows equal to the number of features
and number of columns equal to the number of pixels, or an ImageArrayList.

featureData A MassDataFrame with feature metadata, with a row for each m/z value.

pixelData A PositionDataFrame with pixel metadata, with a row for each pixel.

MSImagingExperiment-class 31

metadata A list with experimental-level metadata.

processing A SimpleList with processing steps. This should typically be empty for new
objects.

centroided FALSE if the object contains profile spectra and TRUE if the spectra have been
peak-picked and centroided.

Details

The MSImagingExperiment class is designed as a replacement for the MSImageSet class, using
a simplified, robust implementation that should be more future-proof and enable better support
for large, high-resolution experiments, multimodal experiments, and experiments with specialized
needs such as non-gridded pixel coordinates.

Subclasses MSContinuousImagingExperiment and MSProcessedImagingExperiment exist to al-
low downstream methods to make assumptions about the underlying data storage (dense matrices
for ’continous’ format and sparse matrices for ’processed’ format), which can sometimes allow
more efficient computations.

Slots

imageData: An object inheriting from ImageArrayList, storing one or more array-like data ele-
ments with conformable dimensions.

featureData: Contains feature information in a MassDataFrame. Each row includes the metadata
associated with an m/z value.

elementMetadata: Contains pixel information in a PositionDataFrame. Each row includes the
metadata for a single observation (e.g., a pixel), including specialized slot-columns for track-
ing pixel coordinates and experimental runs.

metadata: A list containing experiment-level metadata.

processing: A SimpleList containing processing steps (including both queued and previously
executed processing steps).

centroided: FALSE if the object contains profile spectra and TRUE if the spectra have been peak-
picked and centroided.

Methods

All methods for ImagingExperiment and SparseImagingExperiment also work on MSImagingExperiment
objects. Additional methods are documented below:

spectraData(object), spectraData(object) <- value: Get or set the spectra list (alias for imageData(object)).

spectra(object), spectra(object) <- value: Get or set the spectra (alias for iData(object)).

mz(object), mz(object) <- value: Get or set the m/z values from pixelData.

resolution(object), resolution(object) <- value: Get or set the m/z resolution of the dataset.
Typically, this should not be set manually.

centroided(object), centroided(object) <- value: Get or set the spatial position slot-columns
from pixelData.

pixels(object, ..., coord, run): Returns the row indices of pixelData corresponding to con-
ditions passed via

features(object, ..., mz): Returns the row indices of featureData corresponding to condi-
tions passed via

pull(x, ...): Pull all data elements of imageData into memory as matrices.

32 MSImagingInfo-class

peaks(object), peaks(object) <- value: Attempt to get or set the matrix of peaks. Alias for
spectra() if centroided() is TRUE; replacement version also sets centroided to TRUE.

peakData(object), peakData(object) <- value: Attempt to get or set the underlying m/z and
intensity arrays of the peak data in processed experiments. (Currently only implemented for
MSProcessedImagingExperiment).

isCentroided(object): Attempts to infer if the mass spectra are centroided or not (without ref-
erencing the centroided slot.

msiInfo(object, ...): Returns metadata for writing the object to imzML.

rbind(...), cbind(...): Combine MSImagingExperiment objects by row or column.

Author(s)

Kylie A. Bemis

See Also

ImagingExperiment, SparseImagingExperiment, MSContinuousImagingExperiment, MSProcessedImagingExperiment

Examples

mz <- mz(from=200, to=220, by=400)
coord <- expand.grid(x=1:3, y=1:3)
data <- matrix(runif(length(mz) * nrow(coord)),

nrow=length(mz), ncol=nrow(coord))

idata <- ImageArrayList(data)
fdata <- MassDataFrame(mz=mz)
pdata <- PositionDataFrame(coord=coord)

x <- MSImagingExperiment(
imageData=idata,
featureData=fdata,
pixelData=pdata)

print(x)

MSImagingInfo-class MSImagingInfo: Mass spectrometry imaging metadata for imzML
conversion

Description

The MSImagingInfo class is designed to contain metadata for reading/writing Cardinal objects
from/to imzML files.

Methods

length(object): The number of scans (i.e., the number of mass spectra).

scans(object): Access the scan list metadata for writing to imzML.

mzData(object): Access the m/z array list metadata for writing to imzML.

intensityData(object): Access the intensity array list metadata for writing to imzML.

MSImagingInfo-class 33

isCentroided(object): Check whether the mass spectra are centroided.
normalization(object), normalization(object) <- value: Accessor and setter function for

the normalization.
smoothing(object), smoothing(object) <- value: Accessor and setter function for the smoothing.
baselineReduction(object), baselineReduction(object) <- value: Accessor and setter func-

tion for the baselineReduction.
peakPicking(object), peakPicking(object) <- value: Accessor and setter function for the

peakPicking.
spectrumRepresentation(object), spectrumRepresentation(object) <- value: Accessor and

setter function for the spectrumRepresentation.
matrixApplication(object): Accessor function for matrixApplication.
pixelSize(object): Accessor function for pixelSize.
instrumentModel(object): Accessor function for instrumentModel.
instrumentVendor(object): Accessor function for instrumentVendor.
massAnalyzerType(object): Accessor function for massAnalyzerType.
ionizationType(object): Accessor function for ionizationType.
scanPolarity(object): Accessor function for scanPolarity.
scanType(object): Accessor function for scanType.
scanPattern(object): Accessor function for scanPattern.
scanDirection(object): Accessor function for scanDirection.
lineScanDirection(object): Accessor function for lineScanDirection.

Author(s)

Kylie A. Bemis

References

Schramm T, Hester A, Klinkert I, Both J-P, Heeren RMA, Brunelle A, Laprevote O, Desbenoit N,
Robbe M-F, Stoeckli M, Spengler B, Rompp A (2012) imzML - A common data format for the
flexible exchange and processing of mass spectrometry imaging data. Journal of Proteomics 75
(16):5106-5110. doi:10.1016/j.jprot.2012.07.026

See Also

MIAxE, MIAPE-Imaging

Examples

mz <- mz(from=200, to=220, by=400)
coord <- expand.grid(x=1:3, y=1:3)
data <- matrix(runif(length(mz) * nrow(coord)),

nrow=length(mz), ncol=nrow(coord))

x <- MSImagingExperiment(
imageData=ImageArrayList(data),
featureData=MassDataFrame(mz=mz),
pixelData=PositionDataFrame(coord=coord))

msiInfo(x)

34 MSProcessedImagingExperiment-class

MSProcessedImagingExperiment-class

MSProcessedImagingExperiment: "Processed" mass spectrometry
imaging experiments

Description

The MSProcessedImagingExperiment class is a simple extension of MSImagingExperiment for
sparse spectra. All methods for that class apply. In addition, each data element must be stored as a
column-major sparse_mat.

Methods

All methods for MSImagingExperiment also work on MSProcessedImagingExperiment objects.
Additional methods are documented below:

intensityData(object), intensityData(object) <- value: Get or set the underlying (pre-binned)
intensity values associated with the sparse mass spectra.

mzData(object), mzData(object) <- value: Get or set the underlying (pre-binned) m/z values
associated with the sparse mass spectra.

mz(object) <- value: Setting the m/z values changes the m/z binning scheme for the entire dataset
(without modifying the underlying data).

resolution(object) <- value: Setting the m/z resolution changes the m/z binning scheme for
the entire dataset (without modifying the underlying data).

tolerance(object), tolerance(object) <- value: Get or set the binning tolerance for sparse
spectra or peaks.

combiner(object), combiner(object) <- value: Get or set the binning function for sparse spec-
tra or peaks.

pull(x, ..., as.matrix=FALSE): Pull all data elements of imageData into memory as sparse
matrices.

Author(s)

Kylie A. Bemis

See Also

MSImagingExperiment, MSContinuousImagingExperiment

mz-methods 35

mz-methods Manipulate mass-to-charge-ratio values

Description

This is a generic function for getting or setting ’mz’ for an object with associated m/z values, or for
generating a sequence of appropriate m/z values for such an object.

Usage

S4 method for signature 'missing'
mz(from, to, by, resolution = 200, units = c("ppm", "mz"), ...)

mz(object, ...)

mz(object, ...) <- value

Arguments

object An object with m/z values.

value The value to set the m/z values.

from, to The starting amd (maximal) end values of the sequence of m/z values.

by The (approximate) interval between m/z values. For units="ppm", rather than
an exact step size, this actually corresponds to a binwidth, where each element
of the sequence is considered the center of a bin.

resolution Another way to specify the interval between m/z values. For units="mz", this
is the same as by. For units="ppm", this is the half-binwdith.

units The units for by and resolution. Either parts-per-million or absolute m/z in-
crements.

... Additional arguments (ignored).

Author(s)

Kylie A. Bemis

See Also

MassDataFrame

Examples

mz(from=200, to=220, by=300, units="ppm")

36 mzAlign-methods

mzAlign-methods Mass align an imaging dataset

Description

Apply spectral alignment to a mass spectrometry imaging dataset.

Usage

S4 method for signature 'MSImagingExperiment,numeric'
mzAlign(object, ref, tolerance = NA, units = c("ppm", "mz"),

span = 0.75, control = loess.control(), ...)

S4 method for signature 'MSImagingExperiment,missing'
mzAlign(object, tolerance = NA, units = c("ppm", "mz"),

span = 0.75, control = loess.control(), quantile = 0.2, ...)

Arguments

object An imaging dataset.

ref A reference to which to align the spectra.

tolerance The tolerance to be used when matching the peaks in the unaligned spectra to
the reference spectrum. If this is NA, then automatically guess a tolerance from
the data.

units The units to use for the tolerance.

span The smoothing parameter for the local polynomial regression used to determine
the warping function.

control Additional control parameters for the local polynomial regression used to deter-
mine the warping function. See loess.control.

quantile The top quantile of reference points (peaks detected via local maxima) to use
from the reference spectrum.

... Ignored.

Details

Mass alignment is performed against a vector of reference m/z values of expected peaks. The nearest
local maxima to the reference peaks are detected in each unaligned spectrum (within tolerance),
and then the unaligned spectra are warped to maximize correlation with the reference spectrum.

If no reference peaks are provided, then the mean spectrum is calculated instead, and reference
peaks are selected by detecting local maxima. Some number of these reference points with the
highest intensities (determined by quantile) are then used as the reference for alignment.

Internally, pixelApply is used to perform the alignment. See its documentation page for more
details.

Value

An object of the same class with the aligned spectra.

mzBin-methods 37

Author(s)

Kylie A. Bemis

See Also

MSImagingExperiment, mzBin, peakAlign, pixelApply, process

Examples

setCardinalBPPARAM(SerialParam())

set.seed(2)
data <- simulateImage(preset=1, npeaks=10, dim=c(3,3), sdmz=500)
data <- data[,pData(data)$circle]

queue spectral alignment
data <- mzAlign(data, tolerance=1, units="mz")

apply spectral alignment
data_aligned <- process(data, plot=interactive())

mzBin-methods Mass bin an imaging dataset

Description

Apply mass binning to a mass spectrometry imaging dataset.

Usage

S4 method for signature 'MSImagingExperiment,numeric'
mzBin(object, ref, tolerance = NA, units = c("ppm", "mz"), fun=sum, ...)

S4 method for signature 'MSImagingExperiment,missing'
mzBin(object, from=min(mz(object)), to=max(mz(object)), by,

resolution = NA, units = c("ppm", "mz"), fun=sum, ...)

Arguments

object An imaging dataset.

ref A reference to which the m/z values are binned.

tolerance The half-width(s) of the bins. If this is NA, then automatically guess a resolution
from the data.

from, to The starting amd (maximal) end values of the sequence of m/z values.

by The (approximate) interval between m/z values. For units="ppm", rather than
an exact step size, this actually corresponds to a binwidth, where each element
of the sequence is considered the center of a bin.

resolution Another way to specify the interval between m/z values. For units="mz", this
is the same as by. For units="ppm", this is the half-binwdith. If this is NA, then
automatically guess a resolution from the data.

38 mzFilter-methods

units The units for by and resolution. Either parts-per-million or absolute m/z in-
crements.

fun The function used to summarize each mass bin.

... Ignored.

Details

The reference masses are considered to be the center of each bin. The bin is then expanded on
either side according to half the value of width, and the intensities in each bin are summarized by
applying fun.

Internally, pixelApply is used to apply the binning. See its documentation page for more details.

Value

An object of the same class with the binned spectra.

Author(s)

Kylie A. Bemis

See Also

MSImagingExperiment, mzAlign, peakBin, reduceDimension, pixelApply, process

Examples

setCardinalBPPARAM(SerialParam())

set.seed(2)
data <- simulateImage(preset=1, npeaks=10, dim=c(3,3))
data <- data[,pData(data)$circle]

queue m/z binning
data <- mzBin(data, resolution=10, units="mz", fun=max)

apply m/z binning
data_binned <- process(data, plot=interactive())

mzFilter-methods Filter the features of an imaging dataset by intensity

Description

Apply filtering to a mass spectrometry imaging dataset based on the intensities of each peak or mass
feature.

mzFilter-methods 39

Usage

S4 method for signature 'MSImagingExperiment'
mzFilter(object, ..., freq.min = NA, rm.zero = TRUE)

S4 method for signature 'MSImagingExperiment'
peakFilter(object, ..., freq.min = 0.01, rm.zero = TRUE)

S4 method for signature 'MSImageSet'
peakFilter(object, method = "freq", ...)

Filter based on the frequency of a peak
peakFilter.freq(x, freq.min=0.01, ...)

Arguments

object An object of class MSImageSet.

freq.min Minimum frequency; peaks that occur in the dataset in lesser proportion than
this will be dropped.

rm.zero Remove features with mean intensities of zero.

... Additional arguments passed to the peak filtering method, or conditions evalu-
ating to logical vectors where only those conditions that are TRUE are retained.

method The peak filtering method to use.

x The vector of ion image intensities to filter.

Details

When applied to a MSImagingExperiment object, mzFilter and peakFilter uses the summarize()
to generate useful summary statistics about the mass features or detected peaks. These include the
‘min’, ‘max’, ‘mean’, ‘sum’, ‘sd’, and ‘var’ of the intensities for each mass feature or peak. These
can be used in logical expressions to filter the features of the dataset.

Note that peakFilter is an alias for mzFilter, with different default parameters that are more
appropriate for peak-picked data rather than profile spectra.

When applied to a MSImageSet object, unlike most other processing methods, peakFilter operates
on the feature space (ion images) of the dataset.

Peak filtering is usually performed using the provided functions, but a user-created function can
also be passed to method. In this case it should take the following arguments:

• x: The vector of ion image intensities to filter.

• ...: Additional arguments.

A user-created function should return a logical: TRUE means keep the peak, and FALSE means
remove the peak.

Internally, featureApply is used to apply the filtering. See its documentation page for more details
on additional objects available to the environment installed to the peak filtering function.

Value

An object of the same class with the filtered peaks.

40 normalize-methods

Author(s)

Kylie A. Bemis

See Also

MSImagingExperiment, MSImageSet, peakPick, peakAlign, peakBin, reduceDimension, featureApply,
process

Examples

setCardinalBPPARAM(SerialParam())

set.seed(2)
data <- simulateImage(preset=1, npeaks=10, dim=c(3,3))
data <- data[,pData(data)$circle]

filter m/z features
process(mzFilter(data))

queue peak picking, alignment, and filtering
data <- peakPick(data, method="simple", SNR=6)
data <- peakAlign(data, tolerance=200, units="ppm")
data <- peakFilter(data, freq.min=0.5)

apply peak picking, alignment, and filtering
data_peaks <- process(data, plot=interactive())

normalize-methods Normalize an imaging dataset

Description

Apply normalization to the feature vectors of an imaging dataset.

Usage

S4 method for signature 'SparseImagingExperiment'
normalize(object, method = c("tic", "rms", "reference"), ...)

S4 method for signature 'MSImageSet'
normalize(object, method = "tic",
...,
pixel = pixels(object),
plot = FALSE)

Totial-ion-current normalization
normalize.tic(x, tic=length(x), ...)

Root-mean-square normalization
normalize.rms(x, rms=1, ...)

Reference normalization
normalize.reference(x, feature, scale=1, ...)

normalize-methods 41

Arguments

object An imaging dataset.

method The normalization method to use.

pixel The pixels to normalize. If less than the extent of the dataset, this will result in
a subset of the data being processed.

plot Plot each pixel while it is being processed?

... Additional arguments passed to the normalization method.

x The signal to be normalized.

tic The value to which to normalize the total ion current.

rms The value to which to normalize the root-mean-square.

feature The feature to use as a reference for normalization.

scale The value to which to normalize the reference.

Details

Normalization is usually performed using the provided functions, but a user-created function can
also be passed to method. In this case it should take the following arguments:

• x: A numeric vector of intensities.

• ...: Additional arguments.

A user-created function should return a numeric vector of the same length.

Internally, pixelApply is used to apply the normalization. See its documentation page for more
details on additional objects available to the environment installed to the normalization function.

Value

An object of the same class with the normalized spectra.

Author(s)

Kylie A. Bemis

See Also

MSImagingExperiment, MSImageSet, pixelApply, process

Examples

setCardinalBPPARAM(SerialParam())

set.seed(2)
data <- simulateImage(preset=1, npeaks=10, dim=c(3,3))
data <- data[,pData(data)$circle]

queue normalization
data <- normalize(data, method="tic")

apply normalization
data_normalized <- process(data)

42 PCA-methods

PCA-methods Principal components analysis

Description

Performs principal components analysis efficiently on large datasets using implicitly restarted Lanc-
zos bi-diagonalization (IRLBA) algorithm for approximate singular value decomposition of the data
matrix.

Usage

S4 method for signature 'SparseImagingExperiment'
PCA(x, ncomp = 3, center = TRUE, scale = FALSE, ...)

S4 method for signature 'PCA2'
predict(object, newx, ncomp, ...)

S4 method for signature 'PCA2'
summary(object, ...)

S4 method for signature 'SImageSet'
PCA(x, ncomp = 3,

method = c("irlba", "nipals", "svd"),
center = TRUE,
scale = FALSE,
iter.max = 100, ...)

S4 method for signature 'PCA'
predict(object, newx, ...)

Arguments

x The imaging dataset for which to calculate the principal components.
ncomp The number of principal components to calculate.
method The function used to calculate the singular value decomposition.
center Should the data be centered first? This is passed to scale.
scale Shoud the data be scaled first? This is passed to scale.
iter.max The number of iterations to perform for the NIPALS algorithm.
... Ignored.
object The result of a previous call to PCA.
newx An imaging dataset for which to calculate the principal components scores based

on the aleady-calculated principal components loadings.

Value

An object of class PCA2, which is a ImagingResult, or an object of class PCA, which is a ResultSet.
Each elemnt of resultData slot contains at least the following components:

loadings: A matrix with the principal component loadings.
scores: A matrix with the principal component scores.
sdev: The standard deviations of the principal components.

peakAlign-methods 43

Author(s)

Kylie A. Bemis

See Also

OPLS, PLS, irlba, svd

Examples

setCardinalBPPARAM(SerialParam())

set.seed(1)
data <- simulateImage(preset=2, npeaks=20, dim=c(6,6),

representation="centroid")

project to FastMap components
pca <- PCA(data, ncomp=2)

visualize first 2 components
image(pca, superpose=FALSE)

peakAlign-methods Peak align an imaging dataset

Description

Apply peak alignment to a mass spectrometry imaging dataset.

Usage

S4 method for signature 'MSImagingExperiment,missing'
peakAlign(object, tolerance = NA, units = c("ppm", "mz"), ...)

S4 method for signature 'MSImagingExperiment,character'
peakAlign(object, ref, ...)

S4 method for signature 'MSImagingExperiment,numeric'
peakAlign(object, ref, ...)

S4 method for signature 'MSImageSet,numeric'
peakAlign(object, ref, method = c("diff", "DP"),

...,
pixel = pixels(object),
plot = FALSE)

S4 method for signature 'MSImageSet,MSImageSet'
peakAlign(object, ref, ...)

S4 method for signature 'MSImageSet,missing'
peakAlign(object, ref, ...)

Absolute difference alignment

44 peakAlign-methods

peakAlign.diff(x, y, diff.max=200, units=c("ppm", "mz"), ...)

Dynamic programming alignment
peakAlign.DP(x, y, gap=0, ...)

Arguments

object An imaging dataset.
ref A reference to which to align the peaks.
tolerance The tolerance to be used when aligning detected peaks to the reference. If this

is NA, then automatically guess a tolerance from the data.
units The units to use for the tolerance. Either parts-per-million or the raw m/z

values.
method The peak alignment method to use.
pixel The pixels to align. If less than the extent of the dataset, this will result in a

subset of the data being processed.
plot Plot the mass spectrum for each pixel while it is being processed?
... Additional arguments passed to the peak alignment method.
x The vector of m/z values to be aligned.
y The vector of reference m/z values.
diff.max Peaks that differ less than this value will be aligned together.
gap The gap penalty for the dynamic programming sequence alignment.

