
GWAS Data Cleaning

GENEVA Coordinating Center
Department of Biostatistics
University of Washington

April 27, 2020

Contents

1 Overview 2

2 Preparing Data 3
2.1 Data formats used in GWASTools . 3
2.2 Creating the SNP Annotation Data Object . 3
2.3 Creating the Scan Annotation Data Object . 6
2.4 Creating the Data Files . 8
2.5 Combining data files with SNP and Scan annotation 17

3 Batch Quality Checks 22
3.1 Calculate Missing Call Rate for Samples and SNPs 22
3.2 Calculate Missing Call Rates by Batch . 30
3.3 Chi-Square Test of Allelic Frequency Differences in Batches 33

4 Sample Quality Checks 37
4.1 Sample genotype quality scores . 37
4.2 B Allele Frequency variance analysis . 38
4.3 Missingness and heterozygosity within samples . 41

5 Sample Identity Checks 46
5.1 Mis-annotated Sex Check . 46
5.2 Relatedness and IBD Estimation . 48
5.3 Population Structure . 55

6 Case-Control Confounding 61
6.1 Principal Components Differences . 61
6.2 Missing Call Rate Differences . 66

7 Chromosome Anomaly Detection 68
7.1 B Allele Frequency filtering . 68
7.2 Loss of Heterozygosity . 69
7.3 Statistics . 70

1

7.4 Identify low quality samples . 71
7.5 Filter anomalies . 72

8 SNP Quality Checks 73
8.1 Duplicate Sample Discordance . 73
8.2 Mendelian Error Checking . 76
8.3 Hardy-Weinberg Equilibrium Testing . 83

9 Preliminary Association Tests 89
9.1 Association Test . 89
9.2 QQ Plots . 90
9.3 “Manhattan” Plots of the P-Values . 90
9.4 SNP Cluster Plots . 91

10 Acknowledgements 93

1 Overview

This vignette takes a user through the data cleaning steps developed and used for genome wide
association data as part of the Gene Environment Association studies (GENEVA) project. This
project (http://www.genevastudy.org) is a collection of whole-genome studies supported by the
NIH-wide Gene-Environment Initiative. The methods used in this vignette have been published in
Laurie et al. (2010).1

For replication purposes the data used here are taken from the HapMap project. These data were
kindly provided by the Center for Inherited Disease Research (CIDR) at Johns Hopkins University
and the Broad Institute of MIT and Harvard University (Broad). The data are in the same format
as these centers use in providing data to investigators: the content and format of these data are
a little different from those for processed data available at the HapMap project site. The data
supplied here should not be used for any purpose other than this tutorial.

1Laurie, Cathy C., et al. Quality Control and Quality Assurance in Genotypic Data for Genome-Wide Association
Studies. Genetic Epidemiology 34, 591-602 (August 2010).

2

http://www.genevastudy.org

2 Preparing Data

2.1 Data formats used in GWASTools

The GWASTools package provides containers for storing annotation data called SnpAnnotation-

DataFrame and ScanAnnotationDataFrame (derived from the AnnotatedDataFrame class in the
Biobase package). The name “scan” refers to a single genotyping instance. Some subjects in a
study are usually genotyped multiple times for quality control purposes, so these subjects will have
duplicate scans. Throughout this tutorial, “scan”or“sample”refers to a unique genotyping instance.

The AnnotationDataFrame classes provide a way to store metadata about an annotation vari-
able in the same R object as the variable itself. When a new column is added to an Annotation-
DataFrame, we also add a column to the metadata describing what that data means. The SNP
and scan AnnotationDataFrame objects are stored in R data objects (.RData files) which can be
directly loaded into R.

The raw and called genotype data can be stored in the Genomic Data Structure (GDS) format
(http://corearray.sourceforge.net), or the Network Common Data Format (NetCDF) (http://www.unidata.ucar.edu/software/netcdf/).
In the GWASTools package, access to the GDS files is provided by the GdsGenotypeReader and
GdsIntensityReader classes. These classes are built on top of the gdsfmt package and provide ac-
cess to a standard set of variables defined for GWAS data. NetCDF files can be accessed with the
equivalent classes NcdfGenotypeReader and NcdfIntensityReader, which are built on top of the
ncdf4 package. The union classes GenotypeReader and IntensityReader allow the GWASTools
functions to use either storage format interchangeably.

Additionally, the GDS (or NetCDF) files and SNP and scan annotation can be linked through
the GenotypeData and IntensityData classes, which have slots for a GenotypeReader (or Inten-
sityReader) object, a SnpAnnotationDataFrame object, and a ScanAnnotationDataFrame object.
When an object of one of these classes is created, it performs checks to ensure that the annotation
matches the data stored in the data file and all required information is present. The majority of the
functions in the GWASTools package take GenotypeData or IntensityData objects as arguments.

2.2 Creating the SNP Annotation Data Object

All of the functions in GWASTools require a minimum set of variables in the SNP annotation data
object. The minimum required variables are

� snpID, a unique integer identifier for each SNP.

� chromosome, an integer mapping for each chromosome, with values 1-27, mapped in order
from 1-22, 23=X, 24=XY (the pseudoautosomal region), 25=Y, 26=M (the mitochondrial
probes), and 27=U (probes with unknown positions). (It is possible to change the default
integer mapping, e.g., to match the codes used by PLINK, but this should be done with
caution. See the manual pages for more details.)

� position, the base position of each SNP on the chromosome.

We create the integer chromosome mapping for a few reasons. The chromosome is stored as
an integer in the data files, so in order to link the SNP annotation with the data file, we use the
integer values in the annotation as well. For convenience when using GWASTools functions, the
chromosome variable is most times assumed to be an integer value. Thus, for the sex chromosomes,

3

http://corearray.sourceforge.net
http://www.unidata.ucar.edu/software/netcdf/

we can simply use the chromosome values. For presentation of results, it is important to have the
mapping of the integer values back to the standard designations for the chromosome names, thus
the getChromosome() functions in the GWASTools objects have a char=TRUE option to return
the characters 1-22, X, XY, Y, M, U. The position variable should hold all numeric values of the
physical position of a probe. The SNP annotation file is assumed to list the probes in order of
chromosome and position within chromosome.

> library(GWASTools)

> library(GWASdata)

> # Load the SNP annotation (simple data frame)

> data(illumina_snp_annot)

> # Create a SnpAnnotationDataFrame

> snpAnnot <- SnpAnnotationDataFrame(illumina_snp_annot)

> # names of columns

> varLabels(snpAnnot)

[1] "snpID" "chromosome" "position" "rsID"

[5] "alleleA" "alleleB" "BeadSetID" "IntensityOnly"

[9] "tAA" "tAB" "tBB" "rAA"

[13] "rAB" "rBB"

> # data

> head(pData(snpAnnot))

snpID chromosome position rsID alleleA alleleB BeadSetID IntensityOnly

1 999447 21 13733610 rs3132407 A G 1185447327 1

2 999465 21 13852569 rs2775671 T C 1169708488 0

3 999493 21 14038583 rs2775018 T C 1192445330 0

4 999512 21 14136579 rs3115511 T C 1149617207 0

5 999561 21 14396024 rs2822404 T C 1149961944 0

6 999567 21 14404476 rs1556276 A G 1149617207 0

tAA tAB tBB rAA rAB rBB

1 0.013743570 0.3290431 0.9184624 1.5622030 1.5927530 1.6142590

2 0.063259460 0.5440393 0.9796721 0.4431986 0.4431986 0.4431986

3 0.001315146 0.2623954 0.5362323 2.6349810 2.3149340 2.0012760

4 0.011004820 0.5692499 0.9846884 0.8781826 0.9453412 0.8209958

5 0.040206810 0.5691788 0.9902423 1.0941700 1.1270790 0.9898759

6 0.030895730 0.6842008 0.9837771 0.5954081 0.7681253 0.7900150

> # Add metadata to describe the columns

> meta <- varMetadata(snpAnnot)

> meta[c("snpID", "chromosome", "position", "rsID", "alleleA", "alleleB",

+ "BeadSetID", "IntensityOnly", "tAA", "tAB", "tBB", "rAA", "rAB", "rBB"),

+ "labelDescription"] <- c("unique integer ID for SNPs",

+ paste("integer code for chromosome: 1:22=autosomes,",

+ "23=X, 24=pseudoautosomal, 25=Y, 26=Mitochondrial, 27=Unknown"),

+ "base pair position on chromosome (build 36)",

4

+ "RS identifier",

+ "alelleA", "alleleB",

+ "BeadSet ID from Illumina",

+ "1=no genotypes were attempted for this assay",

+ "mean theta for AA cluster",

+ "mean theta for AB cluster",

+ "mean theta for BB cluster",

+ "mean R for AA cluster",

+ "mean R for AB cluster",

+ "mean R for BB cluster")

> varMetadata(snpAnnot) <- meta

Variables in the SNP annotation data frame can be accessed either with the data frame operators
$ and [[or with “get” methods.

