Multi-Omics Factor Analysis v2


[Up] [Top]

Documentation for package ‘MOFA2’ version 1.0.1

Help Pages

%>% Re-exporting the pipe operator See 'magrittr::%>%' for details.
calculate_variance_explained Calculate variance explained by the model
cluster_samples K-means clustering on samples based on latent factors
compare_elbo Compare different trained 'MOFA' objects in terms of the final value of the ELBO statistics and number of inferred factors
compare_factors Plot the correlation of factors between different models
correlate_factors_with_covariates Plot correlation of factors with external covariates
create_mofa create a MOFA object
create_mofa_from_df create a MOFA object from a data.frame object
create_mofa_from_matrix create a MOFA object from a a list of matrices
create_mofa_from_MultiAssayExperiment create a MOFA object from a MultiAssayExperiment object
create_mofa_from_Seurat create a MOFA object from a Seurat object
create_mofa_from_SingleCellExperiment create a MOFA object from a SingleCellExperiment object
factors_names factors_names: set and retrieve factor names
factors_names-method factors_names: set and retrieve factor names
factors_names<- factors_names: set and retrieve factor names
factors_names<--method factors_names: set and retrieve factor names
features_metadata features_metadata: set and retrieve feature metadata
features_metadata-method features_metadata: set and retrieve feature metadata
features_metadata<- features_metadata: set and retrieve feature metadata
features_metadata<--method features_metadata: set and retrieve feature metadata
features_names features_names: set and retrieve feature names
features_names-method features_names: set and retrieve feature names
features_names<- features_names: set and retrieve feature names
features_names<--method features_names: set and retrieve feature names
get_data Get data
get_default_data_options Get default data options
get_default_model_options Get default model options
get_default_stochastic_options Get default stochastic options
get_default_training_options Get default training options
get_dimensions Get dimensions
get_elbo Get ELBO
get_expectations Get expectations
get_factors Get factors
get_imputed_data Get imputed data
get_variance_explained Get variance explained values
get_weights Get weights
groups_names groups_names: set and retrieve group names
groups_names-method groups_names: set and retrieve group names
groups_names<- groups_names: set and retrieve group names
groups_names<--method groups_names: set and retrieve group names
impute Impute missing values from a fitted MOFA
load_model Load a trained MOFA
make_example_data Simulate a data set using the generative model of MOFA
MOFA Class to store a mofa model
MOFA-class Class to store a mofa model
plot_ascii_data Visualize the structure of the data in the terminal
plot_data_heatmap Plot heatmap of relevant features
plot_data_overview Overview of the input data
plot_data_scatter Scatterplots of feature values against latent factors
plot_dimred Plot dimensionality reduction based on MOFA factors
plot_enrichment Plot output of gene set Enrichment Analysis
plot_enrichment_detailed Plot detailed output of the Feature Set Enrichment Analysis
plot_enrichment_heatmap Heatmap of Feature Set Enrichment Analysis results
plot_factor Beeswarm plot of factor values
plot_factors Scatterplots of two factor values
plot_factor_cor Plot correlation matrix between latent factors
plot_top_weights Plot top weights
plot_variance_explained Plot variance explained by the model
plot_variance_explained_per_feature Plot variance explained by the model for a set of features Returns a tile plot with a group on the X axis and a feature along the Y axis
plot_weights Plot distribution of feature weights (weights)
plot_weights_heatmap Plot heatmap of the weights
plot_weights_scatter Scatterplots of weights
predict Do predictions using a fitted MOFA
prepare_mofa Prepare a MOFA for training
run_enrichment Run feature set Enrichment Analysis
run_mofa Train a MOFA model
run_tsne Run t-SNE on the MOFA factors
run_umap Run UMAP on the MOFA factors
samples_metadata samples_metadata: retrieve sample metadata
samples_metadata-method samples_metadata: retrieve sample metadata
samples_metadata<- samples_metadata: retrieve sample metadata
samples_metadata<--method samples_metadata: retrieve sample metadata
samples_names samples_names: set and retrieve sample names
samples_names-method samples_names: set and retrieve sample names
samples_names<- samples_names: set and retrieve sample names
samples_names<--method samples_names: set and retrieve sample names
select_model Select a model from a list of trained 'MOFA' objects based on the best ELBO value
subset_factors Subset factors
subset_features Subset features
subset_groups Subset groups
subset_samples Subset samples
subset_views Subset views
summarise_factors Summarise factor values using external groups
views_names views_names: set and retrieve view names
views_names-method views_names: set and retrieve view names
views_names<- views_names: set and retrieve view names
views_names<--method views_names: set and retrieve view names