Details

When applied to a MSImagingExperiment object with no other reference, peakAlign uses summarize()
to calculate the mean spectrum, and then uses the local maxima of the mean spectrum as the refer-
ence. Alternatively, a vector of m/z values or a column name in the featureData that should be used
as the reference may be provided. Finally, if the featureData has an numeric vector element named
“reference peaks” among its metadata(), this vector is used as the reference.

When applied to a MSImageSet object, if a MSImageSet object is used as the reference then the
local maxima in its mean spectrum will be calculated and used as the reference m/z values. The
method looks for a “mean” column in the object’s featureData, and if it does not exist, then the
mean spectrum will be calculated using featureApply(ref,mean). If the reference is missing, the
method will use the object itself as the reference.

Peak alignment is usually performed using the provided functions, but a user-created function can
also be passed to method. In this case it should take the following arguments:

• x: The vector of m/z values to be aligned.
• y: The vector of reference m/z values.
• ...: Additional arguments.

A user-created function should return a vector of the same length as x and y where NA values indicate
no match, and non-missing values give the index of the matched peak in the reference set.

Internally, pixelApply is used to apply the peak alignment. See its documentation page for more
details on additional objects available to the environment installed to the peak alignment function.

Value

An object of class MSImageSet with the peak aligned spectra.

peakBin-methods 45

Author(s)

Kylie A. Bemis

See Also

MSImagingExperiment, MSImageSet, peakPick, peakFilter, peakBin, reduceDimension, pixelApply,
process

Examples

setCardinalBPPARAM(SerialParam())

set.seed(2)
data <- simulateImage(preset=1, npeaks=10, dim=c(3,3))
data <- data[,pData(data)$circle]

queue peak picking and alignment
data <- peakPick(data, method="simple", SNR=6)
data <- peakAlign(data, tolerance=200, units="ppm")

apply peak picking and alignment
data_peaks <- process(data, plot=interactive())

peakBin-methods Peak bin an imaging dataset

Description

Apply peak binning to a mass spectrometry imaging dataset.

Usage

S4 method for signature 'MSImagingExperiment,numeric'
peakBin(object, ref, type=c("area", "height"),

tolerance = NA, units = c("ppm", "mz"), ...)

S4 method for signature 'MSImagingExperiment,missing'
peakBin(object, type=c("area", "height"),

tolerance = NA, units = c("ppm", "mz"), ...)

Arguments

object An imaging dataset.

ref A reference to which the peaks are binned.

type Should the summarized intensity of the peak by the maximum height of the peak
or the area under the curve?

tolerance The tolerance to be used when matching the m/z features in the dataset to the
reference. If this is NA, then automatically guess a resolution from the data.

units The units to use for the tolerance.

... Ignored.

46 peakPick-methods

Details

Peak binning is performed by first matching the m/z-values in the dataset to those in the reference,
and then finding the boundaries of the peak by detecting the nearest local minima. Then either the
maximum height or the area under the curve of the peak are returned.

Internally, pixelApply is used to apply the binning. See its documentation page for more details.

Value

An object of the same class with the binned peaks.

Author(s)

Kylie A. Bemis

See Also

MSImagingExperiment, peakPick, peakAlign, peakFilter, reduceDimension, pixelApply, process

Examples

setCardinalBPPARAM(SerialParam())

set.seed(2)
data <- simulateImage(preset=1, npeaks=10, dim=c(3,3))
data <- data[,pData(data)$circle]
ref <- mz(metadata(data)$design$featureData)

queue peak binning
data <- peakBin(data, ref=ref, type="height")

apply peak binning
data_peaks <- process(data, plot=interactive())

peakPick-methods Peak pick an imaging dataset

Description

Apply peak picking to a mass spectrometry imaging dataset.

Usage

S4 method for signature 'MSImagingExperiment'
peakPick(object, method = c("mad", "simple", "adaptive"), ...)

S4 method for signature 'MSImageSet'
peakPick(object, method = c("simple", "adaptive", "limpic"),

...,
pixel = pixels(object),
plot = FALSE)

Local maxima and SNR with noise based on local MAD

peakPick-methods 47

peakPick.mad(x, SNR=6, window=5, blocks=1, fun=mean, tform=diff, ...)

Local maxima and SNR with constant noise based on SD
peakPick.simple(x, SNR=6, window=5, blocks=100, ...)

Local maxima and SNR with adaptive noise based on SD
peakPick.adaptive(x, SNR=6, window=5, blocks=100, spar=1, ...)

LIMPIC peak detection
peakPick.limpic(x, SNR=6, window=5, blocks=100, thresh=0.75, ...)

Arguments

object An imaging dataset.

method The peak picking method to use.

pixel The pixels to peak pick. If less than the extent of the dataset, this will result in a
subset of the data being processed.

plot Plot the mass spectrum for each pixel while it is being processed?

... Additional arguments passed to the peak picking method.

x The mass spectrum to be peak picked.

SNR The minimum signal-to-noise ratio to be considered a peak.

window The window width for seeking local maxima.

blocks The number of blocks in which to divide the mass spectrum in order to calculate
the noise.

fun The function used to estimate centrality and average absolute deviation.

tform A transformation to be applied to the mass spectrum before estimating noise.

spar Smoothing parameter for the spline smoothing applied to the spectrum in order
to decide the cutoffs for throwing away false noise spikes that might occur inside
peaks.

thresh The thresholding quantile to use when comparing slopes in order to throw away
peaks that are too flat.

Details

Peak picking is usually performed using the provided functions, but a user-created function can also
be passed to method. In this case it should take the following arguments:

• x: A numeric vector of intensities.

• ...: Additional arguments.

When applied to an MSImagingExperiment object, a user-created function should return a integer
vector giving the indices of the detected peaks.

When applied to an MSImageSet object, a user-created function should return a list with two
vectors of the same length as x:

• peaks: A logical vector indicating peaks.

• noise: A numeric vector with the estimated noise.

Internally, pixelApply is used to apply the peak picking. See its documentation page for more
details on additional objects available to the environment installed to the peak picking function.

48 pixelApply-methods

Value

An object of the same class with the peak picked spectra. Note that the full mass range is retained
and the peaks are unaligned, so peakAlign should be called before applying further methods.

Author(s)

Kylie A. Bemis

References

Mantini, D., Petrucci, F., Pieragostino, D., Del Boccio, P., Di Nicola, M., Di Ilio, C., et al. (2007).
LIMPIC: a computational method for the separation of protein MALDI-TOF-MS signals from
noise. BMC Bioinformatics, 8(101), 101. doi:10.1186/1471-2105-8-101

See Also

MSImagingExperiment, MSImageSet, peakAlign, peakFilter, peakBin, reduceDimension, pixelApply,
process

Examples

setCardinalBPPARAM(SerialParam())

set.seed(2)
data <- simulateImage(preset=1, npeaks=10, dim=c(3,3))
data <- data[,pData(data)$circle]

queue peak picking
data <- peakPick(data, method="simple", SNR=6)

apply peak picking
data_peaks <- process(data, plot=interactive())

pixelApply-methods Apply functions over imaging datasets

Description

Apply an existing or a user-specified function over either all of the features or all of the pixels of a
SparseImagingExperiment or SImageSet. These are provided by analogy to the ’apply’ family of
functions, but allowing greater efficiency and convenience when applying functions over an imaging
dataset.

Usage

Methods for Cardinal >= 2.x classes

S4 method for signature 'SparseImagingExperiment'
pixelApply(.object, .fun, ...,

.simplify = TRUE,

.outpath = NULL,

.params = list(),

pixelApply-methods 49

.blocks = getCardinalNumBlocks(),

.verbose = getCardinalVerbose(),

.view = "element",
BPREDO = list(),
BPPARAM = getCardinalBPPARAM())

S4 method for signature 'SparseImagingExperiment'
featureApply(.object, .fun, ...,

.simplify = TRUE,

.outpath = NULL,

.params = list(),

.blocks = getCardinalNumBlocks(),

.verbose = getCardinalVerbose(),

.view = "element",
BPREDO = list(),
BPPARAM = getCardinalBPPARAM())

S4 method for signature 'SparseImagingExperiment'
spatialApply(.object, .r, .fun, ...,

.dist = "chebyshev",

.simplify = TRUE,

.outpath = NULL,

.params = list(),

.blocks = getCardinalNumBlocks(),

.verbose = getCardinalVerbose(),

.view = "element",
BPREDO = list(),
BPPARAM = getCardinalBPPARAM())

Methods for Cardinal 1.x classes

S4 method for signature 'SImageSet'
pixelApply(.object, .fun, ...,

.pixel,

.feature,

.feature.groups,

.simplify = TRUE,

.use.names = TRUE)

S4 method for signature 'SImageSet'
featureApply(.object, .fun, ...,

.feature,

.pixel,

.pixel.groups,

.simplify = TRUE,

.use.names = TRUE)

Arguments

.object An imaging dataset.

.fun The function to be applied.

.r The maximum spatial radius or distance for which pixels are considered to be

50 pixelApply-methods

neighbors.

... Additional arguments passed to .fun.

.dist The type of distance metric to use when calculating neighboring pixels based
on r. The options are ‘radial’, ‘manhattan’, ‘minkowski’, and ‘chebyshev’ (the
default).

.blocks If FALSE (the default), each feature-vector or image-vector will be loaded and
processed individually. If TRUE, or a positive integer, the data will be split into
that many blocks, and the function (specified by .fun) will be applied to each
block. The number of blocks can be specified as a number, or getCardinalNumBlocks()
will be used.

.simplify If applying over blocks, then a function to be used to simplify the list of results.
Otherwise, a logical value giving whether the results should be simplified into a
matrix or array rather than a list.

.use.names Should the names of elements of .object (either pixel names or feature names,
as appropriate) be used for the names of the result?

.outpath The path to a file where the output data will be written. Results will be kept
in-memory if this is NULL. Results will be coerced to a numeric vector before
being written to file.

.params A named list of parameters with length equal to length(.object). The appro-
priate elements will be made available to the spatial neighborhoods.

.verbose Should progress messages be printed?

.view FOR EXPERT USE ONLY: Should the object passed to .fun be a single element
(e.g., one row/column/neighborhood of .object), or the entire block? Set to
"chunk" to operate on the whole block.

BPREDO See documentation for bplapply.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

.pixel A subset of pixels to use, given by an integer vector of numeric indices, a
character vector of pixel names, or a logical vector indicating which pixels
to use.

.feature A subset of features to use, given in the same manner as pixels.

.pixel.groups A grouping factor or a vector that can be coerced into a factor, that indicates
groups of pixels over which the function should be applied. Groups pixels are
treated as cells in a ragged array, by analogy to the tapply function.

.feature.groups

A grouping factor features, in the same manner as for pixels.

Details

For SparseImagingExperiment-derived classes

For pixelApply, the function is applied to the feature vector(s) belonging to pixel(s).

For featureApply, the function is applied to the vector(s) of intensity values (i.e., the flattened
image) corresponding to the feature(s).

For spatialApply, the function is applied to neighborhoods of feature-vectors corresponding to
neighboring pixels. The maximum distance in each dimension for a pixel to be considered a neigh-
bor is given by .r. The first argument to .fun is a matrix of column-vectors.

If .blocks is provided (either TRUE or a positive integer), then the data is split into blocks be-
forehand, and entire blocks are loaded and passed to the function as a matrix of column-vectors.

pixelApply-methods 51

Otherwise, single vectors are passed to the function individually. If blocks are used, then .simplify
should be a function that simplifies a list of results.

Note that for spatialApply (only), if blocks are used, the result is NOT guaranteed to be in the
correct order; instead the result will have a attr(ans,"idx") attribute giving the proper order
(pixel IDs) of the results, and the .simplify function should likely re-order the results.

The following attributes are assigned to the object passed to .fun, accessible via attr():

• idx: The indices of the current pixel(s) or feature(s).

• mcols: Either featureData(.object) for pixelApply or pixelData(.object) for featureApply.

Additionally, the following attributes are made available during a call to spatialyApply():

• centers: A vector indicating which column(s) should be considered the center(s) of the neigh-
borhood(s).

• neighbors: A list of vectors indicating which column(s) should be considered the neighbor-
hoods. Only relevant if using .blocks.

• offsets: A matrix where the rows are the spatial offsets of the pixels in the neighborhood(s)
from the center pixel(s).

Additionally, any named components of .params will also be provided as attributes, subsetted to
the current element.

For SImageSet-derived classes

The use of .pixel and .feature can be used to apply the function over only a subset of pixels or
features (or both), allowing faster computation when calculation on only a subset of data is needed.

For pixelApply, the function is applied to the feature vector belonging to each pixel. The use of
.feature.groups allows codetapply-like functionality on the feature vectors, applied separately to
each pixel.

For featureApply, the function is applied to the vector of intensity values (i.e., the flattened image)
corresponding to each feature. The use of .feature.groups allows codetapply-like functionality
on the flattened image intensity vectors, applied separately to each feature.

The fData from .object is installed into the environment of .fun for pixelApply, and the pData
from .object is installed into the environment of .fun for featureApply. This allows access to
the symbols from fData or pData during the execution of .fun. If .fun already has an environment,
it is retained as the parent of the installed environment.

Additionally, the following objects are made available by installing them into the .fun environment:

• .Object: The passed .object. (Note the case.)

• .Index: The index of the current iteration.

Value

If .simplify = FALSE, a list. Otherwise, a vector or matrix, or a higher-dimensional array if group-
ing is specified, or the output of the provided .simplify function.

Author(s)

Kylie A. Bemis

See Also

MSImagingExperiment, MSImageSet

52 plot-methods

Examples

setCardinalBPPARAM(SerialParam())

set.seed(2)
data <- simulateImage(preset=1, npeaks=10, dim=c(10,10))

calculate TIC for each pixel
tic <- pixelApply(data, sum)

calculate mean spectrum
ms <- featureApply(data, mean)

plot-methods Plot a signal from the feature data of an imaging dataset

Description

Create and display plots for the feature data of an imaging dataset using a formula interface.

Usage

Methods for Cardinal >= 2.x classes

S4 method for signature 'DataFrame,ANY'
plot(x, y, ...)

S4 method for signature 'XDataFrame,missing'
plot(x, formula,

groups = NULL,
superpose = FALSE,
strip = TRUE,
key = superpose || !is.null(groups),
...,
xlab, xlim,
ylab, ylim,
layout,
col = discrete.colors,
breaks = "Sturges",
grid = FALSE,
jitter = FALSE,
subset = TRUE,
add = FALSE)

S4 method for signature 'MassDataFrame,missing'
plot(x, ..., type = if (isCentroided(x)) "h" else "l")

S4 method for signature 'SparseImagingExperiment,missing'
plot(x, formula,

pixel,
pixel.groups,

plot-methods 53

groups = NULL,
superpose = FALSE,
strip = TRUE,
key = superpose || !is.null(groups),
fun = mean,
hline = 0,
...,
xlab, xlim,
ylab, ylim,
layout,
col = discrete.colors,
grid = FALSE,
subset = TRUE,
add = FALSE)

S4 method for signature 'MSImagingExperiment,missing'
plot(x, formula,

pixel = pixels(x, coord=coord, run=run),
pixel.groups,
coord,
run,
plusminus,
...,
xlab, ylab,
type = if (is_centroided) 'h' else 'l')

S4 method for signature 'SparseImagingResult,missing'
plot(x, formula,

model = modelData(x),
superpose = is_matrix,
...,
column,
xlab, ylab,
type = 'h')

S4 method for signature 'PCA2,missing'
plot(x, formula,

values = "loadings", ...)

S4 method for signature 'PLS2,missing'
plot(x, formula,

values = c("coefficients", "loadings", "weights"), ...)

S4 method for signature 'SpatialFastmap2,missing'
plot(x, formula,

values = "correlation", ...)

S4 method for signature 'SpatialKMeans2,missing'
plot(x, formula,

values = c("centers", "correlation"), ...)

S4 method for signature 'SpatialShrunkenCentroids2,missing'

54 plot-methods

plot(x, formula,
values = c("centers", "statistic", "sd"), ...)

S4 method for signature 'SpatialDGMM,missing'
plot(x, model = modelData(x),

values = "density", type = 'l', ...)

S4 method for signature 'MeansTest,missing'
plot(x, model = modelData(x),

values = "fixed", ...)

S4 method for signature 'SegmentationTest,missing'
plot(x, model = modelData(x),

values = "fixed", ...)

S4 method for signature 'AnnotatedImage,ANY'
plot(x, breaks = "Sturges",

key = TRUE, col,
add = FALSE, ...)

S4 method for signature 'AnnotatedImageList,ANY'
plot(x, i, breaks = "Sturges",

strip = TRUE,
key = TRUE, col,
layout = !add,
add = FALSE, ...)

S4 method for signature 'AnnotatedImagingExperiment,ANY'
plot(x, i, ...)

Methods for Cardinal 1.x classes

S4 method for signature 'SImageSet,missing'
plot(x, formula = ~ Feature,

pixel,
pixel.groups,
groups = NULL,
superpose = FALSE,
strip = TRUE,
key = FALSE,
fun = mean,
...,
xlab,
xlim,
ylab,
ylim,
layout,
type = 'l',
col = "black",
subset = TRUE,
lattice = FALSE)

plot-methods 55

S4 method for signature 'MSImageSet,missing'
plot(x, formula = ~ mz,

pixel = pixels(x, coord=coord),
pixel.groups,
coord,
plusminus,
...,
type = if (centroided(x)) 'h' else 'l')

S4 method for signature 'ResultSet,missing'
plot(x, formula,

model = pData(modelData(x)),
pixel,
pixel.groups,
superpose = TRUE,
strip = TRUE,
key = superpose,
...,
xlab,
ylab,
column,
col = if (superpose) rainbow(nlevels(pixel.groups)) else "black",
lattice = FALSE)

S4 method for signature 'CrossValidated,missing'
plot(x, fold = 1:length(x), layout, ...)

S4 method for signature 'PCA,missing'
plot(x, formula = substitute(mode ~ mz),

mode = "loadings",
type = 'h',
...)

S4 method for signature 'PLS,missing'
plot(x, formula = substitute(mode ~ mz),

mode = c("coefficients", "loadings",
"weights", "projection"),

type = 'h',
...)

S4 method for signature 'OPLS,missing'
plot(x, formula = substitute(mode ~ mz),

mode = c("coefficients", "loadings", "Oloadings",
"weights", "Oweights", "projection"),

type = 'h',
...)

S4 method for signature 'SpatialFastmap,missing'
plot(x, formula = substitute(mode ~ mz),

mode = "correlation",
type = 'h',
...)

56 plot-methods

S4 method for signature 'SpatialShrunkenCentroids,missing'
plot(x, formula = substitute(mode ~ mz),

mode = c("centers", "tstatistics"),
type = 'h',
...)

S4 method for signature 'SpatialKMeans,missing'
plot(x, formula = substitute(mode ~ mz),

mode = c("centers", "betweenss", "withinss"),
type = 'h',
...)

Arguments

x An imaging dataset.

formula, y A formula of the form ’y ~ x | g1 * g2 * ...’ (or equivalently, ’y ~ x | g1 + g2 +
...’), indicating a LHS ’y’ (on the y-axis) versus a RHS ’x’ (on the x-axis) and
conditioning variables ’g1, g2, ...’.
Usually, the LHS is not supplied, and the formula is of the form ’~ x | g1 * g2 *
...’, and the y-axis is implicityl assumed to be the feature vectors corresponding
to each pixel in the imaging dataset specified by the object ’x’. However, a
variable evaluating to a feature vector, or a sequence of such variables, can also
be supplied.
The RHS is evaluated in fData(x) and should provide values for the x-axis.
The conditioning variables are evaluated in pData(x). These can be specified
in the formula as ’g1 * g2 * ...’. The argument ’pixel.groups’ allows an alternate
way to specify a single conditioning variable. Conditioning variables specified
using the formula interface will always appear on separate plots. This can be
combined with ’superpose = TRUE’ to both overlay plots based on a condition-
ing variable and use conditioning variables to create separate plots.

coord A named vector or list giving the coordinate(s) of the pixel(s) to plot.

run A character, factor, or integer vector giving the run(s) of the pixel(s) to plot.

plusminus If specified, a window of pixels surrounding the one given by coord will be
included in the plot with fun applied over them, and this indicates the number
of pixels to include on either side.

pixel The pixel or vector of pixels for which to plot the feature vectors. This is an
expression that evaluates to a logical or integer indexing vector.

pixel.groups An alternative way to express a single conditioning variable. This is a variable or
expression to be evaluated in pData(x), expected to act as a grouping variable
for the pixels specified by ’pixel’, typically used to distinguish different regions
of the imaging data for comparison. Feature vectors from pixels in the same
pixel group will have ’fun’ applied over them; ’fun’ will be applied to each
pixel group separately, usually for averaging. If ’superpose = FALSE’ then these
appear on separate plots.

groups A variable or expression to be evaluated in fData(x), expected to act as a group-
ing variable for the features in the feature vector(s) to be plotted, typically used
to distinguish different groups of features by varying graphical parameters like
color and line type. By default, if ’superpose = FALSE’, these appear overlaid
on the same plot.

plot-methods 57

superpose Should feature vectors from different pixel groups specified by ’pixel.groups’
be superposed on the same plot?

strip Should strip labels indicating the plotting group be plotting along with the each
panel? Passed to ’strip’ in xyplot.

key A logical, or list containing components to be used as a key for the plot. This
is passed to ’key’ in levelplot if ’lattice = TRUE’.

fun A function to apply over feature vectors grouped together by ’pixel.groups’. By
default, this is used for averaging over pixels.

hline The y-value(s) for a horizontal reference line(s).

xlab Character or expression giving the label for the x-axis.

ylab Character or expression giving the label for the x-axis.

xlim A numeric vector of length 2 giving the left and right limits for the x-axis.

ylim A numeric vector of length 2 giving the lower and upper limits for the y-axis.

layout The layout of the plots, given by a length 2 numeric as c(ncol,nrow). This is
passed to levelplot if ’lattice = TRUE’. For base graphics, this defaults to one
plot per page.

col A specification for the default plotting color(s).

type A character indicating the type of plotting.

grid Should a grid be added to the plot?

jitter Should a small amount of noise be added to numeric variables before plotting
them?

breaks The number of breaks when plotting a histogram.

subset An expression that evaluates to a logical or integer indexing vector to be evalu-
ated in fData(x).