> snpID <- snpAnnot$snpID

> snpID <- getSnpID(snpAnnot)

> chrom <- snpAnnot[["chromosome"]]

> chrom <- getChromosome(snpAnnot)

> table(chrom)

chrom

21 22 23 24 25 26

1000 1000 1000 100 100 100

> chrom <- getChromosome(snpAnnot, char=TRUE)

> table(chrom)

chrom

21 22 M X XY Y

1000 1000 100 1000 100 100

> position <- getPosition(snpAnnot)

> rsID <- getVariable(snpAnnot, "rsID")

The following methods are equivalent and can all be used on SnpAnnotationDataFrame objects:

AnnotatedDataFrame method GWASTools method

pData getAnnotation
varMetadata getMetadata
varLabels getVariableNames

However, only the AnnotatedDataFrame methods have corresponding “set” methods. New vari-
ables can be added with $ or [[. [also behaves as expected for standard data frames.

> tmp <- snpAnnot[,c("snpID", "chromosome", "position")]

> snp <- getAnnotation(tmp)

5

> snp$flag <- sample(c(TRUE, FALSE), nrow(snp), replace=TRUE)

> pData(tmp) <- snp

> meta <- getMetadata(tmp)

> meta["flag", "labelDescription"] <- "flag"

> varMetadata(tmp) <- meta

> getVariableNames(tmp)

[1] "snpID" "chromosome" "position" "flag"

> varLabels(tmp)[4] <- "FLAG"

> rm(tmp)

2.3 Creating the Scan Annotation Data Object

The scan annotation file holds attributes for each genotyping scan that are relevant to genotypic data
cleaning. These data include processing variables such as tissue type, DNA extraction method, and
genotype processing batch. They also include individual characteristics such as sex, race, ethnicity,
and case status. Since a single subject may have been genotyped multiple times as a quality
control measure, it is important to distinguish between the scanID (unique genotyping instance)
and subjectID (person providing a DNA sample). The miniumum required variables for the scan
annotation data object are

� scanID, a unique identifier for each scan.

� sex, coded as “M”/“F”. (Note that a ScanAnnotationDataFrame object may be valid without
a sex variable, but it is required for many GWASTools functions.)

> # Load the scan annotation (simple data frame)

> data(illumina_scan_annot)

> # Create a ScanAnnotationDataFrame

> scanAnnot <- ScanAnnotationDataFrame(illumina_scan_annot)

> # names of columns

> varLabels(scanAnnot)

[1] "scanID" "subjectID" "family" "father" "mother" "CoriellID"

[7] "race" "sex" "status" "genoRunID" "plate" "batch"

[13] "file"

> # data

> head(pData(scanAnnot))

scanID subjectID family father mother CoriellID race sex status

1 280 200191449 1341 0 0 NA06985 CEU F 1

2 281 200191449 1341 0 0 NA06985 CEU F 1

3 282 200030290 1341 200099417 200191449 NA06991 CEU F 0

4 283 200030290 1341 200099417 200191449 NA06991 CEU F 0

5 284 200099417 1341 0 0 NA06993 CEU M 1

6

6 285 200099417 1341 0 0 NA06993 CEU M 1

genoRunID plate batch

1 WG1000993-DNAG10-CIDR_06985@1007850397 WG0052814-AMP2 A

2 WG1000992-DNAF10-CIDR_06985@1007850586 WG0061258-AMP2 A

3 WG1000970-DNAB11-CIDR_06991@1007850444 WG0061536-AMP2 B

4 WG1000969-DNAA11-CIDR_06991@1007850587 WG0053489-AMP2 A

5 WG1000972-DNAE10-CIDR_06993@1007850591 WG0060475-AMP2 C

6 WG1000971-DNAD10-CIDR_06993@1007850421 WG0061540-AMP2 B

file

1 GENEVA_1M_HapMap_37.csv

2 GENEVA_1M_HapMap_58.csv

3 GENEVA_1M_HapMap_5.csv

4 GENEVA_1M_HapMap_3.csv

5 GENEVA_1M_HapMap_10.csv

6 GENEVA_1M_HapMap_71.csv

> # Add metadata to describe the columns

> meta <- varMetadata(scanAnnot)

> meta[c("scanID", "subjectID", "family", "father", "mother",

+ "CoriellID", "race", "sex", "status", "genoRunID", "plate",

+ "batch", "file"), "labelDescription"] <-

+ c("unique ID for scans",

+ "subject identifier (may have multiple scans)",

+ "family identifier",

+ "father identifier as subjectID",

+ "mother identifier as subjectID",

+ "Coriell subject identifier",

+ "HapMap population group",

+ "sex coded as M=male and F=female",

+ "simulated case/control status" ,

+ "genotyping instance identifier",

+ "plate containing samples processed together for genotyping chemistry",

+ "simulated genotyping batch",

+ "raw data file")

> varMetadata(scanAnnot) <- meta

As for SnpAnnotationDataFrame, variables in the scan annotation data frame can be accessed
either with the data frame operators $ and [[or with “get” methods.

> scanID <- scanAnnot$scanID

> scanID <- getScanID(scanAnnot)

> sex <- scanAnnot[["sex"]]

> sex <- getSex(scanAnnot)

> subjectID <- getVariable(scanAnnot, "subjectID")

The AnnotatedDataFrame methods and their GWASTools equivalents described in Section 2.2
apply to ScanAnnotationDataFrame as well.

7

2.4 Creating the Data Files

The data for genotype calls, allelic intensities and other variables such as B Allele Frequency are
stored as GDS or NetCDF files. This format is used for the ease with which extremely large multi-
dimensional arrays of data can be stored and accessed, as many GWAS datasets are too large to
be stored in memory at one time. We will create three different GDS files to be used in subsequent
cleaning and analysis steps.

All data files contain variables for scanID, snpID, chromosome, and position. The scanID

ordering must match the scanID values as listed in the sample annotation object (Section 2.3).
Since snpID is in chromosome and position order, these variables also provide a check on ordering
and are often used to select subsets of SNPs for analysis. Analogous to the sample ordering, these
values must match the snpID values listed in the SNP annotation object (Section 2.2). To prevent
errors in ordering samples or SNPs, the functions in the GWASTools package take as arguments R
objects which will return an error on creation if the sample and SNP annotation does not match
the data file.

Genotype Files

The genotype files store genotypic data in 0, 1, 2 format indicating the number of “A” alleles in
the genotype (i.e. AA=2, AB=1, BB=0 and missing=-1). The conversion from AB format and
forward strand (or other) allele formats can be stored in the SNP annotation file.

The genotypic data are stored as a two-dimensional array, where rows are SNPs and columns
are samples. To store the genotype data, the raw data files are opened and checked to ensure
the sample identifier from the sample annotation file and the genotype data file match. If no
discrepencies exist, the probes listed in the file are checked against the expected list of probes, then
ordered and written to the data file. This process iterates over each file (sample). Diagnostics
are stored as the process continues so that after the data are written one can ensure the function
performed as expected.

Creating the Genotype file

We create a GDS file from a set of plain text files containing the genotypes, one file per sample.
The data are written to the GDS file one sample at a time and, simultaneously, the corresponding
sample identifier scanID is written to the sample ID variable. The file variable from the scan
annotation holds the name of the raw data file for each sample/scan; these are the files we must
read in to get genotype data for each sample.

The function createDataFile creates the common SNP variables as described above. In this
case, we also want the genotype variable to be created, so the variables argument must be set to
"genotype". col.nums is an integer vector indicating which columns of the raw text file contain
variables for input. A set of diagnostic values are written and stored in diag.geno, so we must
look at those to ensure no errors occurred.