... Additional arguments passed to the underlying plot or xyplot functions.

i Which data element should be plotted.

fold What folds of the cross-validation should be plotted.

model A vector or list specifying which fitted model to plot. If this is a vector, it
should give a subset of the rows of modelData(x) to use for plotting. Otherwise,
it should be a list giving the values of parameters in modelData(x).

mode What kind of results should be plotted. This is the name of the object to plot in
the ResultSet object.

values What kind of results should be plotted. This is the name of the object to plot in
the ImagingResult object. Renamed from mode to avoid ambiguity.

column What columns of the results should be plotted. If the results are a matrix, this
corresponds to the columns to be plotted, which can be indicated either by nu-
meric index or by name.

lattice Should lattice graphics be used to create the plot?

add Should the method call plot.new() or be added to the current plot?

Author(s)

Kylie A. Bemis

See Also

image

58 PLS-methods

Examples

setCardinalBPPARAM(SerialParam())

set.seed(1)
x <- simulateImage(preset=2, npeaks=10, dim=c(10,10))
m <- mz(metadata(x)$design$featureData)

plot(x, pixel=23)
plot(x, coord=c(x=3, y=3), plusminus=1)
plot(x, coord=c(x=3, y=3), groups=mz > 1000)
plot(x, coord=c(x=7, y=7), superpose=TRUE)

sm <- summarizeFeatures(x, FUN=c("mean", "sd"), as="DataFrame")

featureData(x)$mean <- sm$mean
featureData(x)$sd <- sm$sd

plot(x, mean + I(-sd) ~ mz, superpose=TRUE)

PLS-methods Partial least squares

Description

Performs partial least squares (also called projection to latent structures or PLS) on an imaging
dataset. This will also perform discriminant analysis (PLS-DA) if the response is a factor. Or-
thogonal partial least squares options (O-PLS and O-PLS-DA) are also available.

Usage

S4 method for signature 'SparseImagingExperiment,ANY'
PLS(x, y, ncomp = 3, method = c("pls", "opls"),

center = TRUE, scale = FALSE,
iter.max = 100, ...)

S4 method for signature 'SparseImagingExperiment,ANY'
OPLS(x, y, ncomp = 3, ...)

S4 method for signature 'PLS2'
predict(object, newx, newy, ncomp, ...)

S4 method for signature 'PLS2'
fitted(object, ...)

S4 method for signature 'PLS2'
summary(object, ...)

S4 method for signature 'SImageSet,matrix'
PLS(x, y, ncomp = 3,

method = "nipals",
center = TRUE,
scale = FALSE,

PLS-methods 59

iter.max = 100, ...)

S4 method for signature 'SImageSet,ANY'
PLS(x, y, ...)

S4 method for signature 'SImageSet,matrix'
OPLS(x, y, ncomp = 3,

method = "nipals",
center = TRUE,
scale = FALSE,
keep.Xnew = TRUE,
iter.max = 100, ...)

S4 method for signature 'SImageSet,ANY'
OPLS(x, y, ...)

S4 method for signature 'PLS'
predict(object, newx, newy, ...)

S4 method for signature 'OPLS'
predict(object, newx, newy, keep.Xnew = TRUE, ...)

Arguments

x The imaging dataset on which to perform partial least squares.

y The response variable, which can be a matrix or a vector for ordinary PLS, or
a factor or a character for PLS-DA.

ncomp The number of PLS components to calculate.

method The function used to calculate the projection.

center Should the data be centered first? This is passed to scale.

scale Shoud the data be scaled first? This is passed to scale.

iter.max The number of iterations to perform for the NIPALS algorithm.

... Passed to the next PLS method.

object The result of a previous call to PLS.

newx An imaging dataset for which to calculate their PLS projection and predict a
response from an already-calculated PLS object.

newy Optionally, a new response from which residuals should be calcualted.

keep.Xnew Should the new data matrix be kept after filtering out the orthogonal variation?

Value

An object of class PLS2, which is a ImagingResult, or an object of class PLS, which is a ResultSet.
Each elemnt of resultData slot contains at least the following components:

fitted: The fitted response.

loadings: A matrix with the explanatory variable loadings.

weights: A matrix with the explanatory variable weights.

scores: A matrix with the component scores for the explanatary variable.

Yscores: A matrix objects with the component scores for the response variable.

60 PositionDataFrame-class

Yweights: A matrix objects with the response variable weights.

coefficients: The matrix of the regression coefficients.

The following components may also be available for classes OPLS and OPLS2.

Oloadings: A matrix objects with the orthogonal explanatory variable loadings.

Oweights: A matrix with the orthgonal explanatory variable weights.

If y is a categorical variable, then a categorical class prediction will also be available in addition
to the fitted numeric response.

Author(s)

Kylie A. Bemis

References

Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of
Chemometrics, 16(3), 119-128. doi:10.1002/cem.695

See Also

PCA, spatialShrunkenCentroids,

Examples

setCardinalBPPARAM(SerialParam())

set.seed(1)
x <- simulateImage(preset=2, npeaks=10, dim=c(10,10),

snoise=1, sdpeaks=1, representation="centroid")

y <- makeFactor(circle=pData(x)$circle, square=pData(x)$square)

pls <- PLS(x, y, ncomp=1:3)

summary(pls)

opls <- OPLS(x, y, ncomp=1:3)

summary(pls)

PositionDataFrame-class

PositionDataFrame: data frame with spatial position metadata

Description

An PositionDataFrame is an extension of the XDataFrame class with special slot-columns for
spatial coordinates. It is designed specifically with biological imaging experiments in mind, so it
also has an additional slot-column for tracking the experimental run.

PositionDataFrame-class 61

Usage

PositionDataFrame(coord, run, ..., row.names = NULL, check.names = TRUE)

Arguments

coord A data.frame-like object containing columns which are spatial coordinates.
This will be coerced to a DataFrame.

run A factor with levels for each experimental run.

... Named arguments that will become columns of the object.

row.names Row names to be assigned to the object; no row names are assigned if this is
NULL.

check.names Should the column names be checked for syntactic validity?

Details

PositionDataFrame is designed for spatial data, specifically for biological imaging data. It in-
cludes a slot-column for the experimental run. In most 2D imaging experiments, each distinct
image is considered a distinct run. No additional assumptions are made about the spatial structure
of the data, and non-gridded spatial coordinates are allowed.

This class is intended to eventually replace the IAnnotatedDataFrame class, and implements sim-
ilar concepts but with a more robust and modern infrastructure.

Methods

run(object), run(object) <- value: Get or set the experimental run slot-column.

runNames(object), runNames(object) <- value: Get or set the experimental run levels.

coord(object), coord(object) <- value: Get or set the spatial position slot-columns.

coordLabels(object), coordLabels(object) <- value: Get or set the names of the spatial po-
sition slot-columns.

gridded(object), gridded(object) <- value: Get or set whether the spatial positions are grid-
ded or not. Typically, this should not be set manually.

resolution(object), resolution(object) <- value: Get or set the spatial resolution of the
spatial positions. Typically, this should not be set manually.

dims(object): Get the gridded dimensions of the spatial positions (i.e., as if projected to an image
raster).

is3D(object): Check if the data is 3D or not.

as.list(x, ..., slots = TRUE): Coerce the object to a list, where the slot-columns are in-
cluded by default. Use slots=FALSE to exclude the slot-columns.

Author(s)

Kylie A. Bemis

See Also

XDataFrame

62 process-methods

Examples

Create an PositionDataFrame object
coord <- expand.grid(x=1:3, y=1:3)
values <- seq_len(nrow(coord))
pdata <- PositionDataFrame(coord=coord, values=values)

Check the spatial properties
gridded(pdata)
resolution(pdata)
dims(pdata)

process-methods Delayed Processing of Imaging Datasets

Description

Queue pre-processing steps on an imaging dataset and apply them, possibly writing out the pro-
cessed data to a file.

Usage

S4 method for signature 'MSImagingExperiment'
process(object, ..., delay = FALSE,

outpath = NULL, imzML = FALSE)

S4 method for signature 'SparseImagingExperiment'
process(object, fun, ...,

kind = c("pixel", "feature", "global"),
moreargs = NULL,
prefun, preargs,
postfun, postargs,
plotfun,
label = "",
delay = FALSE,
plot = FALSE,
par = NULL,
outpath = NULL,
BPPARAM = getCardinalBPPARAM())

Arguments

object An imaging dataset.

fun A function to apply to each feature-vector or image-vector.

... Additional arguments to fun.

delay Should the function fun be applied now, or queued and delayed until process()
is called again?

outpath The path to a file where the results will be written by pixelApply or featureApply.
If NULL, then the results are returned in-memory.

imzML Should the output file be an imzML file? Note: some processing methods are
not be supported with this option.

process-methods 63

kind What kind of processing to perform? Over pixels, over features, or global pro-
cessing of the dataset as a single unit.

moreargs Additional arguments to be passed to fun. This is primarily useful if some of
the arguments to fun conflict with arguments to process.

prefun A pre-processing function to be applied to the entire dataset, taking the dataset
as its first argument. This should return another object of the same class.

preargs Additional arguments to prefun, as a list.

postfun A post-processing function to be applied to the output, taking the result as its
first argument, and the original dataset as its second argument. This should
return another object of the same class as the original dataset.

postargs Additional arguments to postfun, as a list.

plotfun A function to be used to plot the output of fun, taking at least two arguments:
(1) the resulting vector and (2) the input vector.

label The label of the processing step. This is used to identify it in the queue, and is
printed as it is being processed.

plot Plot the function for each pixel or feature while it is being processed? Only
possible if BPPARAM=SerialParam().

par Plotting parameters to be passed to plotfun.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Details

This method allows queueing of delayed processing to an imaging dataset. All of the registered
processing steps will be applied in sequence whenever process() is called next with delay=FALSE.
The processing can be over feature-vectors (e.g., mass spectra), over image-vectors, or over the
entire dataset as a unit. The processing is performed in parallel using the current registered parallel
backend.

The method for MSIMagingExperiment allows writing the output directly to an imzML file, with
certain restrictions. Some pre-processing methods are not supported with this option, and the ex-
periment must not contain multiple runs.

Value

An object of the same class (or subclass) as the original imaging dataset, with the data processing
queued or applied.

Author(s)

Kylie A. Bemis

See Also

SparseImagingExperiment, MSImagingExperiment, pixelApply, featureApply, normalize,
smoothSignal, reduceBaseline, peakPick, peakAlign, peakFilter, peakBin

64 readMSIData

Examples

setCardinalBPPARAM(SerialParam())

set.seed(2)
data <- simulateImage(preset=1, dim=c(10,10), baseline=1)
data_c <- data[,pData(data)$circle]

tmp <- process(data, function(s) log2(abs(s)))

tmp1 <- process(data, abs, delay=TRUE)

tmp2 <- process(tmp1, log2, delay=TRUE)

process(tmp2)

readMSIData Read mass spectrometry imaging data files

Description

Read supported mass spectrometry imaging data files. Supported formats include imzML and An-
alyze 7.5.

Usage

Read any supported MS imaging file
readMSIData(file, ...)

Read imzML files
readImzML(name, folder = getwd(), attach.only = TRUE,
mass.range = NULL, resolution = NA, units = c("ppm", "mz"),
as = "MSImagingExperiment", parse.only = FALSE,
BPPARAM = getCardinalBPPARAM(), ...)

Read Analyze 7.5 files
readAnalyze(name, folder = getwd(), attach.only = TRUE,
as = "MSImagingExperiment", ...)

Arguments

file A description of the data file to be read. This may be either an absolute or
relative path. The file extension must be included.

name The common (base) file name for the ’.imzML’ and ’.ibd’ files for imzML or for
the ’.hdr’, ’.t2m’, and ’.img’ files for Analyze 7.5.

folder The path to the folder containing the data files.

attach.only Attach the file as a matter on-disk matrix for reading on-demand, rather than
loading the data into memory.

mass.range For ’processed’ imzML files, the mass range to use for the imported data. If
known, providing this can improve the loading time dramatically, as otherwise
it is calculated from reading the dataset directly.

readMSIData 65

resolution For ’processed’ imzML files, the accuracy to which the m/z values will be
binned after reading. For units="ppm", this is the half-binwidth, and should be
set to the native accuracy of the mass spectrometer, if known. For units="mz",
this is simply the step size between m/z bins. If this is NA, then automatically
guess a resolution from the data.

units The units for resolution. Either parts-per-million or absolute m/z units.

as After reading in the data, what class of object should be returned? As of Cardinal
version >= 2.6, only MSImagingExperiment is supported.

parse.only If TRUE, return only the parsed imzML metadata without creating a new imag-
ing experiment object. (May be useful for diagnosing import problems.)

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
This is only used when mass.range=NULL and attach.only=TRUE, when read-
ing the mass range from the m/z data of a "processed" imzML file.

... Additional arguments passed to read functions.

Details

In the current implementation, the file extensions must match exactly: ’.imzML’ and ’.ibd’ for
imzML and ’.hdr’, ’.t2m’, and ’.img’ for Analyze 7.5.

The readImzML function supports reading and returning both the ’continuous’ and ’processed’ for-
mats.

When attach.only=TRUE, the data is not loaded into memory; only the experimental metadata is
read, and the intensity data will only be accessed on-demand. For large datasets, this is memory-
efficient. For smaller datasets, this may be slower than simply reading the entire dataset into mem-
ory.

If the mass range is known, setting mass.range will make reading data much faster for very large
datasets.

If problems are encountered while trying to import imzML files, the files should be verified and fixed
with the Java-based imzMLValidator application: https://gitlab.com/imzML/imzMLValidator/.

Value

A MSImageSet object.

Author(s)

Kylie A. Bemis

References

Schramm T, Hester A, Klinkert I, Both J-P, Heeren RMA, Brunelle A, Laprevote O, Desbenoit N,
Robbe M-F, Stoeckli M, Spengler B, Rompp A (2012) imzML - A common data format for the
flexible exchange and processing of mass spectrometry imaging data. Journal of Proteomics 75
(16):5106-5110. doi:10.1016/j.jprot.2012.07.026

See Also

writeMSIData

66 reduceBaseline-methods

reduceBaseline-methods

Reduce the baseline for an imaging dataset

Description

Apply baseline reduction to the feature vectors of an imaging dataset.

Usage

S4 method for signature 'SparseImagingExperiment'
reduceBaseline(object, method = c("locmin", "median"), ...)

S4 method for signature 'MSImageSet'
reduceBaseline(object, method = "median",

...,
pixel = pixels(object),
plot = FALSE)

Local minima baseline reduction
reduceBaseline.locmin(x, window=5, ...)

Interpolated median baseline reduction
reduceBaseline.median(x, blocks=500, fun=median, spar=1, ...)

Arguments

object An imaging dataset.

method The baseline reduction method to use.

pixel The pixels to baseline subtract. If less than the extent of the dataset, this will
result in a subset of the data being processed.

plot Plot each pixel while it is being processed?

... Additional arguments passed to the baseline reduction method.

x The signal to be baseline-corrected.

blocks The number of intervals to break the mass spectrum into in order to choose
minima or medians from which to interpolate the baseline.

fun Function used to determine the points from which the baseline will be interpo-
lated.

spar Smoothing parameter for the spline smoothing applied to the spectrum in order
to decide the cutoffs for throwing away baseline references that might occur
inside peaks.

window The sliding window (number of data points) to consider when determining the
local minima.

reexports 67

Details

Baseline reduction is usually performed using the provided functions, but a user-created function
can also be passed to method. In this case it should take the following arguments:

• x: A numeric vector of intensities.

• ...: Additional arguments.

A user-created function should return a numeric vector of the same length. with the baseline-
subtracted intensities.

Internally, pixelApply is used to apply the baseline reduction. See its documentation page for
more details on additional objects available to the environment installed to the baseline reduction
function.

Value

An object of the same class with the baseline-subtracted spectra.

Author(s)

Kylie A. Bemis

See Also

MSImagingExperiment, MSImageSet, pixelApply, process

Examples

setCardinalBPPARAM(SerialParam())

set.seed(2)
data <- simulateImage(preset=1, npeaks=10, dim=c(3,3), baseline=1)
data <- data[,pData(data)$circle]

queue baseline reduction
data <- reduceBaseline(data, method="median", blocks=100)

apply baseline reduction
data_nobaseline <- process(data, plot=interactive())

reexports Objects exported from other packages

Description

These objects are imported from other packages and have been re-exported by Cardinal for user
convenience.

maggritr: %>%

viridisLite: viridis, cividis, magma, inferno, plasma

68 selectROI-methods

selectROI-methods Select regions-of-interest of an imaging dataset

Description

Manually select regions-of-interest or pixels on an imaging dataset. The selectROI method uses
the built-in locator function. The method has the same form as the image method for plotting
imaging datasets.

The results are returned as logical vectors indicating which pixels have been selected. These logical
vectors can be combined into factors using the makeFactor function.

Usage

S4 method for signature 'SparseImagingExperiment'
selectROI(object, ..., mode = c("region", "pixels"))

S4 method for signature 'SImageSet'
selectROI(object, formula = ~ x * y,

mode = c("region", "pixels"),
...,
main,
subset = TRUE,
lattice = FALSE)

makeFactor(..., ordered = FALSE)

Arguments

object An imaging dataset.

formula Passed to image.

mode What kind of selection to perform: ’region’ to select a region-of-interest, or
’pixels’ to select individual pixels.

... Addtional arguments to be passed to image for selectROI, or name-value pairs
of logical vectors to be combined by makeFactor.

ordered Should the resulting factor be ordered or not?

main Passed to image.

subset Passed to image.

lattice Must be false.

Value

A logical vector of length equal to the number of pixels for selectROI.

A factor of the same length as the passed logical vectors for makeFactor.

Author(s)

Kylie A. Bemis

simulateSpectrum 69

See Also

image

simulateSpectrum Simulate a mass spectrum or MS imaging experiment

Description

Simulate mass spectra or complete MS imaging experiments, including a possible baseline, spatial
and spectral noise, mass drift, mass resolution, and multiplicative variation, etc.

A number of preset imaging designs are available for quick-and-dirty simulation of images.

These functions are designed for small proof-of-concept examples and testing, and may not scale
well to simulating larger datasets.

Usage

simulateSpectrum(n = 1L, peaks = 50L,
mz = rlnorm(peaks, 7, 0.3), intensity = rlnorm(peaks, 1, 0.9),
from = 0.9 * min(mz), to = 1.1 * max(mz), by = 400,
sdpeaks = sdpeakmult * log1p(intensity), sdpeakmult = 0.2,
sdnoise = 0.1, sdmz = 10, resolution = 1000, fmax = 0.5,
baseline = 0, decay = 10, units=c("ppm", "mz"),
representation = c("profile", "centroid"), ...)

simulateImage(pixelData, featureData, preset,
from = 0.9 * min(mz), to = 1.1 * max(mz), by = 400,
sdrun = 1, sdpixel = 1, spcorr = 0.3, sptype = "SAR",
representation = c("profile", "centroid"), units=c("ppm", "mz"),
as = c("MSImagingExperiment", "SparseImagingExperiment"),
BPPARAM = getCardinalBPPARAM(), ...)

addShape(pixelData, center, size, shape=c("circle", "square"), name=shape)

presetImageDef(preset = 1L, nruns = 1, npeaks = 30L,
dim = c(20L, 20L), peakheight = 1, peakdiff = 1,
sdsample = 0.2, jitter = TRUE, ...)

Arguments

n The number of spectra to simulate.

peaks, npeaks The number of peaks to simulate. Not used if mz and intensity are provided.

mz The theoretical m/z values of the simulated peaks.

intensity The mean intensities of the simulated peaks.

from The minimum m/z value used for the mass range.

to The maximum m/z value used for the mass range.

by The step-size used for the observed m/z-values of the profile spectrum.

sdpeaks The standard deviation(s) for the distributions of observed peak intensities on
the log scale.

70 simulateSpectrum

sdpeakmult A multiplier used to calculate sdpeaks based on the mean intensities of peaks;
used to simulate multiplicative variance. Not used if sdpeaks is provided.

sdnoise The standard deviation of the random noise in the spectrum on the log scale.
sdmz The standard deviation of the mass error in the observed m/z values of peaks, in

units indicated by units.
resolution The mass resolution as defined by m / dm, where m is the observed mass and dm

is the width of the peak at a proportion of its maximum height defined by fmax
(defaults to full-width-at-half-maximum – FWHM – definition). Note that this
is NOT the same as the definition of resolution in the readImzML function.

fmax The proportion of the maximum peak height to use when defining the mass
resolution.

baseline The maximum intensity of the baseline. Note that baseline=0 means there is
no baseline.

decay A constant used to calculate the exponential decay of the baseline. Larger values
mean the baseline decays more sharply at the lower mass range of the spectrum.

units The units for by and sdmz. Either parts-per-million or absolute m/z units.
representation Should a profile spectrum be returned or only the centroided peaks?
BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
pixelData A PositionDataFrame giving the pixel design of the experiment. The names

of the columns should match the names of columns in featureData. Each col-
umn should be a logical vector corresponding to a morphological substructure,
indicate which pixels belong to that substructure.

featureData A MassDataFrame giving the feature design of the experiment. Each row should
correspond to an expected peak. The names of the columns should match the
names of columns in pixelData. Each column should be a numeric vector
corresponding to a morphological substructure, giving the mean intensity of that
peak for that substructure.

preset A number indicating a preset image definition to use.
nruns The number of runs to simulate for each condition.
sdrun A standard deviation giving the run-to-run variance.
sdpixel A standard deviation giving the pixel-to-pixel variance.
spcorr The spatial autocorrelation. Must be between 0 and 1, where spcorr=0 indicates

no spatial autocorrelation.
sptype The type of spatial autocorrelation.
as The class of object to be returned.
... Additional arguments to pass to simulateSpectrum or presetImageDef.
dim The dimensions of the preset image.
peakheight Reference intensities used for peak heights by the preset.
peakdiff A reference intensity difference used for the mean peak height difference be-

tween conditions, for presets that simulate multiple conditions.
sdsample A standard deviation giving the amount of variation from the true peak heights

for this simulated sample.
jitter Should random noise be added to the location and size of the shapes?
center The center of the shape.
size The size of the shape (from the center).
shape What type of shape to add.
name The name of the added column.

simulateSpectrum 71

Details

The simulateSpectrum() and simulateImage() functions are used to simulate mass spectra and
MS imaging experiments. They provide a great deal of control over the parameters of the simula-
tion, including all sources of variation.

For simulateImage(), the user should provide the design of the simulated experiment via matching
columns in pixelData and featureData, where each column corresponds to different morpholog-
ical substructures or differing conditions. These design data frames are returned in the metadata()
of the returned object for later reference.

A number of presets are defined by presetImageDef(), which returns only the pixelData and
featureData necessary to define the experiment for simulateImage(). These can be referenced
for help in understanding how to define experiments for simulateImage().

The preset images are:

• 1: a centered circle

• 2: a topleft circle and a bottomright square

• 3: two corner squares and a centered circle

• 4: a centered circle with conditions A and B in different runs

• 5: a topleft circle and a bottomright square with conditions A and B in different runs

• 6: two corner squares and a centered circle; the circle has conditions A and B in different runs

• 7: matched pairs of circles with conditions A and B within the same runs; includes reference
peaks

• 8: matched pairs of circles inside squares with conditions A and B within the same runs;
includes reference peaks

• 9: a small sphere inside a larger sphere (3D)

The addShape() function is provided for convenience when generating the pixelData for simulateImage(),
as a simple way of adding morphological substructures using basic shapes such as squares and cir-
cles.

Value

For simulateSpectrum, a list with elements:

• mz: a numeric vector of the observed m/z values

• intensity: a numeric vector or matrix of the intensities

For simulateImage, a MSImagingExperiment or a SparseImagingExperiment.

For addShape, a new PositionDataFrame with a logical column added for the corresponding
shape.

For presetImageDef, a list with two elements: the pixelData and featureData to be used as
input to simulateImage().

Author(s)

Kylie A. Bemis

See Also

simulateSpectrum, simulateImage

72 slice-methods

Examples

setCardinalBPPARAM(SerialParam())
set.seed(1)

generate a spectrum
s <- simulateSpectrum(1)
plot(intensity ~ mz, data=s, type="l")

generate a noisy low-resolution spectrum with a baseline
s <- simulateSpectrum(1, baseline=2, sdnoise=0.3, resolution=100)
plot(intensity ~ mz, data=s, type="l")

generate a high-resolution spectrum
s <- simulateSpectrum(1, peaks=100, resolution=10000)
plot(intensity ~ mz, data=s, type="l")

generate an image
x <- simulateImage(preset=1, npeaks=10, dim=c(10,10))
m <- mz(metadata(x)$design$featureData)

image(x, mz=m[5])

plot(x, coord=c(x=3, y=3))

slice-methods Slice an image

Description

Slice an imaging dataset as a "data cube".

Usage

S4 method for signature 'SparseImagingExperiment'
slice(x, ..., drop=TRUE)

Arguments

x An imaging dataset.

... Conditions describing features to slice, passed to features().

drop Should redundant array dimensions be dropped? If TRUE, dimensions with only
one level are dropped using drop.

Details

Because SparseImagingExperiment objects may be pixel-sparse, their data is always internally
represented as a matrix rather than an array, where each column is a feature-vector. Only columns
for non-missing pixels are retained. This is simpler and more space-efficient if the image is non-
rectangular, non-gridded, or has many missing values.

However, it is often necessary to index into the data as if it were an actual "data cube", with explicit
array dimensions for each spatial dimension. slice() allows this by slicing the object as a "data
cube", and returning an image array from the object.

smoothSignal-methods 73

For non-rectangular data, this may result in missing values. For non-gridded data, images must be
projected to an array (with a regular grid), and the result may not represent the underlying values
exactly.

Value

An array representing the sliced image(s).

Author(s)

Kylie A. Bemis

Examples

setCardinalBPPARAM(SerialParam())

set.seed(1)
x <- simulateImage(preset=1, npeaks=10, dim=c(10,10), representation="centroid")
m <- mz(metadata(x)$design$featureData)

slice image for first feature
slice(x, 1)

slice by m/z-value
slice(x, mz=m[1])

slice multiple
slice(x, mz=m[1:3])

smoothSignal-methods Smooth the signals of a imaging dataset

Description

Apply smoothing to the feature vectors of an imaging dataset.

Usage

S4 method for signature 'SparseImagingExperiment'
smooth(x, ...)

S4 method for signature 'SparseImagingExperiment'
smoothSignal(object, method = c("gaussian", "sgolay", "ma"), ...)

S4 method for signature 'MSImageSet'
smoothSignal(object, method = c("gaussian", "sgolay", "ma"),

...,
pixel = pixels(object),
plot = FALSE)

Gaussian smoothing
smoothSignal.gaussian(x, sd=window/4, window=5, ...)

74 smoothSignal-methods

Savitsky-Golay smoothing
smoothSignal.sgolay(x, order=3, window=order + 3 - order %% 2, ...)

Moving average smoothing
smoothSignal.ma(x, coef=rep(1, window + 1 - window %% 2), window=5, ...)

Arguments

object An imaging dataset.

method The smoothing method to use.

pixel The pixels to smooth. If less than the extent of the dataset, this will result in a
subset of the data being processed.

plot Plot each pixel while it is being processed?

... Additional arguments passed to the smoothing method.

x The signal or dataset to be smoothed.

sd The standard deviation for the Gaussian kernel.

window The smoothing window.

order The order of the smoothing filter.

coef The coefficients for the moving average filter.

Details

Smoothing is usually performed using the provided functions, but a user-created function can also
be passed to method. In this case it should take the following arguments:

• x: A numeric vector of intensities.

• ...: Additional arguments.

A user-created function should return a numeric vector of the same length.

Internally, pixelApply is used to apply the smooothing. See its documentation page for more
details on additional objects available to the environment installed to the smoothing function.

Value

An object of the same class with the smoothed spectra.

Author(s)

Kylie A. Bemis

See Also

MSImagingExperiment, MSImageSet, pixelApply, process

SparseImagingExperiment-class 75

Examples

setCardinalBPPARAM(SerialParam())

set.seed(2)
data <- simulateImage(preset=1, npeaks=10, dim=c(3,3), baseline=1)
data <- data[,pData(data)$circle]

queue smoothing
data <- smoothSignal(data, method="ma", window=9)

apply smoothing
data_smooth <- process(data, plot=interactive())

SparseImagingExperiment-class

SparseImagingExperiment: Pixel-sparse imaging experiments

Description

The SparseImagingExperiment class specializes the virtual ImagingExperiment class by assum-
ing that each pixel may be a high-dimensional feature vector (e.g., a spectrum), but the pixels
themselves may be sparse. Therefore, the data may be more efficiently stored as a matrix where
rows are features and columns are pixels, rather than storing the full, dense datacube.

Both 2D and 3D data are supported. Non-gridded pixel coordinates are allowed.

The MSImagingExperiment subclass adds design features for mass spectrometry imaging experi-
ments.

Usage

Instance creation
SparseImagingExperiment(

imageData = matrix(nrow=0, ncol=0),
featureData = DataFrame(),
pixelData = PositionDataFrame(),
metadata = list(),
processing = SimpleList())

Additional methods documented below

Arguments

imageData Either a matrix-like object with number of rows equal to the number of features
and number of columns equal to the number of pixels, or an ImageArrayList.

featureData A DataFrame with feature metadata, with a row for each feature.

pixelData A PositionDataFrame with pixel metadata, with a row for each pixel.

metadata A list with experimental-level metadata.

processing A SimpleList with processing steps. This should typically be empty for new
objects.

76 SparseImagingExperiment-class

Slots

imageData: An object inheriting from ImageArrayList, storing one or more array-like data ele-
ments with conformable dimensions.

featureData: Contains feature information in a DataFrame. Each row includes the metadata for
a single feature (e.g., a color channel, a molecular analyte, or a mass-to-charge ratio).

elementMetadata: Contains pixel information in a PositionDataFrame. Each row includes the
metadata for a single observation (e.g., a pixel), including specialized slot-columns for track-
ing pixel coordinates and experimental runs.

metadata: A list containing experiment-level metadata.

processing: A SimpleList containing processing steps (including both queued and previously
executed processing steps).

Methods

All methods for ImagingExperiment also work on SparseImagingExperiment objects. Addi-
tional methods are documented below:

pixels(object, ...): Returns the row indices of pixelData corresponding to conditions passed
via

features(object, ...): Returns the row indices of featureData corresponding to conditions
passed via

run(object), run(object) <- value: Get or set the experimental run slot-column from pixelData.

runNames(object), runNames(object) <- value: Get or set the experimental run levels from
pixelData.

coord(object), coord(object) <- value: Get or set the spatial position slot-columns from pixelData.

coordLabels(object), coordLabels(object) <- value: Get or set the names of the spatial po-
sition slot-columns from pixelData.

gridded(object), gridded(object) <- value: Get or set whether the spatial positions are grid-
ded or not. Typically, this should not be set manually.

resolution(object), resolution(object) <- value: Get or set the spatial resolution of the
spatial positions. Typically, this should not be set manually.

dims(object): Get the gridded dimensions of the spatial positions (i.e., as if projected to an image
raster).

is3D(object): Check if the data is 3D or not.

slice(object, ...): Slice the data as a data cube (i.e., as if projected to an multidimensional
image raster).

processingData(object), processingData(object) <- value: Get or set the processing slot.

preproc(object): List the preprocessing steps queued and applied to the dataset.

pull(x, ...): Pull all data elements of imageData into memory as matrices.

object[i, j, ..., drop]: Subset based on the rows (featureData) and the columns (pixelData).
The result is the same class as the original object.

rbind(...), cbind(...): Combine SparseImagingExperiment objects by row or column.

Author(s)

Kylie A. Bemis

spatialDGMM-methods 77

See Also

ImagingExperiment, MSImagingExperiment

Examples

data <- matrix(1:9^2, nrow=9, ncol=9)
t <- seq_len(9)
a <- seq_len(9)
coord <- expand.grid(x=1:3, y=1:3)

idata <- ImageArrayList(data)
fdata <- XDataFrame(t=t)
pdata <- PositionDataFrame(coord=coord, a=a)

x <- SparseImagingExperiment(
imageData=idata,
featureData=fdata,
pixelData=pdata)

print(x)

spatialDGMM-methods Spatially-aware Dirichlet Gaussian mixture model

Description

Fits spatially-aware Dirichlet Gaussian mixture models to each feature and each run in an imaging
experiment. Each image is segmented and the means and variances of all Gaussian components are
estimated. A linear filter with a spatial kernel is applied to the component probabilities to achieve
spatial smoothing. Simulated annealing is used in the EM-algorithm to avoid local optimia and
achieve more accurate parameter estimates.

Usage

S4 method for signature 'SparseImagingExperiment'
spatialDGMM(x, r = 1, k = 3, groups = run(x),

method = c("gaussian", "adaptive"),
dist = "chebyshev", annealing = TRUE,
init = c("kmeans", "gmm"), p0 = 0.05,
iter.max = 100, tol = 1e-9,
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpatialDGMM'
summary(object, ...)

Arguments

x The imaging dataset to segment or classify.

r The spatial neighborhood radius of nearby pixels to consider. This can be a
vector of multiple radii values.

78 spatialDGMM-methods

k The maximum number of segments (clusters). This can be a vector to try ini-
tializing the clustering with different numbers of maximum segments. The final
number of segments may differ.

groups Pixels from different groups will be segmented separately. For the validity of
downstream statistical analysis, it is important that each distinct observational
unit (e.g., tissue sample) is assigned to a unique group.

method The method to use to calculate the spatial smoothing weights. The ’gaussian’
method refers to spatially-aware (SA) weights, and ’adaptive’ refers to spatially-
aware structurally-adaptive (SASA) weights.

dist The type of distance metric to use when calculating neighboring pixels based
on r. The options are ‘radial’, ‘manhattan’, ‘minkowski’, and ‘chebyshev’ (the
default).

annealing Should simulated annealing be used during the optimization process to improve
parameter estimates?

init Should the parameter estimates be initialized using k-means (’kmeans’) or Gaus-
sian mixture model (’gmm’)?

p0 A regularization parameter applied to estimated posterior class probabilities to
avoid singularities. Must be positive for successful gradient descent optimiza-
tion. Changing this value (within reason) should have only minimal impact on
values of parameter estimates, but may greatly affect the algorithm’s speed and
stability.

iter.max The maximum number of EM-algorithm iterations.

tol The tolerance convergence criterion for the EM-algorithm. Corresponds to the
change in log-likelihood.

... Passed to internal methods.

object A fitted model object to summarize.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Value

An object of class SpatialDGMM, which is a ImagingResult, where each element of the resultData
slot contains at least the following components:

estimates: A list giving the parameter estimates for the means and variances for each Gaussian
component.

class: The predicted Gaussian component.

probability: The probability of class membership for each Gaussian component.

Author(s)

Dan Guo and Kylie A. Bemis

References

Guo, D., Bemis, K., Rawlins, C., Agar, J., and Vitek, O. (2019.) Unsupervised segmentation of
mass spectrometric ion images characterizes morphology of tissues. Proceedings of ISMB/ECCB,
Basel, Switzerland, 2019.

spatialFastmap-methods 79

Examples

setCardinalBPPARAM(SerialParam())

set.seed(2)
x <- simulateImage(preset=3, dim=c(10,10), npeaks=6,

peakheight=c(4,6,8), representation="centroid")

res <- spatialDGMM(x, r=1, k=5, method="adaptive")

summary(res)

image(res, model=list(feature=3))

spatialFastmap-methods

Spatially-aware FastMap projection

Description

Performs spatially-aware FastMap projection.

Usage

S4 method for signature 'SparseImagingExperiment'
spatialFastmap(x, r = 1, ncomp = 3,

method = c("gaussian", "adaptive"),
metric = c("average", "correlation", "neighborhood"),
dist = "chebyshev", tol.dist = 1e-9,
iter.max = 1, BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpatialFastmap2'
summary(object, ...)

S4 method for signature 'SImageSet'
spatialFastmap(x, r = 1, ncomp = 3,

method = c("gaussian", "adaptive"),
metric = c("average", "correlation", "neighborhood"),
iter.max = 1, ...)

Arguments

x The imaging dataset for which to calculate the FastMap components.

r The neighborhood spatial smoothing radius.

ncomp The number of FastMap components to calculate.

method The method to use to calculate the spatial smoothing kernels for the embedding.
The ’gaussian’ method refers to spatially-aware (SA) weights, and ’adaptive’
refers to spatially-aware structurally-adaptive (SASA) weights.

metric The dissimilarity metric to use when comparing spectra, where ‘average’ (the
default) means to use the differences of spatially-smoothed spectra, ‘correlation’
means to use the correlations of spatially-smoothed spectra, and ‘neighborhood’

80 spatialFastmap-methods

means to use pairwise differences of each spectrum in the neighborhoods. Pre-
vious versions used ‘neighborhood’, which is the algorithm of Alexandrov &
Kobarg; ‘average’ is the current default, because it handles non-gridded pixels
better than ‘neighborhood’.

dist The type of distance metric to use when calculating neighboring pixels based
on r. The options are ‘radial’, ‘manhattan’, ‘minkowski’, and ‘chebyshev’ (the
default).

tol.dist The distance tolerance used for matching pixels when calculating pairwise dis-
tances between neighborhoods. This parameter should only matter when the
data is not gridded. (Only considers ‘radial’ distance.)

iter.max The number of iterations to perform when choosing the pivot vectors for each
dimension.

... Ignored.

object A fitted model object to summarize.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Value

An object of class SpatialFastmap2, which is a ImagingResult, or an object of class SpatialFastmap,
which is a ResultSet. Each element of the resultData slot contains at least the following com-
ponents:

scores: A matrix with the FastMap component scores.

correlation: A matrix with the feature correlations with each FastMap component.

sdev: The standard deviations of the FastMap scores.

Author(s)

Kylie A. Bemis

References

Alexandrov, T., & Kobarg, J. H. (2011). Efficient spatial segmentation of large imaging mass spec-
trometry datasets with spatially aware clustering. Bioinformatics, 27(13), i230-i238. doi:10.1093/bioinformatics/btr246

Faloutsos, C., & Lin, D. (1995). FastMap: A Fast Algorithm for Indexing, Data-Mining and Visu-
alization of Traditional and Multimedia Datasets. Presented at the Proceedings of the 1995 ACM
SIGMOD international conference on Management of data.

See Also

PCA, spatialKMeans, spatialShrunkenCentroids

Examples

setCardinalBPPARAM(SerialParam())

set.seed(1)
data <- simulateImage(preset=2, npeaks=20, dim=c(6,6),

representation="centroid")

project to FastMap components
fm <- spatialFastmap(data, r=1, ncomp=2, method="adaptive")

spatialKMeans-methods 81

visualize first 2 components
image(fm, superpose=FALSE)

spatialKMeans-methods Spatially-aware k-means clustering

Description

Performs spatially-aware (SA) or spatially-aware structurally-adaptive (SASA) clustering of imag-
ing data. The data are first projected into an embedded feature space where spatial structure is
maintained using the Fastmap algorithm, and then ordinary k-means clustering is performed on the
projected dataset.

Usage

S4 method for signature 'SparseImagingExperiment'
spatialKMeans(x, r = 1, k = 3,

method = c("gaussian", "adaptive"),
dist = "chebyshev", tol.dist = 1e-9,
iter.max = 10, nstart = 10,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
ncomp = 10, BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpatialKMeans2'
summary(object, ...)

S4 method for signature 'SImageSet'
spatialKMeans(x, r = 1, k = 3,

method = c("gaussian", "adaptive"),
iter.max = 10, nstart = 10,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",

"MacQueen"),
ncomp = 10, ...)

Arguments

x The imaging dataset to cluster.

r The spatial neighborhood radius of nearby pixels to consider. This can be a
vector of multiple radii values.

k The number of clusters. This can be a vector to try different numbers of clusters.

method The method to use to calculate the spatial smoothing kernels for the embedding.
The ’gaussian’ method refers to spatially-aware (SA) clustering, and ’adaptive’
refers to spatially-aware structurally-adaptive (SASA) clustering.

dist The type of distance metric to use when calculating neighboring pixels based
on r. The options are ‘radial’, ‘manhattan’, ‘minkowski’, and ‘chebyshev’ (the
default).

tol.dist The distance tolerance used for matching pixels when calculating pairwise dis-
tances between neighborhoods. This parameter should only matter when the
data is not gridded. (Only considers ‘radial’ distance.)

82 spatialKMeans-methods

iter.max The maximum number of k-means iterations.

nstart The number of restarts for the k-means algorithm.

algorithm The k-means algorithm to use. See kmeans for details.

ncomp The number of fastmap components to calculate.

... Ignored.

object A fitted model object to summarize.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Value

An object of class SpatialKMeans2, which is a ImagingResult, or an object of class SpatialKMeans,
which is a ResultSet. Each element of the resultData slot contains at least the following com-
ponents:

cluster: A vector of integers indicating the cluster for each pixel in the dataset.

centers: A matrix of cluster centers.

correlation: A matrix with the feature correlations with each cluster.