> # Define a path to the raw data files

> path <- system.file("extdata", "illumina_raw_data", package="GWASdata")

> geno.file <- "tmp.geno.gds"

> # first 3 samples only

> scan.annotation <- illumina_scan_annot[1:3, c("scanID", "genoRunID", "file")]

8

> names(scan.annotation)[2] <- "scanName"

> snp.annotation <- illumina_snp_annot[,c("snpID", "rsID", "chromosome", "position")]

> # indicate which column of SNP annotation is referenced in data files

> names(snp.annotation)[2] <- "snpName"

> col.nums <- as.integer(c(1,2,12,13))

> names(col.nums) <- c("snp", "sample", "a1", "a2")

> diag.geno.file <- "diag.geno.RData"

> diag.geno <- createDataFile(path = path,

+ filename = geno.file,

+ file.type = "gds",

+ variables = "genotype",

+ snp.annotation = snp.annotation,

+ scan.annotation = scan.annotation,

+ sep.type = ",",

+ skip.num = 11,

+ col.total = 21,

+ col.nums = col.nums,

+ scan.name.in.file = 1,

+ diagnostics.filename = diag.geno.file,

+ verbose = FALSE)

> # Look at the values included in the "diag.geno" object which holds

> # all output from the function call

> names(diag.geno)

[1] "read.file" "row.num" "samples" "sample.match" "missg"

[6] "snp.chk" "chk"

> # `read.file' is a vector indicating whether (1) or not (0) each file

> # specified in the `files' argument was read successfully

> table(diag.geno$read.file)

1

3

> # `row.num' is a vector of the number of rows read from each file

> table(diag.geno$row.num)

3300

3

> # `sample.match' is a vector indicating whether (1) or not (0)

> # the sample name inside the raw text file matches that in the

> # sample annotation data.frame

> table(diag.geno$sample.match)

1

3

9

> # `snp.chk' is a vector indicating whether (1) or not (0)

> # the raw text file has the expected set of SNP names

> table(diag.geno$snp.chk)

1

3

> # `chk' is a vector indicating whether (1) or not (0) all previous

> # checks were successful and the data were written to the data file

> table(diag.geno$chk)

1

3

Run the function checkGenotypeFile to check that the GDS file contains the same data as the
raw data files.

> check.geno.file <- "check.geno.RData"

> check.geno <- checkGenotypeFile(path = path,

+ filename = geno.file,

+ file.type = "gds",

+ snp.annotation = snp.annotation,

+ scan.annotation = scan.annotation,

+ sep.type = ",",

+ skip.num = 11,

+ col.total = 21,

+ col.nums = col.nums,

+ scan.name.in.file = 1,

+ check.scan.index = 1:3,

+ n.scans.loaded = 3,

+ diagnostics.filename = check.geno.file,

+ verbose = FALSE)

> # Look at the values included in the "check.geno" object which holds

> # all output from the function call

> names(check.geno)

[1] "read.file" "row.num" "sample.names" "sample.match" "missg"

[6] "snp.chk" "chk" "geno.chk"

> # 'geno.chk' is a vector indicating whether (1) or not (0) the genotypes

> # match the text file

> table(check.geno$geno.chk)

1

3

10

Reading the Genotype file

The GdsGenotypeReader class provides a convenient interface for retrieving data from a genotype
GDS file. Some of the same “get” methods that applied to SNP and scan annotation data objects
can be used for GdsGenotypeReader objects.

> (gds <- GdsGenotypeReader(geno.file))

File: /tmp/RtmpO2mIvz/Rbuild1fe56dad31fe/GWASTools/vignettes/tmp.geno.gds (27.0K)

+ []

|--+ sample.id { Int32 3 LZMA_ra(683.3%), 89B }

|--+ snp.id { Int32 3300 LZMA_ra(25.9%), 3.3K }

|--+ snp.chromosome { UInt8 3300 LZMA_ra(3.45%), 121B }

|--+ snp.position { Int32 3300 LZMA_ra(68.4%), 8.8K }

|--+ snp.rs.id { Str8 3300 LZMA_ra(33.6%), 11.0K }

\--+ genotype { Bit2 3300x3, 2.4K } *

> nscan(gds)

[1] 3

> nsnp(gds)

[1] 3300

> head(getScanID(gds))

[1] 280 281 282

> head(getSnpID(gds))

[1] 999447 999465 999493 999512 999561 999567

> head(getChromosome(gds))

[1] 21 21 21 21 21 21

> head(getPosition(gds))

[1] 13733610 13852569 14038583 14136579 14396024 14404476

> # genotypes for the first 3 samples and the first 5 SNPs

> getGenotype(gds, snp=c(1,5), scan=c(1,3))

[,1] [,2] [,3]

[1,] NA NA NA

[2,] 0 0 0

[3,] 0 0 0

[4,] 1 1 1

[5,] 0 0 0

> close(gds)

11

Intensity Files

The intensity files store quality scores and allelic intensity data for each SNP. The normalized X
and Y intensities as well as the confidence scores are written to the file for all samples, for all SNPs.
(To keep file sizes manageable, a separate file will store the B Allele Frequency and Log R Ratio
data.)

In addition to the sample and SNP identifiers, chromosome, and position, the intensity and
quality data are written to the intensity file in a two dimensional format, with SNPs corresponding
to rows and samples corresponding to columns. To write the intensity data, the raw data files are
opened and the intensities and quality score are read. Like with the genotype data, if all sample
and probe identifiers match between the data files and the annotation files, the data are populated
in the file and diagnostics are written.

Creating the Intensity file

We call createDataFile again, this time specifying quality, X, and Y in the variables argument.
A set of diagnostic values are written and stored in diag.qxy.

> qxy.file <- "tmp.qxy.gds"

> col.nums <- as.integer(c(1,2,5,16,17))

> names(col.nums) <- c("snp", "sample", "quality", "X", "Y")

> diag.qxy.file <- "diag.qxy.RData"

> diag.qxy <- createDataFile(path = path,

+ filename = qxy.file,

+ file.type = "gds",

+ variables = c("quality","X","Y"),

+ snp.annotation = snp.annotation,

+ scan.annotation = scan.annotation,

+ sep.type = ",",

+ skip.num = 11,

+ col.total = 21,

+ col.nums = col.nums,

+ scan.name.in.file = 1,

+ diagnostics.filename = diag.qxy.file,

+ verbose = FALSE)

Run the function checkIntensityFile to check that the GDS file contains the same data as
the raw data files.

> check.qxy.file <- "check.qxy.RData"

> check.qxy <- checkIntensityFile(path = path,

+ filename = qxy.file,

+ file.type = "gds",

+ snp.annotation = snp.annotation,

+ scan.annotation = scan.annotation,

+ sep.type = ",",

+ skip.num = 11,

12

+ col.total = 21,

+ col.nums = col.nums,

+ scan.name.in.file = 1,

+ check.scan.index = 1:3,

+ n.scans.loaded = 3,

+ diagnostics.filename = check.qxy.file,

+ verbose = FALSE)

Reading the Intensity file

The GdsIntensityReader class provides a convenient interface for retrieving data from an intensity
GDS file. Its methods are similar to GdsGenotypeReader.

> (gds <- GdsIntensityReader(qxy.file))

File: /tmp/RtmpO2mIvz/Rbuild1fe56dad31fe/GWASTools/vignettes/tmp.qxy.gds (66.9K)

+ []

|--+ sample.id { Int32 3 LZMA_ra(683.3%), 89B }

|--+ snp.id { Int32 3300 LZMA_ra(25.9%), 3.3K }

|--+ snp.chromosome { UInt8 3300 LZMA_ra(3.45%), 121B }

|--+ snp.position { Int32 3300 LZMA_ra(68.4%), 8.8K }

|--+ snp.rs.id { Str8 3300 LZMA_ra(33.6%), 11.0K }

|--+ quality { Float32 3300x3 LZMA_ra(20.4%), 7.9K }

|--+ X { Float32 3300x3 LZMA_ra(44.6%), 17.2K }

\--+ Y { Float32 3300x3 LZMA_ra(43.4%), 16.8K }

> nscan(gds)

[1] 3

> nsnp(gds)

[1] 3300

> head(getScanID(gds))

[1] 280 281 282

> head(getSnpID(gds))

[1] 999447 999465 999493 999512 999561 999567

> head(getChromosome(gds))

[1] 21 21 21 21 21 21

> head(getPosition(gds))

13

[1] 13733610 13852569 14038583 14136579 14396024 14404476

> # quality score for the first 3 samples and the first 5 SNPs

> getQuality(gds, snp=c(1,5), scan=c(1,3))

[,1] [,2] [,3]

[1,] 0.0000 0.0000 0.0000

[2,] 0.7242 0.7242 0.7242

[3,] 0.2587 0.2587 0.2587

[4,] 0.9206 0.9206 0.9206

[5,] 0.9389 0.9389 0.9389

> # X intensity for the first 3 samples and the first 5 SNPs

> getX(gds, snp=c(1,5), scan=c(1,3))

[,1] [,2] [,3]

[1,] 1.668 1.581 1.462

[2,] 0.010 0.011 0.008

[3,] 0.941 0.965 0.796

[4,] 0.390 0.380 0.329

[5,] 0.010 0.010 0.008

> # Y intensity for the first 3 samples and the first 5 SNPs

> getY(gds, snp=c(1,5), scan=c(1,3))

[,1] [,2] [,3]

[1,] 0.027 0.034 0.034

[2,] 0.404 0.482 0.429

[3,] 1.088 1.149 0.934

[4,] 0.480 0.486 0.485

[5,] 0.996 0.919 0.984

> close(gds)

B Allele Frequency and Log R Ratio Files

The B Allele Frequency (BAF) and Log R Ratio (LRR) file stores these values for every sample
by SNP. For Illumina data, these values are calculated by the BeadStudio software and may be
provided by the genotyping center. For a thorough explanation and presentation of an application
of these values, please refer to Peiffer, Daniel A., et al. (2006).2

For a given sample and SNP, R and θ are calculated using the X and Y intensities, where

R = X + Y (1)

θ =
2 arctan(Y/X)

π
2Peiffer, Daniel A., et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-

genome genotyping. Genome Research 16, 1136-1148 (September 2006).