Author(s)

Kylie A. Bemis

References

Alexandrov, T., & Kobarg, J. H. (2011). Efficient spatial segmentation of large imaging mass spec-
trometry datasets with spatially aware clustering. Bioinformatics, 27(13), i230-i238. doi:10.1093/bioinformatics/btr246

Faloutsos, C., & Lin, D. (1995). FastMap: A Fast Algorithm for Indexing, Data-Mining and Visu-
alization of Traditional and Multimedia Datasets. Presented at the Proceedings of the 1995 ACM
SIGMOD international conference on Management of data.

See Also

spatialShrunkenCentroids

Examples

setCardinalBPPARAM(SerialParam())

set.seed(1)
x <- simulateImage(preset=3, dim=c(10,10), npeaks=10,

peakheight=c(4,6,8), representation="centroid")

res <- spatialKMeans(x, r=1, k=4, method="adaptive")

summary(res)

image(res, model=1)

spatialShrunkenCentroids-methods 83

spatialShrunkenCentroids-methods

Spatially-aware shrunken centroid clustering and classification

Description

Performs spatially-aware nearest shrunken centroid clustering or classification on an imaging dataset.
These methods use statistical regularization to shrink the t-statistics of the features toward 0 so that
unimportant features are removed from the analysis. A Gaussian spatial kernel or an adaptive kernel
based on bilateral filtering are used for spatial smoothing.

Usage

S4 method for signature 'SparseImagingExperiment,missing'
spatialShrunkenCentroids(x, r = 1, k = 3, s = 0,

method = c("gaussian", "adaptive"),
dist = "chebyshev", init = NULL,
iter.max = 10, BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SparseImagingExperiment,ANY'
spatialShrunkenCentroids(x, y, r = 1, s = 0,

method = c("gaussian", "adaptive"),
dist = "chebyshev", priors = table(y),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpatialShrunkenCentroids2'
predict(object, newx, newy, BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpatialShrunkenCentroids2'
fitted(object, ...)

S4 method for signature 'SpatialShrunkenCentroids2'
summary(object, ...)

S4 method for signature 'SImageSet,missing'
spatialShrunkenCentroids(x, r = 1, k = 3, s = 0,

method = c("gaussian", "adaptive"),
iter.max=10, ...)

S4 method for signature 'SImageSet,factor'
spatialShrunkenCentroids(x, y, r = 1, s = 0,

method = c("gaussian", "adaptive"),
priors = table(y), ...)

S4 method for signature 'SImageSet,character'
spatialShrunkenCentroids(x, y, ...)

S4 method for signature 'SpatialShrunkenCentroids'
predict(object, newx, newy, ...)

84 spatialShrunkenCentroids-methods

Arguments

x The imaging dataset to segment or classify.

y A factor or character response.

r The spatial neighborhood radius of nearby pixels to consider. This can be a
vector of multiple radii values.

k The maximum number of segments (clusters). This can be a vector to try ini-
tializing the clustering with different numbers of maximum segments. The final
number of segments may differ.

s The sparsity thresholding parameter by which to shrink the t-statistics.

method The method to use to calculate the spatial smoothing weights. The ’gaussian’
method refers to spatially-aware (SA) weights, and ’adaptive’ refers to spatially-
aware structurally-adaptive (SASA) weights.

dist The type of distance metric to use when calculating neighboring pixels based
on r. The options are ‘radial’, ‘manhattan’, ‘minkowski’, and ‘chebyshev’ (the
default).

init Initial cluster configuration. This may either be the result of a call to spatialKMeans,
or a list of factors giving the initial cluster configurations.

iter.max The maximum number of clustering iterations.

priors Prior probabilities on the classes for classification. Improper priors will be nor-
malized automatically.

... Passed to internal methods.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

object The result of a previous call to spatialShrunkenCentroids.

newx An imaging dataset for which to calculate the predicted response from shrunken
centroids.

newy Optionally, a new response from which residuals should be calculated.

Value

An object of class SpatialShrunkenCentroids2, which is a ImagingResult, or an object of class
SpatialShrunkenCentroids, which is a ResultSet. Each element of the resultData slot con-
tains at least the following components:

class, classes: A factor indicating the predicted class for each pixel in the dataset.

probability, probabilities: A matrix of class probabilities.

centers: A matrix of shrunken class centers.

statistic, tstatistics: A matrix of shrunken t-statistics of the features.

scores: A matrix of discriminant scores.

sd: The pooled within-class standard deviations for each feature.

Author(s)

Kylie A. Bemis

subset-methods 85

References

Bemis, K., Harry, A., Eberlin, L. S., Ferreira, C., van de Ven, S. M., Mallick, P., Stolowitz, M.,
and Vitek, O. (2016.) Probabilistic segmentation of mass spectrometry images helps select impor-
tant ions and characterize confidence in the resulting segments. Molecular & Cellular Proteomics.
doi:10.1074/mcp.O115.053918

Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2003). Class Prediction by Nearest Shrunken
Centroids, with Applications to DNA Microarrays. Statistical Science, 18, 104-117.

Alexandrov, T., & Kobarg, J. H. (2011). Efficient spatial segmentation of large imaging mass spec-
trometry datasets with spatially aware clustering. Bioinformatics, 27(13), i230-i238. doi:10.1093/bioinformatics/btr246

See Also

spatialKMeans

Examples

setCardinalBPPARAM(SerialParam())

set.seed(1)
x <- simulateImage(preset=2, dim=c(10,10), npeaks=10,

peakheight=c(4,6,8), representation="centroid")

res <- spatialShrunkenCentroids(x, r=1, k=5, s=c(0,3,6), method="adaptive")

summary(res)

image(res, model=list(s=6))

subset-methods Subsetting

Description

Returns a subset of the dataset that meets the conditions.

Usage

S4 method for signature 'SparseImagingExperiment'
subset(x, subset, select, ...)

subsetFeatures(x, ...)

subsetPixels(x, ...)

Arguments

x An imaging dataset.

subset Logical expression to be evaluated in the object’s featureData() indicating
which rows (features) to keep.

select Logical expression to be evaluated in the object’s pixelData() indicating which
columns (pixels) to keep.

86 topFeatures-methods

... Conditions describing rows (features) or columns (pixels) to be retained. Passed
to features() and pixels() methods to obtain the subset indices.

Value

An object of the same class as x with the appropriate subsetting applied to it.

Author(s)

Kylie A. Bemis

Examples

set.seed(1)
mse <- simulateImage(preset=1, npeaks=10, dim=c(10,10))

subset features to mass range 1000 - 1500
subsetFeatures(mse, 1000 < mz, mz < 1500)

select pixels to coordinates x = 1..3, y = 1..3
subsetPixels(mse, x <= 3, y <= 3)

subset both features + pixels
subset(mse, 1000 < mz & mz < 1500, x <= 3 & y <= 3)

topFeatures-methods Top-ranked features from imaging analysis results

Description

Extract the top-ranked features from the results of imaging analysis, based on post-hoc correlation,
test statistics, p-values, or adjusted p-values. The result is sorted data frame that can be further
manipulated for downstream postprocessing.

Usage

Methods for Cardinal >= 2.x classes

S4 method for signature 'SpatialShrunkenCentroids2'
topFeatures(object, ..., n = 10, model = modelData(object))

S4 method for signature 'SpatialKMeans2'
topFeatures(object, ..., n = 10, model = modelData(object))

S4 method for signature 'MeansTest'
topFeatures(object, ..., n = 10, p.adjust = "BH")

S4 method for signature 'SegmentationTest'
topFeatures(object, ..., n = 10, model = modelData(object), p.adjust = "BH")

Methods for Cardinal 1.x classes

topFeatures-methods 87

S4 method for signature 'ResultSet'
topFeatures(object, n = 6,

model = pData(modelData(object)),
type = c('+', '-', 'b'),
sort.by = fvarLabels(object),
filter = list(),
...)

S4 method for signature 'PCA'
topFeatures(object, n = 6,

sort.by = "loadings",
...)

S4 method for signature 'PLS'
topFeatures(object, n = 6,

sort.by = c("coefficients", "loadings", "weights"),
...)

S4 method for signature 'OPLS'
topFeatures(object, n = 6,

sort.by = c("coefficients",
"loadings", "Oloadings",
"weights", "Oweights"),

...)

S4 method for signature 'SpatialKMeans'
topFeatures(object, n = 6,

sort.by = c("betweenss", "withinss"),
...)

S4 method for signature 'SpatialShrunkenCentroids'
topFeatures(object, n = 6,

sort.by = c("tstatistics", "p.values"),
...)

S4 method for signature 'CrossValidated'
topFeatures(object, ...)

Arguments

object The results of an imaging experiment analysis.

n The number of top-ranked records to return.

model If more than one model was fitted, results from which should be shown? De-
faults to all models in the object This can name the models explicitly or specify
a list of parameter values.

p.adjust The p.adjust method used adjust p-values to account for multiple testing. De-
faults to Benjamini \& Hochberg ("BH") to control the false discovery rate
(FDR).

... For newer classes, additional arguments to be passed to filter, to further filter
the results.

88 writeMSIData

type How should the records be ranked? ’+’ shows greatest values first (decreasing
order), ’-’ shows least values first (increasing order), and ’b’ uses decreasing
order based on absolute values.

sort.by What variable should be used for sorting?
filter A list of named variables with values to use to filter the results. For example, for

testing or classification, this can be used to only show rankings for a particular
condition.

Value

A data frame with the top-ranked features.

Author(s)

Kylie A. Bemis

See Also

meansTest, segmentationTest, spatialShrunkenCentroids

Examples

setCardinalBPPARAM(SerialParam())

set.seed(1)
x <- simulateImage(preset=2, npeaks=10, dim=c(10,10),

snoise=1, sdpeaks=1, representation="centroid")

y <- makeFactor(circle=pData(x)$circle, square=pData(x)$square)

res <- spatialShrunkenCentroids(x, y, r=1, s=c(0,3,6))

topFeatures(res, model=list(s=6))

writeMSIData Write mass spectrometry imaging data files

Description

Write supported mass spectrometry imaging data files. Supported formats include imzML and
Analyze 7.5.

Usage

S4 method for signature 'MSImageSet,character'
writeMSIData(object, file, outformat=c("imzML", "Analyze"), ...)

S4 method for signature 'MSImageSet'
writeImzML(object, name, folder=getwd(), merge=FALSE,
mz.type="32-bit float", intensity.type="32-bit float", ...)

S4 method for signature 'MSImageSet'
writeAnalyze(object, name, folder=getwd(),
intensity.type="16-bit integer", ...)

writeMSIData 89

Arguments

object An imaging dataset to be written to file.

file A description of the data file to be write. This may be either an absolute or
relative path. Any file extension will be ignored and replaced with an appropriate
one.

name The common file name for the ’.imzML’ and ’.ibd’ files for imzML or for the
’.hdr’, ’.t2m’, and ’.img’ files for Analyze 7.5.

folder The path to the folder containing the data files.

outformat The file format to write. Currently, the supported formats are "imzML" or "An-
alyze".

merge Whether the samples/runs should be written to the same file (TRUE) or split into
multiple files (FALSE). Currently, only FALSE is supported.

mz.type The data type for the m/z values. Acceptable values are "32-bit float" and "64-bit
float".

intensity.type The data type for the intensity values. Acceptable values are "16-bit integer",
"32-bit integer", "64-bit integer", "32-bit float" and "64-bit float".

... Additional arguments passed to write functions.

Details

The writeImzML function supports writing both the ’continuous’ and ’processed’ formats.

Exporting the metadata is lossy, and not all metadata will be preserved. If exporting an object that
was originally imported from an imzML file, any metadata that appears in metadata() of the object
will be preserved when writing.

Different experimental runs are written to separate files.

The imzML files can be modified after writing (such as to add additional experimental metadata)
using the Java-based imzMLValidator application: https://gitlab.com/imzML/imzMLValidator/.

Value

TRUE if the file was written successfully.

Author(s)

Kylie A. Bemis

References

Schramm T, Hester A, Klinkert I, Both J-P, Heeren RMA, Brunelle A, Laprevote O, Desbenoit N,
Robbe M-F, Stoeckli M, Spengler B, Rompp A (2012) imzML - A common data format for the
flexible exchange and processing of mass spectrometry imaging data. Journal of Proteomics 75
(16):5106-5110. doi:10.1016/j.jprot.2012.07.026

See Also

readMSIData

90 XDataFrame-class

XDataFrame-class XDataFrame: DataFrame with eXtra metadata columns

Description

An XDataFrame is an (indirect) extension of the DataFrame class as defined in the ’S4Vectors’
package, modified to support eXtra "slot-columns" that behave differently from other columns. It is
intended to facilitate data.frame-like classes that require specialized column access and behavior.
The specialized slot-columns are stored as distinct slots, unlike regular columns.

Usage

XDataFrame(...)

Arguments

... Arguments passed to the DataFrame().

Details

For the most part, XDataFrame behaves identically to DataFrame, with the exception of certain
methods being overwritten to account for the additional eXtra "slot-columns" not counted among
those returned by ncol(x). These additional columns should typically have their own getter and
setter methods.

To implement a subclass of XDataFrame, one needs to implement two methods to allow the slot-
columns to be printed by show and retained during coercion: (1) the subclass should implement an
as.list() method that includes the slot columns in the resulting list by default and (2) the sub-
class should implement a showNames() method that returns the names of all the printable columns
(including slot-columns) in the same order as they are returned by as.list().

Methods

names(object): Return the column names, not including any slot-columns.

length(object): Return the number of columns, not including any slot-columns.

lapply(X, FUN, ..., slots = FALSE): Returns a list of the same length as X, where each element
is the result of applying FUN to the corresponding element of X. This version includes an
additional argument for whether the slot-columns should be included or not. This method
should be overwritten by subclasses to ensure correct behavior.

as.env(x, ...): Create an environment from x with a symbol for each column, including the
slot-columns. This method should be overwritten by subclasses to ensure correct behavior.

Author(s)

Kylie A. Bemis

See Also

DataFrame, MassDataFrame, PositionDataFrame

XDataFrame-class 91

Examples

Create an XDataFrame object
XDataFrame(x=1:10, y=letters[1:10])

Index

∗ IO
readMSIData, 64
writeMSIData, 88

∗ classes
AnnotatedImage-class, 5
AnnotatedImagingExperiment-class,

6
ImageList-class, 21
ImagingExperiment-class, 22
ImagingResult-class, 24
MassDataFrame-class, 27
MSContinuousImagingExperiment-class,

30
MSImagingExperiment-class, 30
MSImagingInfo-class, 32
MSProcessedImagingExperiment-class,

34
PositionDataFrame-class, 60
SparseImagingExperiment-class, 75
XDataFrame-class, 90

∗ classif
cvApply-methods, 9
PLS-methods, 58
spatialShrunkenCentroids-methods,

83
∗ clustering

spatialDGMM-methods, 77
spatialKMeans-methods, 81
spatialShrunkenCentroids-methods,

83
∗ color

intensity.colors, 25
∗ datagen

simulateSpectrum, 69
∗ hplot

image-methods, 14
plot-methods, 52

∗ htest
meansTest-methods, 28

∗ iplot
selectROI-methods, 68

∗ manip
aggregate-methods, 4

cvApply-methods, 9
pixelApply-methods, 48
slice-methods, 72
subset-methods, 85

∗ methods
colocalized-methods, 8
mz-methods, 35
mzAlign-methods, 36
mzBin-methods, 37
mzFilter-methods, 38
normalize-methods, 40
peakAlign-methods, 43
peakBin-methods, 45
peakPick-methods, 46
process-methods, 62
reduceBaseline-methods, 66
smoothSignal-methods, 73
topFeatures-methods, 86

∗ models
meansTest-methods, 28

∗ multivariate
PCA-methods, 42
PLS-methods, 58

∗ package
Cardinal-package, 3

∗ spatial
findNeighbors-methods, 12
spatialDGMM-methods, 77
spatialFastmap-methods, 79
spatialKMeans-methods, 81
spatialShrunkenCentroids-methods,

83
[,AnnotatedImageList,ANY,ANY,ANY-method

(AnnotatedImagingExperiment-class),
6

[,Hashmat,ANY,ANY,ANY-method (legacy),
27

[,Hashmat,ANY,ANY,NULL-method (legacy),
27

[,Hashmat-method (legacy), 27
[,IAnnotatedDataFrame,ANY,ANY,ANY-method

(legacy), 27
[,ImageArrayList,ANY,ANY,ANY-method

92

INDEX 93

(ImageList-class), 21
[,ImageArrayList-method

(ImageList-class), 21
[,ImagingExperiment,ANY,ANY,ANY-method

(ImagingExperiment-class), 22
[,MSContinuousImagingSpectraList,ANY,ANY,ANY-method

(MSContinuousImagingExperiment-class),
30

[,MSProcessedImagingSpectraList,ANY,ANY,ANY-method
(MSProcessedImagingExperiment-class),
34

[,MassDataFrame,ANY,ANY,ANY-method
(MassDataFrame-class), 27

[,PositionDataFrame,ANY,ANY,ANY-method
(PositionDataFrame-class), 60

[,ResultSet,ANY,ANY,ANY-method
(legacy), 27

[,ResultSet-method (legacy), 27
[,SImageData,ANY,ANY,ANY-method

(legacy), 27
[,SImageData,ANY,ANY,NULL-method

(legacy), 27
[,SImageData-method (legacy), 27
[,SImageSet,ANY,ANY,ANY-method

(legacy), 27
[,SImageSet-method (legacy), 27
[,SparseImagingExperiment,ANY,ANY,ANY-method

(SparseImagingExperiment-class),
75

[,SparseImagingResult,ANY,ANY,ANY-method
(ImagingResult-class), 24

[,XDataFrame,ANY,ANY,ANY-method
(XDataFrame-class), 90

[<-,Hashmat,ANY,ANY,ANY-method
(legacy), 27

[<-,Hashmat-method (legacy), 27
[<-,ImageArrayList,ANY,ANY,ANY-method

(ImageList-class), 21
[<-,ImagingExperiment,ANY,ANY,ANY-method

(ImagingExperiment-class), 22
[<-,SparseImagingExperiment,ANY,ANY,ANY-method

(SparseImagingExperiment-class),
75

[[,ImageData,character,missing-method
(legacy), 27

[[,ImageData-method (legacy), 27
[[,ImageList,ANY,ANY-method

(ImageList-class), 21
[[,ImagingExperiment,ANY,ANY-method

(ImagingExperiment-class), 22
[[,ImagingResult,ANY,ANY-method

(ImagingResult-class), 24

[[,ResultSet,ANY,ANY-method (legacy), 27
[[,ResultSet-method (legacy), 27
[[,SparseImagingResult,ANY,ANY-method

(ImagingResult-class), 24
[[,iSet,ANY,ANY-method (legacy), 27
[[,iSet-method (legacy), 27
[[<-,ImageData,character,missing-method

(legacy), 27
[[<-,ImageData-method (legacy), 27
[[<-,ImageList,ANY,ANY-method

(ImageList-class), 21
[[<-,ImagingExperiment,ANY,ANY-method

(ImagingExperiment-class), 22
[[<-,ImagingResult,ANY,ANY-method

(ImagingResult-class), 24
[[<-,MSContinuousImagingSpectraList,ANY,ANY-method

(MSContinuousImagingExperiment-class),
30

[[<-,MSProcessedImagingSpectraList,ANY,ANY-method
(MSProcessedImagingExperiment-class),
34

[[<-,SparseImagingResult,ANY,ANY-method
(ImagingResult-class), 24

[[<-,XDataFrame,ANY,ANY-method
(XDataFrame-class), 90

[[<-,iSet,ANY,ANY-method (legacy), 27
[[<-,iSet-method (legacy), 27
$,ImagingExperiment-method

(ImagingExperiment-class), 22
$,ImagingResult-method

(ImagingResult-class), 24
$,ResultSet-method (legacy), 27
$,iSet-method (legacy), 27
$<-,ImagingExperiment-method

(ImagingExperiment-class), 22
$<-,XDataFrame-method

(XDataFrame-class), 90
$<-,iSet-method (legacy), 27
%>% (reexports), 67

abstract,MIAPE-Imaging-method (legacy),
27

addShape (simulateSpectrum), 69
aggregate,MSImagingExperiment-method

(aggregate-methods), 4
aggregate,SparseImagingExperiment-method

(aggregate-methods), 4
aggregate-methods, 4
alpha.colors (intensity.colors), 25
annotatedDataFrameFrom,ImageData-method

(legacy), 27
AnnotatedImage, 8
AnnotatedImage (AnnotatedImage-class), 5

94 INDEX

AnnotatedImage-class, 5
AnnotatedImageList, 7
AnnotatedImageList

(AnnotatedImagingExperiment-class),
6

AnnotatedImageList-class
(AnnotatedImagingExperiment-class),
6

AnnotatedImagingExperiment
(AnnotatedImagingExperiment-class),
6

AnnotatedImagingExperiment-class, 6
arrange (deprecated), 12
as.data.frame,XDataFrame-method

(XDataFrame-class), 90
as.env,list-method (XDataFrame-class),

90
as.env,XDataFrame-method

(XDataFrame-class), 90
as.list,ImageList-method

(ImageList-class), 21
as.list,MassDataFrame-method

(MassDataFrame-class), 27
as.list,MSImagingInfo-method

(MSImagingInfo-class), 32
as.list,PositionDataFrame-method

(PositionDataFrame-class), 60
as.matrix,XDataFrame-method

(XDataFrame-class), 90

baselineReduction
(MSImagingInfo-class), 32

baselineReduction,MSImageProcess-method
(legacy), 27

baselineReduction,Vector-method
(MSImagingInfo-class), 32

baselineReduction<-
(MSImagingInfo-class), 32

baselineReduction<-,MSImageProcess-method
(legacy), 27

baselineReduction<-,Vector-method
(MSImagingInfo-class), 32

batchProcess (legacy), 27
batchProcess,MSImageSet-method

(legacy), 27
batchProcess-methods (legacy), 27
bplapply, 9, 10, 13, 29, 50, 63, 65, 70, 78, 80,

82, 84
bw.colors (intensity.colors), 25

Cardinal (Cardinal-package), 3
Cardinal-legacy (legacy), 27
Cardinal-package, 3

Cardinal-reexports (reexports), 67
CardinalLog (Cardinal-package), 3
CardinalVersion (Cardinal-package), 3
cbind,AnnotatedImageList-method

(AnnotatedImagingExperiment-class),
6

cbind,Hashmat-method (legacy), 27
cbind,ImageArrayList-method

(ImageList-class), 21
cbind,ImagingExperiment-method

(ImagingExperiment-class), 22
cbind,MassDataFrame-method

(MassDataFrame-class), 27
cbind,MSImagingExperiment-method

(MSImagingExperiment-class), 30
cbind,PositionDataFrame-method

(PositionDataFrame-class), 60
cbind,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

cbind,SparseImagingResult-method
(ImagingResult-class), 24

cbind,XDataFrame-method
(XDataFrame-class), 90

centroided (MSImagingExperiment-class),
30

centroided,MSImageProcess-method
(legacy), 27

centroided,MSImageSet-method (legacy),
27

centroided,MSImagingExperiment-method
(MSImagingExperiment-class), 30

centroided<-
(MSImagingExperiment-class), 30

centroided<-,MSImageProcess-method
(legacy), 27

centroided<-,MSImageSet-method
(legacy), 27

centroided<-,MSImagingExperiment-method
(MSImagingExperiment-class), 30

cividis, 26
cividis (reexports), 67
class:AnnotatedImage

(AnnotatedImage-class), 5
class:AnnotatedImageList

(AnnotatedImagingExperiment-class),
6

class:AnnotatedImagingExperiment
(AnnotatedImagingExperiment-class),
6

class:Hashmat (legacy), 27
class:IAnnotatedDataFrame (legacy), 27

INDEX 95

class:ImageArrayList (ImageList-class),
21

class:ImageData (legacy), 27
class:ImageList (ImageList-class), 21
class:ImagingExperiment

(ImagingExperiment-class), 22
class:ImagingResult

(ImagingResult-class), 24
class:iSet (legacy), 27
class:MassDataFrame

(MassDataFrame-class), 27
class:MeansTest (meansTest-methods), 28
class:MIAPE-Imaging (legacy), 27
class:MSContinuousImagingExperiment

(MSContinuousImagingExperiment-class),
30

class:MSContinuousImagingSpectraList
(ImageList-class), 21

class:MSImageData (legacy), 27
class:MSImageProcess (legacy), 27
class:MSImageSet (legacy), 27
class:MSImagingExperiment

(MSImagingExperiment-class), 30
class:MSImagingInfo

(MSImagingInfo-class), 32
class:MSProcessedImagingExperiment

(MSProcessedImagingExperiment-class),
34

class:MSProcessedImagingSpectraList
(ImageList-class), 21

class:OPLS (PLS-methods), 58
class:PCA (PCA-methods), 42
class:PLS (PLS-methods), 58
class:PositionDataFrame

(PositionDataFrame-class), 60
class:ResultSet (legacy), 27
class:SegmentationTest

(meansTest-methods), 28
class:SImageData (legacy), 27
class:SImageSet (legacy), 27
class:SimpleImageArrayList

(ImageList-class), 21
class:SimpleImageList

(ImageList-class), 21
class:SparseImagingExperiment

(SparseImagingExperiment-class),
75

class:SparseImagingResult
(ImagingResult-class), 24

class:SpatialDGMM
(spatialDGMM-methods), 77

class:spatialFastmap

(spatialFastmap-methods), 79
class:SpatialKMeans

(spatialKMeans-methods), 81
class:SpatialShrunkenCentroids

(spatialShrunkenCentroids-methods),
83

class:XDataFrame (XDataFrame-class), 90
col.map (intensity.colors), 25
collect (deprecated), 12
colnames,Hashmat-method (legacy), 27
colnames<-,Hashmat-method (legacy), 27
colocalized (colocalized-methods), 8
colocalized,MSImagingExperiment,missing-method

(colocalized-methods), 8
colocalized,SparseImagingExperiment,ANY-method

(colocalized-methods), 8
colocalized,SpatialDGMM,ANY-method

(colocalized-methods), 8
colocalized-methods, 8
color.map (intensity.colors), 25
combine,AnnotatedImageList,ANY-method

(AnnotatedImagingExperiment-class),
6

combine,array,array-method (legacy), 27
combine,Hashmat,Hashmat-method

(legacy), 27
combine,IAnnotatedDataFrame,IAnnotatedDataFrame-method

(legacy), 27
combine,ImageData,ImageData-method

(legacy), 27
combine,ImagingExperiment,ANY-method

(ImagingExperiment-class), 22
combine,iSet,iSet-method (legacy), 27
combine,MIAPE-Imaging,MIAPE-Imaging-method

(legacy), 27
combine,MSImageProcess,MSImageProcess-method

(legacy), 27
combine,MSImageSet,MSImageSet-method

(legacy), 27
combine,SImageData,SImageData-method

(legacy), 27
combine,SImageSet,SImageSet-method

(legacy), 27
combine,SparseImagingExperiment,ANY-method

(SparseImagingExperiment-class),
75

combine,SparseImagingResult,ANY-method
(ImagingResult-class), 24

combine,vector,vector-method (legacy),
27

combiner,MSProcessedImagingExperiment-method
(MSProcessedImagingExperiment-class),

96 INDEX

34
combiner,MSProcessedImagingSpectraList-method

(MSProcessedImagingExperiment-class),
34

combiner<-,MSProcessedImagingExperiment-method
(MSProcessedImagingExperiment-class),
34

combiner<-,MSProcessedImagingSpectraList-method
(MSProcessedImagingExperiment-class),
34

coord (PositionDataFrame-class), 60
coord,AnnotatedImage-method

(AnnotatedImage-class), 5
coord,AnnotatedImagingExperiment-method

(AnnotatedImagingExperiment-class),
6

coord,IAnnotatedDataFrame-method
(legacy), 27

coord,iSet-method (legacy), 27
coord,PositionDataFrame-method

(PositionDataFrame-class), 60
coord,SImageData-method (legacy), 27
coord,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

coord-methods
(PositionDataFrame-class), 60

coord<- (PositionDataFrame-class), 60
coord<-,AnnotatedImage-method

(AnnotatedImage-class), 5
coord<-,IAnnotatedDataFrame-method

(legacy), 27
coord<-,iSet-method (legacy), 27
coord<-,PositionDataFrame-method

(PositionDataFrame-class), 60
coord<-,SImageData-method (legacy), 27
coord<-,SImageSet-method (legacy), 27
coord<-,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

coordinates (PositionDataFrame-class),
60

coordinates,AnnotatedImage-method
(AnnotatedImage-class), 5

coordinates,AnnotatedImagingExperiment-method
(AnnotatedImagingExperiment-class),
6

coordinates,PositionDataFrame-method
(PositionDataFrame-class), 60

coordinates,SparseImagingExperiment-method
(SparseImagingExperiment-class),
75

coordinates-methods
(PositionDataFrame-class), 60

coordinates<-
(PositionDataFrame-class), 60

coordinates<-,AnnotatedImage-method
(AnnotatedImage-class), 5

coordinates<-,PositionDataFrame-method
(PositionDataFrame-class), 60

coordinates<-,SparseImagingExperiment-method
(SparseImagingExperiment-class),
75

coordLabels (PositionDataFrame-class),
60

coordLabels,IAnnotatedDataFrame-method
(legacy), 27

coordLabels,iSet-method (legacy), 27
coordLabels,PositionDataFrame-method

(PositionDataFrame-class), 60
coordLabels,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

coordLabels-methods
(PositionDataFrame-class), 60

coordLabels<-
(PositionDataFrame-class), 60

coordLabels<-,IAnnotatedDataFrame-method
(legacy), 27

coordLabels<-,iSet-method (legacy), 27
coordLabels<-,PositionDataFrame-method

(PositionDataFrame-class), 60
coordLabels<-,SImageSet-method

(legacy), 27
coordLabels<-,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

coordnames (PositionDataFrame-class), 60
coordnames,PositionDataFrame-method

(PositionDataFrame-class), 60
coordnames,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

coordnames-methods
(PositionDataFrame-class), 60

coordnames<- (PositionDataFrame-class),
60

coordnames<-,PositionDataFrame,ANY-method
(PositionDataFrame-class), 60

coordnames<-,SparseImagingExperiment,ANY-method
(SparseImagingExperiment-class),
75

crossValidate (cvApply-methods), 9
crossValidate,MSImagingExperiment-method

INDEX 97

(cvApply-methods), 9
crossValidate,SparseImagingExperiment-method

(cvApply-methods), 9
crossValidate-methods

(cvApply-methods), 9
cvApply (cvApply-methods), 9
cvApply,SImageSet-method

(cvApply-methods), 9
cvApply,SparseImagingExperiment-method

(cvApply-methods), 9
cvApply-methods, 9

darkmode (intensity.colors), 25
DataFrame, 7, 23, 61, 75, 76, 90
Defunct (defunct), 11
defunct, 11
Deprecated (deprecated), 12
deprecated, 12
dim,AnnotatedImageList-method

(AnnotatedImagingExperiment-class),
6

dim,Hashmat-method (legacy), 27
dim,ImageData-method (legacy), 27
dim,ImageList-method (ImageList-class),

21
dim,ImagingExperiment-method

(ImagingExperiment-class), 22
dim,iSet-method (legacy), 27
dim,SImageData-method (legacy), 27
dim,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

dim<-,Hashmat-method (legacy), 27
dimnames,Hashmat-method (legacy), 27
dimnames,ImagingExperiment-method

(ImagingExperiment-class), 22
dimnames<-,Hashmat,ANY-method (legacy),

27
dimnames<-,Hashmat-method (legacy), 27
dims,AnnotatedImageList-method

(AnnotatedImagingExperiment-class),
6

dims,AnnotatedImagingExperiment-method
(AnnotatedImagingExperiment-class),
6

dims,ImageData-method (legacy), 27
dims,ImageList-method

(ImageList-class), 21
dims,iSet-method (legacy), 27
dims,PositionDataFrame-method

(PositionDataFrame-class), 60
dims,SImageData-method (legacy), 27

dims,SparseImagingExperiment-method
(SparseImagingExperiment-class),
75

discrete.colors (intensity.colors), 25
divergent.colors (intensity.colors), 25

embeddingMethod (legacy), 27
embeddingMethod,MIAPE-Imaging-method

(legacy), 27
experimentData,iSet-method (legacy), 27
experimentData<-,iSet,ANY-method

(legacy), 27
expinfo,MIAPE-Imaging-method (legacy),

27

fData (ImagingExperiment-class), 22
fData,ImagingExperiment-method

(ImagingExperiment-class), 22
fData,iSet-method (legacy), 27
fData-methods

(ImagingExperiment-class), 22
fData<- (ImagingExperiment-class), 22
fData<-,ImagingExperiment,ANY-method

(ImagingExperiment-class), 22
fData<-,iSet,ANY-method (legacy), 27
fData<-,iSet-method (legacy), 27
featureApply, 39, 40, 63
featureApply (pixelApply-methods), 48
featureApply,SImageSet-method

(pixelApply-methods), 48
featureApply,SparseImagingExperiment-method

(pixelApply-methods), 48
featureApply-methods

(pixelApply-methods), 48
featureData (ImagingExperiment-class),

22
featureData,ImagingExperiment-method

(ImagingExperiment-class), 22
featureData,iSet-method (legacy), 27
featureData-methods

(ImagingExperiment-class), 22
featureData<-

(ImagingExperiment-class), 22
featureData<-,ImagingExperiment,ANY-method

(ImagingExperiment-class), 22
featureData<-,ImagingExperiment-method

(ImagingExperiment-class), 22
featureData<-,iSet,ANY-method (legacy),

27
featureData<-,iSet-method (legacy), 27
featureNames (ImagingExperiment-class),

22

98 INDEX

featureNames,ImagingExperiment-method
(ImagingExperiment-class), 22

featureNames,iSet-method (legacy), 27
featureNames,SImageData-method

(legacy), 27
featureNames-methods

(ImagingExperiment-class), 22
featureNames<-

(ImagingExperiment-class), 22
featureNames<-,ImagingExperiment-method

(ImagingExperiment-class), 22
featureNames<-,iSet-method (legacy), 27
featureNames<-,SImageData-method

(legacy), 27
featureNames<-,SImageSet-method

(legacy), 27
features

(SparseImagingExperiment-class),
75

features,iSet-method (legacy), 27
features,MSImageSet-method (legacy), 27
features,MSImagingExperiment-method

(MSImagingExperiment-class), 30
features,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

features-methods
(SparseImagingExperiment-class),
75

filter (deprecated), 12
findNeighbors (findNeighbors-methods),

12
findNeighbors,IAnnotatedDataFrame-method

(findNeighbors-methods), 12
findNeighbors,ImagingExperiment-method

(findNeighbors-methods), 12
findNeighbors,iSet-method

(findNeighbors-methods), 12
findNeighbors,PositionDataFrame-method

(findNeighbors-methods), 12
findNeighbors-methods, 12
fitted,PLS2-method (PLS-methods), 58
fitted,SpatialShrunkenCentroids2-method

(spatialShrunkenCentroids-methods),
83

fvarLabels,iSet-method (legacy), 27
fvarLabels<-,iSet-method (legacy), 27
fvarMetadata,iSet-method (legacy), 27
fvarMetadata<-,iSet,ANY-method

(legacy), 27
fvarMetadata<-,iSet-method (legacy), 27

generateImage (defunct), 11

generateSpectrum (defunct), 11
getCardinalBPPARAM (Cardinal-package), 3
getCardinalDelayProc

(Cardinal-package), 3
getCardinalNumBlocks

(Cardinal-package), 3
getCardinalVerbose (Cardinal-package), 3
gradient.colors (intensity.colors), 25
gridded,PositionDataFrame-method

(PositionDataFrame-class), 60
gridded,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

gridded<-,PositionDataFrame,ANY-method
(PositionDataFrame-class), 60

gridded<-,SparseImagingExperiment,ANY-method
(SparseImagingExperiment-class),
75

group_by (deprecated), 12
groups (deprecated), 12

Hashmat (legacy), 27
Hashmat-class (legacy), 27
height (AnnotatedImage-class), 5
height,AnnotatedImage-method

(AnnotatedImage-class), 5
height,AnnotatedImagingExperiment-method

(AnnotatedImagingExperiment-class),
6

height<- (AnnotatedImage-class), 5
height<-,AnnotatedImage-method

(AnnotatedImage-class), 5

IAnnotatedDataFrame, 61
IAnnotatedDataFrame (legacy), 27
IAnnotatedDataFrame-class (legacy), 27
iData (ImagingExperiment-class), 22
iData,ImagingExperiment,ANY-method

(ImagingExperiment-class), 22
iData,ImagingExperiment,missing-method

(ImagingExperiment-class), 22
iData,iSet-method (legacy), 27
iData,SImageData,ANY-method (legacy), 27
iData,SImageSet,ANY-method (legacy), 27
iData-methods

(ImagingExperiment-class), 22
iData<- (ImagingExperiment-class), 22
iData<-,ImagingExperiment,ANY-method

(ImagingExperiment-class), 22
iData<-,ImagingExperiment,missing-method

(ImagingExperiment-class), 22
iData<-,iSet-method (legacy), 27

INDEX 99

iData<-,MSContinuousImagingExperiment,ANY-method
(MSContinuousImagingExperiment-class),
30

iData<-,MSContinuousImagingExperiment,missing-method
(MSContinuousImagingExperiment-class),
30

iData<-,MSProcessedImagingExperiment,ANY-method
(MSProcessedImagingExperiment-class),
34

iData<-,MSProcessedImagingExperiment,missing-method
(MSProcessedImagingExperiment-class),
34

iData<-,SImageData,ANY-method (legacy),
27

iData<-,SImageSet,ANY-method (legacy),
27

Image, 5, 6
image, 13, 57, 68, 69
image (image-methods), 14
image,AnnotatedImage-method

(image-methods), 14
image,AnnotatedImageList-method

(image-methods), 14
image,AnnotatedImagingExperiment-method

(image-methods), 14
image,CrossValidated-method

(image-methods), 14
image,formula-method (image-methods), 14
image,MeansTest-method (image-methods),

14
image,MSImageSet-method

(image-methods), 14
image,MSImagingExperiment-method

(image-methods), 14
image,MSImagingSummary-method

(image-methods), 14
image,OPLS-method (image-methods), 14
image,PCA-method (image-methods), 14
image,PCA2-method (image-methods), 14
image,PLS-method (image-methods), 14
image,PLS2-method (image-methods), 14
image,PositionDataFrame-method

(image-methods), 14
image,ResultSet-method (image-methods),

14
image,SegmentationTest-method

(image-methods), 14
image,SImageSet-method (image-methods),

14
image,SparseImagingExperiment-method

(image-methods), 14
image,SparseImagingResult-method

(image-methods), 14
image,SparseImagingSummary-method

(image-methods), 14
image,SpatialDGMM-method

(image-methods), 14
image,SpatialFastmap-method

(image-methods), 14
image,SpatialFastmap2-method

(image-methods), 14
image,SpatialKMeans-method

(image-methods), 14
image,SpatialKMeans2-method

(image-methods), 14
image,SpatialShrunkenCentroids-method

(image-methods), 14
image,SpatialShrunkenCentroids2-method

(image-methods), 14
image-methods, 14
image3D (image-methods), 14
image3D,CrossValidated-method

(image-methods), 14
image3D,MeansTest-method

(image-methods), 14
image3D,MSImageSet-method

(image-methods), 14
image3D,OPLS-method (image-methods), 14
image3D,PCA-method (image-methods), 14
image3D,PCA2-method (image-methods), 14
image3D,PLS-method (image-methods), 14
image3D,PLS2-method (image-methods), 14
image3D,ResultSet-method

(image-methods), 14
image3D,SegmentationTest-method

(image-methods), 14
image3D,SImageSet-method

(image-methods), 14
image3D,SparseImagingExperiment-method

(image-methods), 14
image3D,SpatialDGMM-method

(image-methods), 14
image3D,SpatialFastmap-method

(image-methods), 14
image3D,SpatialFastmap2-method

(image-methods), 14
image3D,SpatialKMeans-method

(image-methods), 14
image3D,SpatialKMeans2-method

(image-methods), 14
image3D,SpatialShrunkenCentroids-method

(image-methods), 14
image3D,SpatialShrunkenCentroids2-method

(image-methods), 14

100 INDEX

image3D-methods (image-methods), 14
ImageArrayList, 24, 30, 31, 75, 76
ImageArrayList (ImageList-class), 21
ImageArrayList-class (ImageList-class),

21
ImageData, 22
ImageData (legacy), 27
imageData (ImagingExperiment-class), 22
imageData,ImagingExperiment-method

(ImagingExperiment-class), 22
imageData,iSet-method (legacy), 27
ImageData-class (legacy), 27
imageData-methods

(ImagingExperiment-class), 22
imageData<- (ImagingExperiment-class),

22
imageData<-,ImagingExperiment-method

(ImagingExperiment-class), 22
imageData<-,iSet-method (legacy), 27
imageData<-,MSContinuousImagingExperiment-method

(MSContinuousImagingExperiment-class),
30

imageData<-,MSProcessedImagingExperiment-method
(MSProcessedImagingExperiment-class),
34

ImageList, 23
ImageList (ImageList-class), 21
ImageList-class, 21
imageShape (legacy), 27
imageShape,MIAPE-Imaging-method

(legacy), 27
ImagingExperiment, 7, 8, 21, 24, 25, 31, 32,

75–77
ImagingExperiment

(ImagingExperiment-class), 22
ImagingExperiment-class, 22
ImagingResult, 11
ImagingResult (ImagingResult-class), 24
ImagingResult-class, 24
inferno, 26
inferno (reexports), 67
initialize,Hashmat-method (legacy), 27
initialize,IAnnotatedDataFrame-method

(legacy), 27
initialize,ImageData-method (legacy), 27
initialize,iSet-method (legacy), 27
initialize,MassDataFrame-method