14

θ corresponds to the polar coordinate angle and R is the sum of the normalized X and Y intensities
(not, as one might assume, the magnitude of the polar coordinate vector).

The LRR is given below. The expected value of R is derived from a plot of θ versus R for a
given SNP. It is the predicted value of R derived from a line connecting the centers of the two
nearest genotype clusters.

LRR = log

(
Robserved values

Rexpected values

)
(2)

Variation in the LRR across a single chromosome indicates possible duplication or deletion, and is
an indication of overall sample quality.

The BAF is the frequency of the B allele in the population of cells from which the DNA is
extracted. Each sample and SNP combination has a BAF value. Note the BAF values vary for a
subject with each DNA extraction and tissue used. After all SNPs have been read and all samples
have been clustered for a probe, the mean θ “cluster” value is calculated for each probe, for each of
the three genotype clusters, resulting in θAA, θAB and θBB for every probe. Then the θ value for
each sample, call it θn, is compared to θAA, θAB and θBB. The BAF is calculated

BAF =

0 if θn < θAA

(1/2)(θn − θAA)
θAB − θAA

if θAA ≤ θn < θAB

1
2 +

(1/2)(θn − θAB)
θBB − θAB

if θAB ≤ θn < θBB

1 if θn ≥ θBB

A θn value of 0 or 1 corresponds to a homozygote genotype for sample n at that particular probe,
and a θn value of 1/2 indicates a heterozygote genotype. Thus, BAF ∈ [0, 1] for each probe. Across
a chromosome, three bands are expected, one hovering around 0, one around 1 and one around 0.5,
and any deviation from this is considered aberrant.

We use the BAF and LRR values to detect mixed samples or samples of low quality, as well
as chromosomal duplications and deletions. Samples that have a significantly large (partial or
full chromosome) aberration for a particular chromosome as detected from the BAF values are
recommended to be filtered out, for the genotype data are not reliable in these situations. Because
of these applications, the BAF and LRR values are a salient part of the data cleaning steps.

Creating the BAF and LRR file

We call createDataFile again, this time specifying BAlleleFreq and LogRRatio in the variables

argument.

> bl.file <- "tmp.bl.gds"

> col.nums <- as.integer(c(1,2,20,21))

> names(col.nums) <- c("snp", "sample", "BAlleleFreq", "LogRRatio")

> diag.bl.file <- "diag.bl.RData"

> diag.bl <- createDataFile(path = path,

15

+ filename = bl.file,

+ file.type = "gds",

+ variables = c("BAlleleFreq","LogRRatio"),

+ snp.annotation = snp.annotation,

+ scan.annotation = scan.annotation,

+ sep.type = ",",

+ skip.num = 11,

+ col.total = 21,

+ col.nums = col.nums,

+ scan.name.in.file = 1,

+ diagnostics.filename = diag.bl.file,

+ verbose = FALSE)

Reading the BAF and LRR file

We also use the GdsIntensityReader class for BAF/LRR data.

> (gds <- GdsIntensityReader(bl.file))

File: /tmp/RtmpO2mIvz/Rbuild1fe56dad31fe/GWASTools/vignettes/tmp.bl.gds (63.6K)

+ []

|--+ sample.id { Int32 3 LZMA_ra(683.3%), 89B }

|--+ snp.id { Int32 3300 LZMA_ra(25.9%), 3.3K }

|--+ snp.chromosome { UInt8 3300 LZMA_ra(3.45%), 121B }

|--+ snp.position { Int32 3300 LZMA_ra(68.4%), 8.8K }

|--+ snp.rs.id { Str8 3300 LZMA_ra(33.6%), 11.0K }

|--+ BAlleleFreq { Float32 3300x3 LZMA_ra(38.7%), 15.0K }

\--+ LogRRatio { Float32 3300x3 LZMA_ra(61.7%), 23.9K }

> getBAlleleFreq(gds, snp=c(1,5), scan=c(1,3))

[,1] [,2] [,3]

[1,] 0.0000 0.0000 0.0005

[2,] 1.0000 1.0000 1.0000

[3,] 0.9898 1.0000 0.9987

[4,] 0.4773 0.4873 0.5363

[5,] 1.0000 1.0000 1.0000

> getLogRRatio(gds, snp=c(1,5), scan=c(1,3))

[,1] [,2] [,3]

[1,] 0.0840 0.0140 -0.0962

[2,] -0.2727 -0.0180 -0.1944

[3,] 0.1124 0.1779 -0.1147

[4,] 0.0104 0.0020 -0.0858

[5,] 0.0409 -0.0734 0.0224

> close(gds)

16

2.5 Combining data files with SNP and Scan annotation

The GenotypeData and IntensityData objects combine SNP and scan annotation with GDS (or
NetCDF) files, ensuring that scanID, snpID, chromosome, and position are consistent. The con-
structor for a GenotypeData object takes a GdsGenotypeReader object as its first argument. Either
or both of the scanAnnot and snpAnnot slots may be empty (NULL), but if annotation objects are
provided to the constructor, the relevant columns will be checked against the data file during object
creation.

> genofile <- system.file("extdata", "illumina_geno.gds", package="GWASdata")

> gds <- GdsGenotypeReader(genofile)

> # only GDS file

> genoData <- GenotypeData(gds)

> # with scan annotation

> genoData <- GenotypeData(gds, scanAnnot=scanAnnot)

> # with scan and SNP annotation

> genoData <- GenotypeData(gds, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

> genoData

An object of class GenotypeData

| data:

File: /home/biocbuild/bbs-3.11-bioc/R/library/GWASdata/extdata/illumina_geno.gds (94.0K)

+ []

|--+ sample.id { Int32 77 ZIP(42.2%), 130B }

|--+ snp.id { Int32 3300 ZIP(38.5%), 5.0K }

|--+ snp.chromosome { UInt8 3300 ZIP(1.15%), 38B } *

|--+ snp.position { Int32 3300 ZIP(91.0%), 11.7K }

|--+ snp.rs.id { VStr8 3300 ZIP(38.4%), 12.5K }

|--+ snp.allele { VStr8 3300 ZIP(9.49%), 1.2K }

\--+ genotype { Bit2 3300x77, 62.0K } *

| SNP Annotation:

An object of class 'SnpAnnotationDataFrame'

snps: 1 2 ... 3300 (3300 total)

varLabels: snpID chromosome ... rBB (14 total)

varMetadata: labelDescription

| Scan Annotation:

An object of class 'ScanAnnotationDataFrame'

scans: 1 2 ... 77 (77 total)

varLabels: scanID subjectID ... file (13 total)

varMetadata: labelDescription

GenotypeData objects have methods in common with GdsGenotypeReader, SnpAnnotation-
DataFrame, and ScanAnnotationDataFrame, along with methods to access variables in the anno-
tation slots.

> nsnp(genoData)

17

[1] 3300

> nscan(genoData)

[1] 77

> # scan annotation

> range(getScanID(genoData))

[1] 280 356

> hasSex(genoData)

[1] TRUE

> table(getSex(genoData))

F M

33 44

> hasScanVariable(genoData, "subjectID")

[1] TRUE

> head(getScanVariable(genoData, "subjectID"))

[1] 200191449 200191449 200030290 200030290 200099417 200099417

> getScanVariableNames(genoData)

[1] "scanID" "subjectID" "family" "father" "mother" "CoriellID"

[7] "race" "sex" "status" "genoRunID" "plate" "batch"

[13] "file"

> # snp annotation

> range(getSnpID(genoData))

[1] 999447 1072820

> table(getChromosome(genoData, char=TRUE))

21 22 M X XY Y

1000 1000 100 1000 100 100

> head(getPosition(genoData))

[1] 13733610 13852569 14038583 14136579 14396024 14404476

> hasSnpVariable(genoData, "rsID")

18

[1] TRUE

> head(getSnpVariable(genoData, "rsID"))

[1] "rs3132407" "rs2775671" "rs2775018" "rs3115511" "rs2822404" "rs1556276"

> getSnpVariableNames(genoData)

[1] "snpID" "chromosome" "position" "rsID"

[5] "alleleA" "alleleB" "BeadSetID" "IntensityOnly"

[9] "tAA" "tAB" "tBB" "rAA"

[13] "rAB" "rBB"

> # genotypes

> getGenotype(genoData, snp=c(1,5), scan=c(1,5))

[,1] [,2] [,3] [,4] [,5]

[1,] NA NA NA NA NA

[2,] 0 0 0 0 0

[3,] 0 0 0 0 1

[4,] 1 1 1 1 0

[5,] 0 0 0 0 0

> close(genoData)

IntensityData objects behave in the same way as GenotypeData objects, but take a GdsIn-

tensityReader object as the first argument.

> # quality score, X and X intensity

> qxyfile <- system.file("extdata", "illumina_qxy.gds", package="GWASdata")

> gds <- GdsIntensityReader(qxyfile)

> qxyData <- IntensityData(gds, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

> qxyData

An object of class IntensityData

| data:

File: /home/biocbuild/bbs-3.11-bioc/R/library/GWASdata/extdata/illumina_qxy.gds (1.0M)

+ []

|--+ sample.id { Int32 77 ZIP(42.2%), 130B }

|--+ snp.id { Int32 3300 ZIP(38.5%), 5.0K }

|--+ snp.chromosome { UInt8 3300 ZIP(1.15%), 38B } *

|--+ snp.position { Int32 3300 ZIP(91.0%), 11.7K }

|--+ snp.rs.id { VStr8 3300 ZIP(38.4%), 12.5K }

|--+ quality { Float32 3300x77 ZIP(4.93%), 48.9K }

|--+ X { Float32 3300x77 ZIP(50.3%), 498.8K }

\--+ Y { Float32 3300x77 ZIP(49.4%), 490.5K }

| SNP Annotation:

19

An object of class 'SnpAnnotationDataFrame'

snps: 1 2 ... 3300 (3300 total)

varLabels: snpID chromosome ... rBB (14 total)

varMetadata: labelDescription

| Scan Annotation:

An object of class 'ScanAnnotationDataFrame'

scans: 1 2 ... 77 (77 total)

varLabels: scanID subjectID ... file (13 total)

varMetadata: labelDescription

> getQuality(qxyData, snp=c(1,5), scan=c(1,5))

[,1] [,2] [,3] [,4] [,5]

[1,] 0.0000 0.0000 0.0000 0.0000 0.0000

[2,] 0.7242 0.7242 0.7242 0.7242 0.7242

[3,] 0.2587 0.2587 0.2587 0.2587 0.2587

[4,] 0.9206 0.9206 0.9206 0.9206 0.9206

[5,] 0.9389 0.9389 0.9389 0.9389 0.9389

> getX(qxyData, snp=c(1,5), scan=c(1,5))

[,1] [,2] [,3] [,4] [,5]

[1,] 1.668 1.581 1.462 1.456 1.512

[2,] 0.010 0.011 0.008 0.008 0.000

[3,] 0.941 0.965 0.796 0.942 1.518

[4,] 0.390 0.380 0.329 0.411 0.023

[5,] 0.010 0.010 0.008 0.016 0.013

> getY(qxyData, snp=c(1,5), scan=c(1,5))

[,1] [,2] [,3] [,4] [,5]

[1,] 0.027 0.034 0.034 0.024 0.027

[2,] 0.404 0.482 0.429 0.357 0.437

[3,] 1.088 1.149 0.934 1.045 0.696

[4,] 0.480 0.486 0.485 0.462 0.895

[5,] 0.996 0.919 0.984 0.978 1.006

> close(qxyData)

> # BAF/LRR

> blfile <- system.file("extdata", "illumina_bl.gds", package="GWASdata")

> gds <- GdsIntensityReader(blfile)

> blData <- IntensityData(gds, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

> blData

An object of class IntensityData

| data:

File: /home/biocbuild/bbs-3.11-bioc/R/library/GWASdata/extdata/illumina_bl.gds (1.1M)

20

+ []

|--+ sample.id { Int32 77 ZIP(42.2%), 130B }

|--+ snp.id { Int32 3300 ZIP(38.5%), 5.0K }

|--+ snp.chromosome { UInt8 3300 ZIP(1.15%), 38B } *

|--+ snp.position { Int32 3300 ZIP(91.0%), 11.7K }

|--+ snp.rs.id { VStr8 3300 ZIP(38.4%), 12.5K }

|--+ BAlleleFreq { Float32 3300x77 ZIP(40.9%), 405.8K }

\--+ LogRRatio { Float32 3300x77 ZIP(68.2%), 676.6K }

| SNP Annotation:

An object of class 'SnpAnnotationDataFrame'

snps: 1 2 ... 3300 (3300 total)

varLabels: snpID chromosome ... rBB (14 total)

varMetadata: labelDescription

| Scan Annotation:

An object of class 'ScanAnnotationDataFrame'

scans: 1 2 ... 77 (77 total)

varLabels: scanID subjectID ... file (13 total)

varMetadata: labelDescription

> getBAlleleFreq(blData, snp=c(1,5), scan=c(1,5))

[,1] [,2] [,3] [,4] [,5]

[1,] 0.0000 0.0000 0.0005 0.0000 0.0000

[2,] 1.0000 1.0000 1.0000 1.0000 1.0000

[3,] 0.9898 1.0000 0.9987 0.9664 0.4893

[4,] 0.4773 0.4873 0.5363 0.4531 0.9978

[5,] 1.0000 1.0000 1.0000 1.0000 1.0000

> getLogRRatio(blData, snp=c(1,5), scan=c(1,5))

[,1] [,2] [,3] [,4] [,5]

[1,] 0.0840 0.0140 -0.0962 -0.1122 -0.0550

[2,] -0.2727 -0.0180 -0.1944 -0.4495 -0.2003

[3,] 0.1124 0.1779 -0.1147 0.0729 0.0628

[4,] 0.0104 0.0020 -0.0858 0.0223 0.1904

[5,] 0.0409 -0.0734 0.0224 0.0226 0.0591

> close(blData)

21

3 Batch Quality Checks

The overall goal of this step is to check the quality of the sample batches. Substantial quality
control is done by the genotyping centers prior to releasing the genotype data; however it is our
experience that despite the stringent quality controls it is still possible for batches with lower than
desired quality to pass the pre-release data quality checks. If a lower quality batch is detected
then it may be necessary to re-run the genotyping for that batch. We check the batch quality
by comparing the missing call rates between batches and looking for significant allele frequency
differences between batches.

3.1 Calculate Missing Call Rate for Samples and SNPs

The first step is to calculate the missing call rates for each SNP and for each sample. A high
missing call rate for a sample is often indicative of a poorly performing sample. It has been seen
that samples from DNA that has undergone whole-genome amplification (WGA) have a relatively
higher missing call rate. Similarly a high missing call rate for a SNP is indicative of a problem
SNP. Experience from the GENEVA studies has shown that there seem to be a subset of SNPs from
which genotype calls are more difficult to make than others. We calculate the missing call rates in
a two step process: first the missing call rates over all samples and SNPs are calculated, then the
missing call rates are calculated again, filtering out SNPs and samples that have an initial missing
call rate greater than 0.05. The initial SNP missing call rate over all samples is saved in the SNP
annotation data file as missing.n1. The analogous idea is applied to the samples: missing.e1

is saved in the sample annotation file and corresponds to the missing call rate per sample over all
SNPs, excluding those SNPs with all calls missing. The missing.n2 is calculated as the call rate
per SNP over all samples whose missing.e1 is less than 0.05. Again, similarly for the samples,
missing.e2 is calculated for each sample over all SNPs with missing.n2 values less than 0.05. It
is important to remember that the Y chromosome values should be calculated for males only, since
we expect females to have no genotype values for the Y chromosome.