(MassDataFrame-class), 27
initialize,MSImageData-method (legacy),

27
initialize,MSImageProcess-method

(legacy), 27

initialize,MSImageSet-method (legacy),
27

initialize,PositionDataFrame-method
(PositionDataFrame-class), 60

initialize,SImageData-method (legacy),
27

initialize,SImageSet-method (legacy), 27
inSituChemistry (legacy), 27
inSituChemistry,MIAPE-Imaging-method

(legacy), 27
instrumentModel (MSImagingInfo-class),

32
instrumentModel,MIAPE-Imaging-method

(legacy), 27
instrumentModel,Vector-method

(MSImagingInfo-class), 32
instrumentVendor (MSImagingInfo-class),

32
instrumentVendor,MIAPE-Imaging-method

(legacy), 27
instrumentVendor,Vector-method

(MSImagingInfo-class), 32
intensity.colors, 25
intensityData

(MSProcessedImagingExperiment-class),
34

intensityData,MSImagingInfo-method
(MSImagingInfo-class), 32

intensityData,MSProcessedImagingExperiment-method
(MSProcessedImagingExperiment-class),
34

intensityData-methods
(MSProcessedImagingExperiment-class),
34

intensityData<-
(MSProcessedImagingExperiment-class),
34

intensityData<-,MSProcessedImagingExperiment-method
(MSProcessedImagingExperiment-class),
34

ionizationType (MSImagingInfo-class), 32
ionizationType,MIAPE-Imaging-method

(legacy), 27
ionizationType,Vector-method

(MSImagingInfo-class), 32
irlba, 43
is3D (SparseImagingExperiment-class), 75
is3D,IAnnotatedDataFrame-method

(legacy), 27
is3D,PositionDataFrame-method

(PositionDataFrame-class), 60
is3D,SImageSet-method (legacy), 27

INDEX 101

is3D,SparseImagingExperiment-method
(SparseImagingExperiment-class),
75

isCentroided
(MSImagingExperiment-class), 30

isCentroided,MassDataFrame-method
(MassDataFrame-class), 27

isCentroided,MSImagingExperiment-method
(MSImagingExperiment-class), 30

isCentroided,MSImagingInfo-method
(MSImagingInfo-class), 32

iSet (legacy), 27
iSet-class (legacy), 27

jet.colors (intensity.colors), 25

keys (legacy), 27
keys,Hashmat-method (legacy), 27
keys,MSProcessedImagingSpectraList-method

(MSProcessedImagingExperiment-class),
34

keys<- (legacy), 27
keys<-,Hashmat,character-method

(legacy), 27
keys<-,Hashmat,list-method (legacy), 27
keys<-,Hashmat-method (legacy), 27
keys<-,MSProcessedImagingSpectraList,ANY-method

(MSProcessedImagingExperiment-class),
34

kmeans, 82

lapply,XDataFrame-method
(XDataFrame-class), 90

legacy, 27
length,AnnotatedImage-method

(AnnotatedImage-class), 5
length,ImageList-method

(ImageList-class), 21
length,ImagingExperiment-method

(ImagingExperiment-class), 22
length,iSet-method (legacy), 27
length,MSImagingInfo-method

(MSImagingInfo-class), 32
length,ResultSet-method (legacy), 27
length,XDataFrame-method

(XDataFrame-class), 90
levelplot, 19, 57
lightmode (intensity.colors), 25
lineScanDirection

(MSImagingInfo-class), 32
lineScanDirection,MIAPE-Imaging-method

(legacy), 27

lineScanDirection,Vector-method
(MSImagingInfo-class), 32

lm, 29
lme, 29
locator, 68
loess.control, 36
logLik,SpatialShrunkenCentroids-method

(spatialShrunkenCentroids-methods),
83

logLik,SpatialShrunkenCentroids2-method
(spatialShrunkenCentroids-methods),
83

magma, 26
magma (reexports), 67
makeFactor (selectROI-methods), 68
massAnalyzerType (MSImagingInfo-class),

32
massAnalyzerType,MIAPE-Imaging-method

(legacy), 27
massAnalyzerType,Vector-method

(MSImagingInfo-class), 32
MassDataFrame, 30, 31, 35, 70, 90
MassDataFrame (MassDataFrame-class), 27
MassDataFrame-class, 27
matrixApplication

(MSImagingInfo-class), 32
matrixApplication,MIAPE-Imaging-method

(legacy), 27
matrixApplication,Vector-method

(MSImagingInfo-class), 32
matter, 64
matter_mat, 30
meansTest, 88
meansTest (meansTest-methods), 28
meansTest,SparseImagingExperiment-method

(meansTest-methods), 28
MeansTest-class (meansTest-methods), 28
meansTest-methods, 28
MIAPE-Imaging (legacy), 27
MIAPE-Imaging-class (legacy), 27
MIAxE, 33
modelData (ImagingResult-class), 24
modelData,ImagingResult-method

(ImagingResult-class), 24
modelData,ResultSet-method (legacy), 27
modelData<- (ImagingResult-class), 24
modelData<-,ImagingResult-method

(ImagingResult-class), 24
modelData<-,ResultSet-method (legacy),

27
MSContinuousImagingExperiment, 7, 31, 32,

34

102 INDEX

MSContinuousImagingExperiment
(MSContinuousImagingExperiment-class),
30

MSContinuousImagingExperiment-class,
30

MSContinuousImagingSpectraList
(ImageList-class), 21

MSContinuousImagingSpectraList-class
(ImageList-class), 21

msiInfo (MSImagingInfo-class), 32
msiInfo,MIAPE-Imaging-method (legacy),

27
msiInfo,MSContinuousImagingExperiment-method

(MSImagingInfo-class), 32
msiInfo,MSImageSet-method

(MSImagingInfo-class), 32
msiInfo,MSImagingExperiment-method

(MSImagingInfo-class), 32
msiInfo,MSProcessedImagingExperiment-method

(MSImagingInfo-class), 32
MSImageData (legacy), 27
MSImageData-class (legacy), 27
MSImageProcess (legacy), 27
MSImageProcess-class (legacy), 27
MSImageSet, 7, 31, 39–41, 44, 45, 48, 51, 65,

67, 74
MSImageSet (legacy), 27
MSImageSet-class (legacy), 27
MSImagingExperiment, 11, 23, 24, 30, 34, 37,

38, 40, 41, 45, 46, 48, 51, 63, 67, 71,
74, 75, 77

MSImagingExperiment
(MSImagingExperiment-class), 30

MSImagingExperiment-class, 30
MSImagingInfo (MSImagingInfo-class), 32
MSImagingInfo-class, 32
MSProcessedImagingExperiment, 7, 30–32
MSProcessedImagingExperiment

(MSProcessedImagingExperiment-class),
34

MSProcessedImagingExperiment-class, 34
MSProcessedImagingSpectraList

(ImageList-class), 21
MSProcessedImagingSpectraList-class

(ImageList-class), 21
mutate (deprecated), 12
mz (mz-methods), 35
mz,MassDataFrame-method

(MassDataFrame-class), 27
mz,missing-method (mz-methods), 35
mz,MSImageSet-method (legacy), 27
mz,MSImagingExperiment-method

(MSImagingExperiment-class), 30
mz-methods, 35
mz<- (mz-methods), 35
mz<-,MassDataFrame-method

(MassDataFrame-class), 27
mz<-,MSImageSet-method (legacy), 27
mz<-,MSImagingExperiment-method

(MSImagingExperiment-class), 30
mz<-,MSProcessedImagingExperiment-method

(MSProcessedImagingExperiment-class),
34

mzAlign, 38
mzAlign (mzAlign-methods), 36
mzAlign,MSImagingExperiment,missing-method

(mzAlign-methods), 36
mzAlign,MSImagingExperiment,numeric-method

(mzAlign-methods), 36
mzAlign-methods, 36
mzBin, 37
mzBin (mzBin-methods), 37
mzBin,MSImagingExperiment,missing-method

(mzBin-methods), 37
mzBin,MSImagingExperiment,numeric-method

(mzBin-methods), 37
mzBin-methods, 37
mzData

(MSProcessedImagingExperiment-class),
34

mzData,MSImageData-method (legacy), 27
mzData,MSImagingInfo-method

(MSImagingInfo-class), 32
mzData,MSProcessedImagingExperiment-method

(MSProcessedImagingExperiment-class),
34

mzData,SImageData-method (legacy), 27
mzData-methods

(MSProcessedImagingExperiment-class),
34

mzData<-
(MSProcessedImagingExperiment-class),
34

mzData<-,MSImageData-method (legacy), 27
mzData<-,MSProcessedImagingExperiment-method

(MSProcessedImagingExperiment-class),
34

mzData<-,SImageData-method (legacy), 27
mzFilter (mzFilter-methods), 38
mzFilter,MSImagingExperiment-method

(mzFilter-methods), 38
mzFilter-methods, 38

names,ImageData-method (legacy), 27

INDEX 103

names,ImageList-method
(ImageList-class), 21

names,ImagingExperiment-method
(ImagingExperiment-class), 22

names,ResultSet-method (legacy), 27
names,XDataFrame-method

(XDataFrame-class), 90
names<-,ImageData-method (legacy), 27
names<-,ImageList-method

(ImageList-class), 21
names<-,ImagingExperiment-method

(ImagingExperiment-class), 22
normalization (MSImagingInfo-class), 32
normalization,MSImageProcess-method

(legacy), 27
normalization,Vector-method

(MSImagingInfo-class), 32
normalization<- (MSImagingInfo-class),

32
normalization<-,MSImageProcess-method

(legacy), 27
normalization<-,Vector-method

(MSImagingInfo-class), 32
normalize, 63
normalize (normalize-methods), 40
normalize,MSImageSet-method

(normalize-methods), 40
normalize,SparseImagingExperiment-method

(normalize-methods), 40
normalize-methods, 40
normalize.reference

(normalize-methods), 40
normalize.rms (normalize-methods), 40
normalize.tic (normalize-methods), 40
notes,MIAPE-Imaging-method (legacy), 27
notes<-,MIAPE-Imaging,character-method

(legacy), 27
notes<-,MIAPE-Imaging,list-method

(legacy), 27

OPLS, 11, 43
OPLS (PLS-methods), 58
OPLS,SImageSet,ANY-method

(PLS-methods), 58
OPLS,SImageSet,matrix-method

(PLS-methods), 58
OPLS,SparseImagingExperiment,ANY-method

(PLS-methods), 58
OPLS-class (PLS-methods), 58
OPLS-methods (PLS-methods), 58
otherInfo,MIAPE-Imaging-method

(legacy), 27

PCA, 42, 60, 80
PCA (PCA-methods), 42
PCA,SImageSet-method (PCA-methods), 42
PCA,SparseImagingExperiment-method

(PCA-methods), 42
PCA-class (PCA-methods), 42
PCA-methods, 42
pData (ImagingExperiment-class), 22
pData,Hashmat-method (legacy), 27
pData,ImagingExperiment-method

(ImagingExperiment-class), 22
pData,iSet-method (legacy), 27
pData-methods

(ImagingExperiment-class), 22
pData<- (ImagingExperiment-class), 22
pData<-,Hashmat,ANY-method (legacy), 27
pData<-,Hashmat-method (legacy), 27
pData<-,ImagingExperiment,ANY-method

(ImagingExperiment-class), 22
pData<-,iSet,ANY-method (legacy), 27
pData<-,iSet-method (legacy), 27
peakAlign, 37, 40, 46, 48, 63
peakAlign (peakAlign-methods), 43
peakAlign,MSImageSet,missing-method

(peakAlign-methods), 43
peakAlign,MSImageSet,MSImageSet-method

(peakAlign-methods), 43
peakAlign,MSImageSet,numeric-method

(peakAlign-methods), 43
peakAlign,MSImagingExperiment,character-method

(peakAlign-methods), 43
peakAlign,MSImagingExperiment,missing-method

(peakAlign-methods), 43
peakAlign,MSImagingExperiment,numeric-method

(peakAlign-methods), 43
peakAlign-methods, 43
peakAlign.diff (peakAlign-methods), 43
peakAlign.DP (peakAlign-methods), 43
peakBin, 38, 40, 45, 48, 63
peakBin (peakBin-methods), 45
peakBin,MSImagingExperiment,missing-method

(peakBin-methods), 45
peakBin,MSImagingExperiment,numeric-method

(peakBin-methods), 45
peakBin-methods, 45
peakData (MSImagingExperiment-class), 30
peakData,MSImageData-method (legacy), 27
peakData,MSImagingExperiment-method

(MSImagingExperiment-class), 30
peakData,SImageData-method (legacy), 27
peakData-methods

(MSImagingExperiment-class), 30

104 INDEX

peakData<- (MSImagingExperiment-class),
30

peakData<-,MSImageData-method (legacy),
27

peakData<-,MSImagingExperiment-method
(MSImagingExperiment-class), 30

peakData<-,SImageData-method (legacy),
27

peakFilter, 45, 46, 48, 63
peakFilter (mzFilter-methods), 38
peakFilter,MSImageSet-method

(mzFilter-methods), 38
peakFilter,MSImagingExperiment-method

(mzFilter-methods), 38
peakFilter-methods (mzFilter-methods),

38
peakFilter.freq (mzFilter-methods), 38
peakPick, 40, 45, 46, 63
peakPick (peakPick-methods), 46
peakPick,MSImageSet-method

(peakPick-methods), 46
peakPick,MSImagingExperiment-method

(peakPick-methods), 46
peakPick-methods, 46
peakPick.adaptive (peakPick-methods), 46
peakPick.limpic (peakPick-methods), 46
peakPick.mad (peakPick-methods), 46
peakPick.simple (peakPick-methods), 46
peakPicking (MSImagingInfo-class), 32
peakPicking,MSImageProcess-method

(legacy), 27
peakPicking,Vector-method

(MSImagingInfo-class), 32
peakPicking<- (MSImagingInfo-class), 32
peakPicking<-,MSImageProcess-method

(legacy), 27
peakPicking<-,Vector-method

(MSImagingInfo-class), 32
peaks (MSImagingExperiment-class), 30
peaks,MSImageSet-method (legacy), 27
peaks,MSImagingExperiment-method

(MSImagingExperiment-class), 30
peaks-methods

(MSImagingExperiment-class), 30
peaks<- (MSImagingExperiment-class), 30
peaks<-,MSImageSet-method (legacy), 27
peaks<-,MSImagingExperiment-method

(MSImagingExperiment-class), 30
phenoData (ImagingExperiment-class), 22
phenoData,ImagingExperiment-method

(ImagingExperiment-class), 22
phenoData-methods

(ImagingExperiment-class), 22
phenoData<- (ImagingExperiment-class),

22
phenoData<-,ImagingExperiment,ANY-method

(ImagingExperiment-class), 22
pixelApply, 36–38, 41, 44–48, 63, 67, 74
pixelApply (pixelApply-methods), 48
pixelApply,SImageSet-method

(pixelApply-methods), 48
pixelApply,SparseImagingExperiment-method

(pixelApply-methods), 48
pixelApply-methods, 48
pixelData (ImagingExperiment-class), 22
pixelData,ImagingExperiment-method

(ImagingExperiment-class), 22
pixelData,iSet-method (legacy), 27
pixelData,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

pixelData-methods
(ImagingExperiment-class), 22

pixelData<- (ImagingExperiment-class),
22

pixelData<-,ImagingExperiment-method
(ImagingExperiment-class), 22

pixelData<-,iSet-method (legacy), 27
pixelData<-,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

pixelNames (ImagingExperiment-class), 22
pixelNames,IAnnotatedDataFrame-method

(legacy), 27
pixelNames,ImagingExperiment-method

(ImagingExperiment-class), 22
pixelNames,iSet-method (legacy), 27
pixelNames,SImageData-method (legacy),

27
pixelNames,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

pixelNames-methods
(ImagingExperiment-class), 22

pixelNames<- (ImagingExperiment-class),
22

pixelNames<-,IAnnotatedDataFrame-method
(legacy), 27

pixelNames<-,ImagingExperiment-method
(ImagingExperiment-class), 22

pixelNames<-,iSet-method (legacy), 27
pixelNames<-,SImageData-method

(legacy), 27
pixelNames<-,SImageSet-method (legacy),

INDEX 105

27
pixelNames<-,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

pixels (SparseImagingExperiment-class),
75

pixels,iSet-method (legacy), 27
pixels,MSImageSet-method (legacy), 27
pixels,MSImagingExperiment-method

(MSImagingExperiment-class), 30
pixels,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

pixels-methods
(SparseImagingExperiment-class),
75

pixelSize (MSImagingInfo-class), 32
pixelSize,MIAPE-Imaging-method

(legacy), 27
pixelSize,Vector-method

(MSImagingInfo-class), 32
plasma, 26
plasma (reexports), 67
plot, 20, 57
plot (plot-methods), 52
plot,AnnotatedImage,ANY-method

(plot-methods), 52
plot,AnnotatedImageList,ANY-method

(plot-methods), 52
plot,AnnotatedImagingExperiment,ANY-method

(plot-methods), 52
plot,CrossValidated,missing-method

(plot-methods), 52
plot,DataFrame,ANY-method

(plot-methods), 52
plot,MassDataFrame,formula-method

(plot-methods), 52
plot,MassDataFrame,missing-method

(plot-methods), 52
plot,MeansTest,missing-method

(plot-methods), 52
plot,MSImageSet,formula-method

(plot-methods), 52
plot,MSImageSet,missing-method

(plot-methods), 52
plot,MSImagingExperiment,formula-method

(plot-methods), 52
plot,MSImagingExperiment,missing-method

(plot-methods), 52
plot,MSImagingSummary,missing-method

(plot-methods), 52
plot,OPLS,missing-method

(plot-methods), 52
plot,PCA,missing-method (plot-methods),

52
plot,PCA2,missing-method

(plot-methods), 52
plot,PLS,missing-method (plot-methods),

52
plot,PLS2,missing-method

(plot-methods), 52
plot,ResultSet,formula-method

(plot-methods), 52
plot,ResultSet,missing-method

(plot-methods), 52
plot,SegmentationTest,missing-method

(plot-methods), 52
plot,SImageSet,formula-method

(plot-methods), 52
plot,SImageSet,missing-method

(plot-methods), 52
plot,SparseImagingExperiment,formula-method

(plot-methods), 52
plot,SparseImagingExperiment,missing-method

(plot-methods), 52
plot,SparseImagingResult,formula-method

(plot-methods), 52
plot,SparseImagingResult,missing-method

(plot-methods), 52
plot,SparseImagingSummary,formula-method

(plot-methods), 52
plot,SparseImagingSummary,missing-method

(plot-methods), 52
plot,SpatialDGMM,missing-method

(plot-methods), 52
plot,SpatialFastmap,missing-method

(plot-methods), 52
plot,SpatialFastmap2,missing-method

(plot-methods), 52
plot,SpatialKMeans,missing-method

(plot-methods), 52
plot,SpatialKMeans2,missing-method

(plot-methods), 52
plot,SpatialShrunkenCentroids,missing-method

(plot-methods), 52
plot,SpatialShrunkenCentroids2,missing-method

(plot-methods), 52
plot,XDataFrame,formula-method

(plot-methods), 52
plot,XDataFrame,missing-method

(plot-methods), 52
plot-methods, 52
plot.summary.CrossValidated

(cvApply-methods), 9

106 INDEX

plot.summary.OPLS (PLS-methods), 58
plot.summary.PCA (PCA-methods), 42
plot.summary.PLS (PLS-methods), 58
plot.summary.SpatialFastmap

(spatialFastmap-methods), 79
plot.summary.SpatialKMeans

(spatialKMeans-methods), 81
plot.summary.SpatialShrunkenCentroids

(spatialShrunkenCentroids-methods),
83

PLS, 11, 43, 59
PLS (PLS-methods), 58
PLS,SImageSet,ANY-method (PLS-methods),

58
PLS,SImageSet,matrix-method

(PLS-methods), 58
PLS,SparseImagingExperiment,ANY-method

(PLS-methods), 58
PLS-class (PLS-methods), 58
PLS-methods, 58
positionArray (legacy), 27
positionArray,SImageData-method

(legacy), 27
positionArray<- (legacy), 27
positionArray<-,SImageData-method

(legacy), 27
PositionDataFrame, 24, 30, 31, 70, 71, 75,

76, 90
PositionDataFrame

(PositionDataFrame-class), 60
PositionDataFrame-class, 60
predict,OPLS-method (PLS-methods), 58
predict,PCA-method (PCA-methods), 42
predict,PCA2-method (PCA-methods), 42
predict,PLS-method (PLS-methods), 58
predict,PLS2-method (PLS-methods), 58
predict,SpatialShrunkenCentroids-method

(spatialShrunkenCentroids-methods),
83

predict,SpatialShrunkenCentroids2-method
(spatialShrunkenCentroids-methods),
83

preproc,MIAPE-Imaging-method (legacy),
27

preproc,SparseImagingExperiment-method
(SparseImagingExperiment-class),
75

preproc<-,MIAPE-Imaging-method
(legacy), 27

presetImageDef, 70
presetImageDef (simulateSpectrum), 69
print.summary.CrossValidated