Calculate missing.n1

This step calculates and examines missing.n1, the missing call rate per SNP over all samples by
calling the function missingGenotypeBySnpSex. This function takes a GenotypeData object as an
argument, and requires that the scan annotation of this object contains a “sex” column. There is
also an option to send a vector of SNPs to exclude from the calculation, which is what we will use
later to find missing.n2. For now, we will use all SNPs for each sample, being sure to calculate
by sex. The function returns a list, with one element that holds the missing counts for each SNP,
one element that holds the sex counts, and one element that holds the fraction of missing calls.

> # open the GDS file and create a GenotypeData object

> gdsfile <- system.file("extdata", "illumina_geno.gds", package="GWASdata")

> gds <- GdsGenotypeReader(gdsfile)

> # sex is required for this function, so we need the scan annotation

> genoData <- GenotypeData(gds, scanAnnot=scanAnnot)

> # Calculate the number of missing calls for each snp over all samples

> # for each sex separately

> miss <- missingGenotypeBySnpSex(genoData)

22

> # Examine the results

> names(miss)

[1] "missing.counts" "scans.per.sex" "missing.fraction"

> head(miss$missing.counts)

M F

999447 44 33

999465 0 1

999493 3 2

999512 0 0

999561 0 0

999567 0 0

> miss$scans.per.sex

M F

44 33

> head(miss$missing.fraction)

999447 999465 999493 999512 999561 999567

1.00000000 0.01298701 0.06493506 0.00000000 0.00000000 0.00000000

The Y chromosome should be missing for all females, but an occasional probe on the Y chro-
mosome is called in a female. missingGenotypeBySnpSex excludes females when calculating the
missing rate for Y chromosome SNPs. Note this may need to be changed later if there are some
sex mis-annotations because the Y chromosome SNP missing call rates may change. We add the
missing call rates to the SNP annotation.

> # Make sure ordering matches snp annotation

> allequal(snpAnnot$snpID, as.numeric(names(miss$missing.fraction)))

[1] TRUE

> snpAnnot$missing.n1 <- miss$missing.fraction

> varMetadata(snpAnnot)["missing.n1", "labelDescription"] <- paste(

+ "fraction of genotype calls missing over all samples",

+ "except that females are excluded for Y chr SNPs")

> summary(snpAnnot$missing.n1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.00000 0.00000 0.04899 0.00000 1.00000

We plot the missing call rates so we can easily identify any outliers. We also find the number
of SNPs with 100% missing, and the fraction of SNPs with missing call rate less than 0.05 for each
chromosome type.

23

> hist(snpAnnot$missing.n1, ylim=c(0,100),

+ xlab="SNP missing call rate",

+ main="Missing Call Rate for All Probes")

Missing Call Rate for All Probes

SNP missing call rate

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

> # Find the number of SNPs with every call missing

> length(snpAnnot$missing.n1[snpAnnot$missing.n1 == 1])

[1] 151

> # Fraction of autosomal SNPs with missing call rate < 0.05

> x <- snpAnnot$missing.n1[snpAnnot$chromosome < 23]

> length(x[x < 0.05]) / length(x)

[1] 0.9805

> # Fraction of X chromosome SNPs with missing call rate < 0.05

> x <- snpAnnot$missing.n1[snpAnnot$chromosome == 23]

> length(x[x < 0.05]) / length(x)

24

[1] 0.95

> # Fraction of Y chromosome SNPs with missing call rate < 0.05

> x <- snpAnnot$missing.n1[snpAnnot$chromosome == 25]

> length(x[x < 0.05]) / length(x)

[1] 0.38

Calculate missing.e1

This step calculates missing.e1, which is the missing call rate per sample over all SNPs, by
chromosome. We read in the new SNP annotation file which holds the missing.n1 variable. For
those SNPs with a missing.n1 value less than one, we call the missingGenotypeByScanChrom

function that returns a list with one element holding the missing counts per sample by chromosome,
one element holding the number of SNPs per chromosome, and one element holding the fraction of
missing calls over all chromosomes.

> # Want to exclude all SNP probes with 100% missing call rate

> # Check on how many SNPs to exclude

> sum(snpAnnot$missing.n1 == 1)

[1] 151

> # Create a variable that contains the IDs of these SNPs to exclude

> snpexcl <- snpAnnot$snpID[snpAnnot$missing.n1 == 1]

> length(snpexcl)

[1] 151

> # Calculate the missing call rate per sample

> miss <- missingGenotypeByScanChrom(genoData, snp.exclude=snpexcl)

> names(miss)

[1] "missing.counts" "snps.per.chr" "missing.fraction"

> head(miss$missing.counts)

21 22 X XY Y M

280 2 3 0 1 42 0

281 1 3 0 1 42 8

282 6 5 3 0 42 0

283 3 4 3 0 42 25

284 1 2 1 0 1 0

285 0 0 1 0 1 9

> head(miss$snps.per.chr)

21 22 X XY Y M

999 997 950 61 42 100

25

> # Check to make sure that the correct number of SNPs were excluded

> sum(miss$snps.per.chr)

[1] 3149

> nrow(snpAnnot) - sum(miss$snps.per.chr)

snps

151

missingGenotypeByScanChrom calculates the missing call rate for each sample over all SNPs.
For females, the missing call rate does not include the probes on the Y chromosome. The values
for missing.e1 are added to the sample annotation file.

> head(miss$missing.fraction)

280 281 282 283 284 285

0.001931123 0.004184100 0.004505954 0.011264886 0.001587806 0.003493172

> # Check the ordering matches the sample annotation file

> allequal(names(miss$missing.fraction), scanAnnot$scanID)

[1] TRUE

> # Add the missing call rates vector to the sample annotation file

> scanAnnot$missing.e1 <- miss$missing.fraction

> varMetadata(scanAnnot)["missing.e1", "labelDescription"] <- paste(

+ "fraction of genotype calls missing over all snps with missing.n1<1",

+ "except that Y chr SNPs are excluded for females")

> summary(scanAnnot$missing.e1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000000 0.0009656 0.0022229 0.0032324 0.0041283 0.0247827

We will create a histogram of the overall missing call rate per sample in order to identify any
samples with a relatively larger missing call rate. It is known that genotype data taken from DNA
that has been through whole-genome amplification (WGA) has an overall higher missing call rate;
this is something that we would see at this step if any samples are of WGA origin. We also look at
the summary of the missing call rate for females and males separately to ensure there are no large
sex differences. Finally, we calculate the number of samples with a missing call rate greater than
0.05. In this case, there are no such samples but in other data this may not be the case. If any
samples have a high missing rate, we recommend further investigation of what may be causing the
missing calls; the samples with a missing call rate greater than 0.05 should be filtered out due to
low sample quality.

> hist(scanAnnot$missing.e1,

+ xlab="Fraction of missing calls over all probes",

+ main="Histogram of Sample Missing Call Rate for all Samples")

26

Histogram of Sample Missing Call Rate for all Samples

Fraction of missing calls over all probes

F
re

qu
en

cy

0.000 0.005 0.010 0.015 0.020 0.025

0
10

20
30

40
50

60

> # Look at missing.e1 for males

> summary(scanAnnot$missing.e1[scanAnnot$sex == "M"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000000 0.001270 0.002540 0.003082 0.003890 0.013655

> # Look at missing.e1 for females

> summary(scanAnnot$missing.e1[scanAnnot$sex == "F"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0003219 0.0009656 0.0016093 0.0034331 0.0041841 0.0247827

> # Number of samples with missing call rate > 5%

> sum(scanAnnot$missing.e1 > 0.05)

[1] 0

For some analyses we require the missing call rate for autosomes and the X chromosome to
be separated. We calculate these values here and add them to the sample annotation file. Also,

27

we will create a logical duplicated variable. We can identify the duplicated scans in the sample
annotation file by identifying the subject ids that occur more than once. Among samples with the
same subject id, the one with the lowest missing.e1 value will have the variable duplicated set
to FALSE.

> auto <- colnames(miss$missing.counts) %in% 1:22

> missa <- rowSums(miss$missing.counts[,auto]) / sum(miss$snps.per.chr[auto])

> summary(missa)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000000 0.001002 0.001503 0.002726 0.003507 0.027555

> missx <- miss$missing.counts[,"X"] / miss$snps.per.chr["X"]

> summary(missx)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000000 0.000000 0.001053 0.001394 0.001053 0.022105

> # check they match sample annotation file

> allequal(names(missa), scanAnnot$scanID)

[1] TRUE

> allequal(names(missx), scanAnnot$scanID)

[1] TRUE

> # Add these separate sample missing call rates to the sample

> # annotation

> scanAnnot$miss.e1.auto <- missa

> scanAnnot$miss.e1.xchr <- missx

> # Order scanAnnot by missing.e1 so duplicate subjectIDs

> # with a higher missing rate are marked as duplicates

> scanAnnot <- scanAnnot[order(scanAnnot$subjectID, scanAnnot$missing.e1),]

> scanAnnot$duplicated <- duplicated(scanAnnot$subjectID)

> table(scanAnnot$duplicated, useNA="ifany")

FALSE TRUE

43 34

> # Put scanAnnot back in scanID order; this is very important!!