(cvApply-methods), 9
print.summary.iSet (legacy), 27
print.summary.OPLS (PLS-methods), 58
print.summary.PCA (PCA-methods), 42
print.summary.PLS (PLS-methods), 58
print.summary.SpatialFastmap

(spatialFastmap-methods), 79
print.summary.SpatialKMeans

(spatialKMeans-methods), 81
print.summary.SpatialShrunkenCentroids

(spatialShrunkenCentroids-methods),
83

process, 37, 38, 40, 41, 45, 46, 48, 67, 74
process (process-methods), 62
process,MSImagingExperiment-method

(process-methods), 62
process,SparseImagingExperiment-method

(process-methods), 62
process-methods, 62
processingData (legacy), 27
processingData,MSImageSet-method

(legacy), 27
processingData,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

processingData-methods (legacy), 27
processingData<- (legacy), 27
processingData<-,MSImageSet-method

(legacy), 27
processingData<-,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

protocolData,iSet-method (legacy), 27
protocolData<-,iSet,ANY-method

(legacy), 27
pubMedIds,MIAPE-Imaging-method

(legacy), 27
pubMedIds<-,MIAPE-Imaging,ANY-method

(legacy), 27
pull,MSImagingExperiment-method

(MSImagingExperiment-class), 30
pull,MSProcessedImagingExperiment-method

(MSProcessedImagingExperiment-class),
34

pull,SparseImagingExperiment-method
(SparseImagingExperiment-class),
75

range,AnnotatedImage-method
(AnnotatedImage-class), 5

rbind,AnnotatedImageList-method
(AnnotatedImagingExperiment-class),
6

INDEX 107

rbind,Hashmat-method (legacy), 27
rbind,ImageArrayList-method

(ImageList-class), 21
rbind,ImagingExperiment-method

(ImagingExperiment-class), 22
rbind,MassDataFrame-method

(MassDataFrame-class), 27
rbind,MSImagingExperiment-method

(MSImagingExperiment-class), 30
rbind,PositionDataFrame-method

(PositionDataFrame-class), 60
rbind,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

rbind,SparseImagingResult-method
(ImagingResult-class), 24

rbind,XDataFrame-method
(XDataFrame-class), 90

readAnalyze (readMSIData), 64
readImzML, 70
readImzML (readMSIData), 64
readMSIData, 64, 89
reduceBaseline, 63
reduceBaseline

(reduceBaseline-methods), 66
reduceBaseline,MSImageSet-method

(reduceBaseline-methods), 66
reduceBaseline,SparseImagingExperiment-method

(reduceBaseline-methods), 66
reduceBaseline-methods, 66
reduceBaseline.locmin

(reduceBaseline-methods), 66
reduceBaseline.median

(reduceBaseline-methods), 66
reduceDimension, 38, 40, 45, 46, 48
reduceDimension (legacy), 27
reduceDimension,MSImageSet,missing-method

(legacy), 27
reduceDimension,MSImageSet,MSImageSet-method

(legacy), 27
reduceDimension,MSImageSet,numeric-method

(legacy), 27
reduceDimension-methods (legacy), 27
reduceDimension.bin (legacy), 27
reduceDimension.peaks (legacy), 27
reduceDimension.resample (legacy), 27
reexports, 67
regeneratePositions (legacy), 27
regeneratePositions,SImageData-method

(legacy), 27
regeneratePositions,SImageSet-method

(legacy), 27

resolution (PositionDataFrame-class), 60
resolution,AnnotatedImage-method

(AnnotatedImage-class), 5
resolution,AnnotatedImagingExperiment-method

(AnnotatedImagingExperiment-class),
6

resolution,MassDataFrame-method
(MassDataFrame-class), 27

resolution,MSImagingExperiment-method
(MSImagingExperiment-class), 30

resolution,PositionDataFrame-method
(PositionDataFrame-class), 60

resolution,SparseImagingExperiment-method
(SparseImagingExperiment-class),
75

resolution<- (PositionDataFrame-class),
60

resolution<-,AnnotatedImage-method
(AnnotatedImage-class), 5

resolution<-,MassDataFrame-method
(MassDataFrame-class), 27

resolution<-,MSImagingExperiment-method
(MSImagingExperiment-class), 30

resolution<-,MSProcessedImagingExperiment-method
(MSProcessedImagingExperiment-class),
34

resolution<-,PositionDataFrame-method
(PositionDataFrame-class), 60

resolution<-,SparseImagingExperiment-method
(SparseImagingExperiment-class),
75

resultData (ImagingResult-class), 24
resultData,ImagingResult,ANY-method

(ImagingResult-class), 24
resultData,ImagingResult,missing-method

(ImagingResult-class), 24
resultData,ResultSet,ANY-method

(legacy), 27
resultData,ResultSet-method (legacy), 27
resultData<- (ImagingResult-class), 24
resultData<-,ImagingResult,ANY-method

(ImagingResult-class), 24
resultData<-,ImagingResult,missing-method

(ImagingResult-class), 24
resultData<-,ResultSet,missing-method

(legacy), 27
resultData<-,ResultSet-method (legacy),

27
resultNames (ImagingResult-class), 24
resultNames,ImagingResult-method

(ImagingResult-class), 24
resultNames<- (ImagingResult-class), 24

108 INDEX

ResultSet, 11
ResultSet (legacy), 27
ResultSet-class (legacy), 27
risk.colors (intensity.colors), 25
rownames,Hashmat-method (legacy), 27
rownames<-,Hashmat-method (legacy), 27
run (PositionDataFrame-class), 60
run,PositionDataFrame-method

(PositionDataFrame-class), 60
run,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

run<- (PositionDataFrame-class), 60
run<-,PositionDataFrame-method

(PositionDataFrame-class), 60
run<-,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

runNames (PositionDataFrame-class), 60
runNames,PositionDataFrame-method

(PositionDataFrame-class), 60
runNames,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

runNames<- (PositionDataFrame-class), 60
runNames<-,PositionDataFrame-method

(PositionDataFrame-class), 60
runNames<-,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

sampleNames (ImagingExperiment-class),
22

sampleNames,IAnnotatedDataFrame-method
(legacy), 27

sampleNames,ImagingExperiment-method
(ImagingExperiment-class), 22

sampleNames,iSet-method (legacy), 27
sampleNames-methods

(ImagingExperiment-class), 22
sampleNames<-

(ImagingExperiment-class), 22
sampleNames<-,IAnnotatedDataFrame,ANY-method

(legacy), 27
sampleNames<-,IAnnotatedDataFrame-method

(legacy), 27
sampleNames<-,ImagingExperiment,ANY-method

(ImagingExperiment-class), 22
sampleNames<-,iSet,ANY-method (legacy),

27
sampleNames<-,iSet-method (legacy), 27
samples,MIAPE-Imaging-method (legacy),

27

scanDirection (MSImagingInfo-class), 32
scanDirection,MIAPE-Imaging-method

(legacy), 27
scanDirection,Vector-method

(MSImagingInfo-class), 32
scanPattern (MSImagingInfo-class), 32
scanPattern,MIAPE-Imaging-method

(legacy), 27
scanPattern,Vector-method

(MSImagingInfo-class), 32
scanPolarity (MSImagingInfo-class), 32
scanPolarity,MIAPE-Imaging-method

(legacy), 27
scanPolarity,Vector-method

(MSImagingInfo-class), 32
scans,MSImagingInfo-method

(MSImagingInfo-class), 32
scanType (MSImagingInfo-class), 32
scanType,MIAPE-Imaging-method (legacy),

27
scanType,Vector-method

(MSImagingInfo-class), 32
segmentationTest, 88
segmentationTest (meansTest-methods), 28
segmentationTest,SparseImagingExperiment-method

(meansTest-methods), 28
segmentationTest,SpatialDGMM-method

(meansTest-methods), 28
SegmentationTest-class

(meansTest-methods), 28
segmentationTest-methods

(meansTest-methods), 28
select (deprecated), 12
selectROI, 20
selectROI (selectROI-methods), 68
selectROI,SImageSet-method

(selectROI-methods), 68
selectROI,SparseImagingExperiment-method

(selectROI-methods), 68
selectROI-methods, 68
setCardinalBPPARAM (Cardinal-package), 3
setCardinalDelayProc

(Cardinal-package), 3
setCardinalNumBlocks

(Cardinal-package), 3
setCardinalVerbose (Cardinal-package), 3
setup.layout (plot-methods), 52
show,AnnotatedImageList-method

(AnnotatedImagingExperiment-class),
6

show,AnnotatedImagingExperiment-method
(AnnotatedImagingExperiment-class),

INDEX 109

6
show,Hashmat-method (legacy), 27
show,IAnnotatedDataFrame-method

(legacy), 27
show,ImageData-method (legacy), 27
show,ImagingExperiment-method

(ImagingExperiment-class), 22
show,ImagingResult-method

(ImagingResult-class), 24
show,iSet-method (legacy), 27
show,MIAPE-Imaging-method (legacy), 27
show,MSImageProcess-method (legacy), 27
show,MSImageSet-method (legacy), 27
show,MSImagingExperiment-method

(MSImagingExperiment-class), 30
show,ResultSet-method (legacy), 27
show,SimpleImageList-method

(ImageList-class), 21
show,SparseImagingExperiment-method

(SparseImagingExperiment-class),
75

show,SparseImagingResult-method
(ImagingResult-class), 24

show,XDataFrame-method
(XDataFrame-class), 90

showNames (XDataFrame-class), 90
showNames,MassDataFrame-method

(MassDataFrame-class), 27
showNames,PositionDataFrame-method

(PositionDataFrame-class), 60
showNames,XDataFrame-method

(XDataFrame-class), 90
SImageData (legacy), 27
SImageData-class (legacy), 27
SImageSet, 11, 48, 51
SImageSet (legacy), 27
SImageSet-class (legacy), 27
SimpleImageArrayList-class

(ImageList-class), 21
SimpleImageList-class

(ImageList-class), 21
SimpleList, 21, 22, 31, 75, 76
simulateImage, 11, 71
simulateImage (simulateSpectrum), 69
simulateSpectrum, 11, 69, 70, 71
slice (slice-methods), 72
slice,SparseImagingExperiment-method

(slice-methods), 72
slice-methods, 72
slice.SparseImagingExperiment

(deprecated), 12
smooth (smoothSignal-methods), 73

smooth,SparseImagingExperiment-method
(smoothSignal-methods), 73

smooth-methods (smoothSignal-methods),
73

smoothing (MSImagingInfo-class), 32
smoothing,MSImageProcess-method

(legacy), 27
smoothing,Vector-method

(MSImagingInfo-class), 32
smoothing<- (MSImagingInfo-class), 32
smoothing<-,MSImageProcess-method

(legacy), 27
smoothing<-,Vector-method

(MSImagingInfo-class), 32
smoothSignal, 63
smoothSignal (smoothSignal-methods), 73
smoothSignal,MSImageSet-method

(smoothSignal-methods), 73
smoothSignal,SparseImagingExperiment-method

(smoothSignal-methods), 73
smoothSignal-methods, 73
smoothSignal.gaussian

(smoothSignal-methods), 73
smoothSignal.ma (smoothSignal-methods),

73
smoothSignal.sgolay

(smoothSignal-methods), 73
softwareName (legacy), 27
softwareName,MIAPE-Imaging-method

(legacy), 27
softwareVersion (legacy), 27
softwareVersion,MIAPE-Imaging-method

(legacy), 27
sort,XDataFrame-method

(XDataFrame-class), 90
sparse_mat, 13, 34
SparseImagingExperiment, 11, 23–25, 31,

32, 48, 50, 63, 71, 72
SparseImagingExperiment

(SparseImagingExperiment-class),
75

SparseImagingExperiment-class, 75
SparseImagingResult

(ImagingResult-class), 24
SparseImagingResult-class

(ImagingResult-class), 24
spatialApply (pixelApply-methods), 48
spatialApply,SparseImagingExperiment-method

(pixelApply-methods), 48
spatialApply-methods

(pixelApply-methods), 48
spatialDGMM, 29

110 INDEX

spatialDGMM (spatialDGMM-methods), 77
spatialDGMM,SparseImagingExperiment-method

(spatialDGMM-methods), 77
SpatialDGMM-class

(spatialDGMM-methods), 77
spatialDGMM-methods, 77
spatialFastmap

(spatialFastmap-methods), 79
spatialFastmap,SImageSet-method

(spatialFastmap-methods), 79
spatialFastmap,SparseImagingExperiment-method

(spatialFastmap-methods), 79
spatialFastmap-class

(spatialFastmap-methods), 79
spatialFastmap-methods, 79
spatialKMeans, 80, 85
spatialKMeans (spatialKMeans-methods),

81
spatialKMeans,SImageSet-method

(spatialKMeans-methods), 81
spatialKMeans,SparseImagingExperiment-method

(spatialKMeans-methods), 81
SpatialKMeans-class

(spatialKMeans-methods), 81
spatialKMeans-methods, 81
spatialShrunkenCentroids, 11, 60, 80, 82,

84, 88
spatialShrunkenCentroids

(spatialShrunkenCentroids-methods),
83

spatialShrunkenCentroids,SImageSet,character-method
(spatialShrunkenCentroids-methods),
83

spatialShrunkenCentroids,SImageSet,factor-method
(spatialShrunkenCentroids-methods),
83

spatialShrunkenCentroids,SImageSet,missing-method
(spatialShrunkenCentroids-methods),
83

spatialShrunkenCentroids,SparseImagingExperiment,ANY-method
(spatialShrunkenCentroids-methods),
83

spatialShrunkenCentroids,SparseImagingExperiment,missing-method
(spatialShrunkenCentroids-methods),
83

SpatialShrunkenCentroids-class
(spatialShrunkenCentroids-methods),
83

spatialShrunkenCentroids-methods, 83
spatialWeights (findNeighbors-methods),

12
spatialWeights,IAnnotatedDataFrame-method

(findNeighbors-methods), 12
spatialWeights,ImagingExperiment-method

(findNeighbors-methods), 12
spatialWeights,iSet-method

(findNeighbors-methods), 12
spatialWeights,PositionDataFrame-method

(findNeighbors-methods), 12
spatialWeights-methods

(findNeighbors-methods), 12
specimenOrigin (legacy), 27
specimenOrigin,MIAPE-Imaging-method

(legacy), 27
specimenType (legacy), 27
specimenType,MIAPE-Imaging-method

(legacy), 27
spectra (MSImagingExperiment-class), 30
spectra,MSImageSet-method (legacy), 27
spectra,MSImagingExperiment-method

(MSImagingExperiment-class), 30
spectra-methods

(MSImagingExperiment-class), 30
spectra<- (MSImagingExperiment-class),

30
spectra<-,MSImageSet-method (legacy), 27
spectra<-,MSImagingExperiment-method

(MSImagingExperiment-class), 30
spectraData

(MSImagingExperiment-class), 30
spectraData,MSImagingExperiment-method

(MSImagingExperiment-class), 30
spectraData-methods

(MSImagingExperiment-class), 30
spectraData<-

(MSImagingExperiment-class), 30
spectraData<-,MSImagingExperiment-method

(MSImagingExperiment-class), 30
spectrumRepresentation

(MSImagingInfo-class), 32
spectrumRepresentation,MSImageProcess-method

(legacy), 27
spectrumRepresentation,Vector-method

(MSImagingInfo-class), 32
spectrumRepresentation<-

(MSImagingInfo-class), 32
spectrumRepresentation<-,MSImageProcess-method

(legacy), 27
spectrumRepresentation<-,Vector-method

(MSImagingInfo-class), 32
stainingMethod (legacy), 27
stainingMethod,MIAPE-Imaging-method

(legacy), 27
standardizeRuns (legacy), 27

INDEX 111

standardizeRuns,MSImageSet-method
(legacy), 27

standardizeRuns-methods (legacy), 27
standardizeRuns.sum (legacy), 27
storageMode,ImageData-method (legacy),

27
storageMode,iSet-method (legacy), 27
storageMode<-,ImageData,character-method

(legacy), 27
storageMode<-,iSet,ANY-method (legacy),

27
storageMode<-,iSet,character-method

(legacy), 27
subset,SparseImagingExperiment-method

(subset-methods), 85
subset-methods, 85
subsetFeatures (subset-methods), 85
subsetPixels (subset-methods), 85
summarise (deprecated), 12
summarize (deprecated), 12
summarizeFeatures (aggregate-methods), 4
summarizePixels (aggregate-methods), 4
summary,CrossValidated-method

(cvApply-methods), 9
summary,CrossValidated2-method

(cvApply-methods), 9
summary,iSet-method (legacy), 27
summary,MeansTest-method

(meansTest-methods), 28
summary,OPLS-method (PLS-methods), 58
summary,PCA-method (PCA-methods), 42
summary,PCA2-method (PCA-methods), 42
summary,PLS-method (PLS-methods), 58
summary,PLS2-method (PLS-methods), 58
summary,SegmentationTest-method

(meansTest-methods), 28
summary,SpatialDGMM-method

(spatialDGMM-methods), 77
summary,SpatialFastmap-method

(spatialFastmap-methods), 79
summary,SpatialFastmap2-method

(spatialFastmap-methods), 79
summary,SpatialKMeans-method

(spatialKMeans-methods), 81
summary,SpatialKMeans2-method

(spatialKMeans-methods), 81
summary,SpatialShrunkenCentroids-method

(spatialShrunkenCentroids-methods),
83

summary,SpatialShrunkenCentroids2-method
(spatialShrunkenCentroids-methods),
83

svd, 43

tapply, 50, 51
tissueThickness (legacy), 27
tissueThickness,MIAPE-Imaging-method

(legacy), 27
tissueWash (legacy), 27
tissueWash,MIAPE-Imaging-method

(legacy), 27
tolerance,MSProcessedImagingExperiment-method

(MSProcessedImagingExperiment-class),
34

tolerance,MSProcessedImagingSpectraList-method
(MSProcessedImagingExperiment-class),
34

tolerance<-,MSProcessedImagingExperiment-method
(MSProcessedImagingExperiment-class),
34

tolerance<-,MSProcessedImagingSpectraList-method
(MSProcessedImagingExperiment-class),
34

topFeatures, 9
topFeatures (topFeatures-methods), 86
topFeatures,CrossValidated-method

(topFeatures-methods), 86
topFeatures,MeansTest-method

(topFeatures-methods), 86
topFeatures,OPLS-method

(topFeatures-methods), 86
topFeatures,PCA-method

(topFeatures-methods), 86
topFeatures,PLS-method

(topFeatures-methods), 86
topFeatures,ResultSet-method

(topFeatures-methods), 86
topFeatures,SegmentationTest-method

(topFeatures-methods), 86
topFeatures,SpatialKMeans-method

(topFeatures-methods), 86
topFeatures,SpatialKMeans2-method

(topFeatures-methods), 86
topFeatures,SpatialShrunkenCentroids-method

(topFeatures-methods), 86
topFeatures,SpatialShrunkenCentroids2-method

(topFeatures-methods), 86
topFeatures-methods, 86

ungroup (deprecated), 12

varLabels,iSet-method (legacy), 27
varLabels<-,iSet-method (legacy), 27
varMetadata,iSet-method (legacy), 27

112 INDEX

varMetadata<-,iSet,ANY-method (legacy),
27

varMetadata<-,iSet-method (legacy), 27
viridis, 26
viridis (reexports), 67

width,AnnotatedImage-method
(AnnotatedImage-class), 5

width,AnnotatedImagingExperiment-method
(AnnotatedImagingExperiment-class),
6

width<-,AnnotatedImage-method
(AnnotatedImage-class), 5

writeAnalyze (writeMSIData), 88
writeAnalyze,MSImageSet-method

(writeMSIData), 88
writeImzML (writeMSIData), 88
writeImzML,MSImageSet-method

(writeMSIData), 88
writeMSIData, 65, 88
writeMSIData,MSImageSet,character-method

(writeMSIData), 88

XDataFrame, 24, 27, 28, 60, 61
XDataFrame (XDataFrame-class), 90
XDataFrame-class, 90
xyplot, 57

	Cardinal-package
	aggregate-methods
	AnnotatedImage-class
	AnnotatedImagingExperiment-class
	colocalized-methods
	cvApply-methods
	defunct
	deprecated
	findNeighbors-methods
	image-methods
	ImageList-class
	ImagingExperiment-class
	ImagingResult-class
	intensity.colors
	legacy
	MassDataFrame-class
	meansTest-methods
	MSContinuousImagingExperiment-class
	MSImagingExperiment-class
	MSImagingInfo-class
	MSProcessedImagingExperiment-class
	mz-methods
	mzAlign-methods
	mzBin-methods
	mzFilter-methods
	normalize-methods
	PCA-methods
	peakAlign-methods
	peakBin-methods
	peakPick-methods
	pixelApply-methods
	plot-methods
	PLS-methods
	PositionDataFrame-class
	process-methods
	readMSIData
	reduceBaseline-methods
	reexports
	selectROI-methods
	simulateSpectrum
	slice-methods
	smoothSignal-methods
	SparseImagingExperiment-class
	spatialDGMM-methods
	spatialFastmap-methods
	spatialKMeans-methods
	spatialShrunkenCentroids-methods
	subset-methods
	topFeatures-methods
	writeMSIData
	XDataFrame-class
	Index