> scanAnnot <- scanAnnot[order(scanAnnot$scanID),]

> allequal(scanAnnot$scanID, sort(scanAnnot$scanID))

[1] TRUE

> varMetadata(scanAnnot)["duplicated", "labelDescription"] <-

+ "TRUE for duplicate scan with higher missing.e1"

28

Calculate missing.n2

This step calculates missing.n2, which is the missing call rate per SNP with missing.e1 less than
0.05 over all samples. In some cases, there will be samples with missing call rate greater than 0.05.
However, because of the high quality of the HapMap data, there are no such samples in this case. We
will continue with the steps as if there are samples we must exclude from the missing.n2 calculation.
We call the missingGenotypeBySnpSex function just as we did to calculate for missing.n1, but
this time we include the list of sample numbers to exclude from the calculation (although here that
list is empty).

> # Find the samples with missing.e1 > .05 and make a vector of

> # scanID to exclude from the calculation

> scan.exclude <- scanAnnot$scanID[scanAnnot$missing.e1 > 0.05]

> # Call missingGenotypeBySnpSex and save the output

> miss <- missingGenotypeBySnpSex(genoData, scan.exclude=scan.exclude)

> snpAnnot$missing.n2 <- miss$missing.fraction

> varMetadata(snpAnnot)["missing.n2", "labelDescription"] <- paste(

+ "fraction of genotype calls missing over all samples with missing.e1<0.05",

+ "except that females are excluded for Y chr SNPs")

> summary(snpAnnot$missing.n2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.00000 0.00000 0.04899 0.00000 1.00000

Calculate missing.e2

This step calculates missing.e2, which is the missing call rate per sample over all SNPs with
missing.n2 less than 0.05.

> # Create a vector of the SNPs to exclude.

> snpexcl <- snpAnnot$snpID[snpAnnot$missing.n2 >= 0.05]

> length(snpexcl)

[1] 206

> miss <- missingGenotypeByScanChrom(genoData, snp.exclude=snpexcl)

> # Add the missing call rates vector to the sample annotation file

> scanAnnot$missing.e2 <- miss$missing.fraction

> varMetadata(scanAnnot)["missing.e2", "labelDescription"] <- paste(

+ "fraction of genotype calls missing over all snps with missing.n2<0.05",

+ "except that Y chr SNPs are excluded for females")

> summary(scanAnnot$missing.e2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000000 0.0003272 0.0006544 0.0018289 0.0019392 0.0242147

We will create a histogram of the overall missing call rate per sample in order to identify any
samples with a relatively larger missing call rate.

29

> hist(scanAnnot$missing.e2, xlab="Fraction of missing calls over all probes

+ with missing call rate < 0.05",

+ main="Histogram of Sample Missing Call Rate for all Samples")

Histogram of Sample Missing Call Rate for all Samples

Fraction of missing calls over all probes
 with missing call rate < 0.05

F
re

qu
en

cy

0.000 0.005 0.010 0.015 0.020 0.025

0
10

20
30

40
50

60
70

3.2 Calculate Missing Call Rates by Batch

Next, the missing call rate by batch is calculated to check that there are no batches with compara-
tively lower call rates. Usually a “batch” is a plate containing samples that were processed together
through the genotyping chemistry. In this case all samples were run on different plates (as controls
for another dataset), so we use the simulated variable “batch.” We calculate the mean missing call
rate for all samples in each of the batches.

> varLabels(scanAnnot)

[1] "scanID" "subjectID" "family" "father" "mother"

[6] "CoriellID" "race" "sex" "status" "genoRunID"

[11] "plate" "batch" "file" "missing.e1" "miss.e1.auto"

[16] "miss.e1.xchr" "duplicated" "missing.e2"

30

> # Check how many batches exist and how many samples are in each batch

> length(unique(scanAnnot$batch))

[1] 3

> table(scanAnnot$batch, useNA="ifany")

A B C

27 26 24

> # Plot the distribution of the number of samples per batch.

> barplot(table(scanAnnot$batch),

+ ylab="Number of Samples", xlab="Batch",

+ main="Distribution of Samples per Batch")

A B C

Distribution of Samples per Batch

Batch

N
um

be
r

of
 S

am
pl

es

0
5

10
15

20
25

> # Examine the mean missing call rate per batch for all SNPs

> batches <- unique(scanAnnot$batch)

> bmiss <- rep(NA,length(batches)); names(bmiss) <- batches

31

> bn <- rep(NA,length(batches)); names(bn) <- batches

> for(i in 1:length(batches)) {

+ x <- scanAnnot$missing.e1[is.element(scanAnnot$batch, batches[i])]

+ bmiss[i] <- mean(x)

+ bn[i] <- length(x)

+ }

To find the slope of the regression line from the mean missing call rate per batch regressed on
the number of samples per batch, we will take the results from ANOVA. Then we can plot the
mean missing call rate against the number of samples in the batch with the regression line. For
studies with more batches, this test can identify any batch outliers with regard to missing call rate
for samples in a given batch. We can do the same analysis using the mean missing call rate for
autosomal SNPs, or SNPs on the X chromosome in the exact same way, substituting missing.e1

with either miss.e1.auto or miss.e1.xchr. Because the results are nearly identical, we will not
show them here.

> y <- lm(bmiss ~ bn)

> anova(y)

Analysis of Variance Table

Response: bmiss

Df Sum Sq Mean Sq F value Pr(>F)

bn 1 8.7186e-07 8.7186e-07 1.114 0.4828

Residuals 1 7.8266e-07 7.8266e-07

> plot(bn, bmiss,

+ xlab="Number of samples per batch", ylab="Mean missing call rate",

+ main="Mean Missing Call Rate vs\nSamples per Batch")

> abline(y$coefficients)

32

24.0 24.5 25.0 25.5 26.0 26.5 27.0

0.
00

25
0.

00
30

0.
00

35
0.

00
40

Mean Missing Call Rate vs
Samples per Batch

Number of samples per batch

M
ea

n
m

is
si

ng
 c

al
l r

at
e

3.3 Chi-Square Test of Allelic Frequency Differences in Batches

In this step, the chi-square test for differences in allelic frequency is performed between each batch
individually and a pool of all the other batches in the study. We then look at the mean χ2 statistic
over all SNPs for each batch as a function of the ethnic composition of samples in a batch. We use
the batch variable in the scan annotation to identify the samples in each batch, so we must include
the scan annotation in the GenotypeData object. Then we call the function batchChisqTest which
calculates the χ2 values from 2×2 tables for each SNP, comparing each batch with the other batches.
This function returns the genomic inflation factors for each batch, as well as matrix of χ2 values
for each SNP.

> res <- batchChisqTest(genoData, batchVar="batch", return.by.snp=TRUE)

> close(genoData)

> # chi-square values for each SNP

> dim(res$chisq)

[1] 2000 3

33

> # genomic inflation factor

> res$lambda

A B C

0.6742432 0.1769204 0.3857391

> # average chi-square test statistic for each of the batches

> res$mean.chisq

A B C

0.8733652 0.3452383 0.5587996

Next we test for association between batches and population groups, using a χ2 contingency test.
Then we look at the relationship between the ethnic composition of each batch and the previously
calculated χ2 test of allelic frequency between each batch and a pool of the other batches. The point
is to look for batches that differ from others of similar ethnic composition, which might indicate
a batch effect due to genotyping artifact. In this experiment, there are only a few batches and
wide variations in race among batches, so it is difficult to interpret the results. In larger GWAS
experiments, we generally observe a U-shaped curve of allelic frequency test statistic as a function
of ethnic composition.

> x <- table(scanAnnot$race, useNA="ifany")

> x

CEU YRI

49 28

> x[1] / sum(x)

CEU

0.6363636

> x[2] / sum(x)

YRI

0.3636364

> x <- table(scanAnnot$race, scanAnnot$batch)

> x

A B C

CEU 15 18 16

YRI 12 8 8

> # Run an approximate chi-square test to see if there are ethnic effects

> chisq <- chisq.test(x)

> chisq$p.value

34

[1] 0.5464046

> # Calculate the fraction of samples in each batch that are CEU

> batches <- unique(scanAnnot$batch)

> eth <- rep(NA,length(batches)); names(eth) <- sort(batches)

> for(i in 1:length(batches)){

+ x <- scanAnnot$race[is.element(scanAnnot$batch, batches[i])]

+ xl <- length(x[x == "CEU"])

+ eth[i] <- xl / length(x)

+ }

> allequal(names(eth), names(res$mean.chisq))

[1] TRUE

> # Plot the average Chi-Square test statistic against the

> # fraction of samples that are CEU

> plot(eth, res$mean.chisq, xlab="Fraction of CEU Samples per Batch",

+ ylab="Average Chi-square Test Statistic",

+ main="Fraction of CEU Samples per Batch

+ vs Average Chi-square Test Statistic")

> abline(v=mean(eth), lty=2, col="red")

35

0.56 0.58 0.60 0.62 0.64 0.66 0.68

0.
4

0.
5

0.
6

0.
7

0.
8

Fraction of CEU Samples per Batch
 vs Average Chi−square Test Statistic

Fraction of CEU Samples per Batch

A
ve

ra
ge

 C
hi

−
sq

ua
re

 T
es

t S
ta

tis
tic

The χ2 test is not suitable when the 2×2 tables for each SNP have very small values. For arrays
in which many SNPs have very low minor allele frequency, Fisher’s exact test is more appropriate.
The function batchFisherTest can be used in a very similar way to batchChisqTest, but the run
time is significantly longer, as it iterates over each SNP.

36

4 Sample Quality Checks

In this step we examine sample quality using three methods. We check for outliers in genotype
quality score; we check for anomalous sample-chromosome pairs using BAF variance analysis; lastly,
we check sample missingness and heterozygosities.

4.1 Sample genotype quality scores

Genotype calling algorithms report quality scores and classify genotypes with insufficient confidence
as missing. This code calculates the mean and median genotype quality score for each sample.

Calculate quality scores by sample. The qualityScoreByScan function requires both an In-

tensityData object, to read the quality scores, and a GenotypeData object, to determine which
scans have missing genotypes and should be omitted from the calculation.

> qxyfile <- system.file("extdata", "illumina_qxy.gds", package="GWASdata")

> qualGDS <- GdsIntensityReader(qxyfile)

> qualData <- IntensityData(qualGDS, scanAnnot=scanAnnot)

> genofile <- system.file("extdata", "illumina_geno.gds", package="GWASdata")

> genoGDS <- GdsGenotypeReader(genofile)

> genoData <- GenotypeData(genoGDS, scanAnnot=scanAnnot)

> qual.results <- qualityScoreByScan(qualData, genoData)

> close(qualData)

We plot the distribution of median quality scores; it is unsurprising that these are all good,
given that some quality checking happens at the genotyping centers. Clear outliers in this plot
would be cause for concern that the sample(s) in question were of significantly lower quality than
the other samples.

> hist(qual.results[,"median.quality"], main="Median Genotype Quality Scores

+ of Samples", xlab="Median Quality")

37

Median Genotype Quality Scores
 of Samples

Median Quality

F
re

qu
en

cy

0.857 0.858 0.859 0.860

0
10

20
30

40

4.2 B Allele Frequency variance analysis

BAF is a standardized version of the polar coordinate angle (Section 2.4). It calculates the frequency
of the B allele within a single sample. Under normal circumstances, the true frequency is 0, 1

2 , or 1.
In cases of allelic imbalance the true frequencies may vary. For example, in a population of trisomic
cells, the true frequencies would be 0, 1

3 , 2
3 , or 1. Here we calculate the variance of BAF (for

SNPs called as heterozygotes) within a sliding window along each chromosome for each sample.
Each chromosome is divided into 12 sections with equal numbers of SNPs and the variance is
calculated in a window of two adjacent sections (one-sixth of the chromosome), which slides along
the chromosome in increments of one section. Regions (windows) with very high BAF variance can
indicate chromosomal anomalies.

Calculate the sliding window BAF standard deviation

This process identifies chromosome-sample pairs that have windows with very high BAF standard
deviation, with “very high” defined as more than 4 standard deviations from the window’s mean
BAF standard deviation over all samples. The output is a matrix listing all sample-chromosome

38

pairs with high BAF standard deviations, the number of windows with high SDs in each pair, and
the sample’s sex. We examine plots of BAF by position for each identified chromosome-sample pair
(though only a subset of plots are shown here).

First, run the meanBAFbyScanChromWindow function. This requires both an IntensityData

object with BAF and a GenotypeData object. Its output is a list of matrices, with one matrix for
each chromosome containing the standard deviation of BAF at each window in each scan.

> blfile <- system.file("extdata", "illumina_bl.gds", package="GWASdata")

> blGDS <- GdsIntensityReader(blfile)

> blData <- IntensityData(blGDS, scanAnnot=scanAnnot)

> nbins <- rep(12, 3)

> slidingBAF12 <- sdByScanChromWindow(blData, genoData, nbins=nbins)

> names(slidingBAF12)

[1] "21" "22" "X"

> dim(slidingBAF12[["21"]])

[1] 77 11

The function meanBAFSDbyChromWindow calculates the mean and standard deviation of the BAF
standard deviations in each window in each chromosome over all samples. For the X chromosome,
males and females are calculated separately, and we save the results split by sex.

> sds.chr <- meanSdByChromWindow(slidingBAF12, scanAnnot$sex)

> sds.chr[["21"]]

[,1] [,2] [,3] [,4] [,5] [,6]

Mean 0.08262367 0.04971894 0.04991385 0.04578610 0.04156682 0.04139052

SD 0.02082800 0.01652451 0.01710329 0.01507464 0.01547533 0.01498545

[,7] [,8] [,9] [,10] [,11]

Mean 0.04120665 0.03912475 0.03953937 0.04189777 0.04518619

SD 0.01663141 0.01243865 0.01064164 0.01197254 0.01572490

> sds.chr[["X"]]

[,1] [,2] [,3] [,4] [,5] [,6]

Female Mean 0.14716196 0.09812081 0.13814218 0.16212499 0.12026203 0.16164527

Male Mean 0.45376698 0.40033938 0.42632934 0.49092806 0.51290672 0.46628564

Female SD 0.02180043 0.02262856 0.02079684 0.01511986 0.01887621 0.03871470

Male SD 0.07911264 0.21107322 0.14798379 0.04035185 0.12124391 0.03363656

[,7] [,8] [,9] [,10] [,11]

Female Mean 0.20995912 0.20889014 0.19920944 0.16731386 0.16652783

Male Mean 0.46238267 0.46621029 0.47629489 0.46236851 0.39731254

Female SD 0.03532426 0.02814304 0.02518857 0.01615855 0.01887127

Male SD 0.02354006 0.03209559 0.03023546 0.06024623 0.08535684

39

Next, identify windows within sample-chromosome pairs that have very high BAF standard
deviations compared to the same window in other samples.

> res12bin4sd <- findBAFvariance(sds.chr, slidingBAF12, scanAnnot$sex,

+ sd.threshold=4)

> head(res12bin4sd)

scanID chromosome bin sex

[1,] "322" "21" "1" "M"

[2,] "324" "21" "3" "F"

[3,] "350" "21" "2" "F"

[4,] "296" "22" "2" "M"

[5,] "297" "22" "2" "M"

[6,] "324" "22" "2" "F"

> table(res12bin4sd[, "chromosome"])

21 22

3 3

Call chromIntensityPlot to plot the BAF of all SNPs on the indicated chromosome-sample
pairs against position. This yields many plots that must be individually examined to distinguish
noisy data from chromosomal abnormalities.

> scanID <- as.integer(res12bin4sd[, "scanID"])

> chrom <- as.integer(res12bin4sd[, "chromosome"])

> chrom[res12bin4sd[, "chromosome"] == "X"] <- 23

> bincode <- paste("Bin", res12bin4sd[, "bin"], sep = " ")

> chromIntensityPlot(blData, scanID, chrom, info=bincode, ideogram=FALSE)

> close(blData)

40

15 20 25 30 35 40 45

−
2

0
1

2
Scan 322 − M − Chromosome 21 − Bin 1

horizontal line = mean LRR
position (Mb)

LR
R

15 20 25 30 35 40 45

0.
0

0.
4

0.
8

horizontal line = 0.5000 0.3333 0.6667
position (Mb)

B
A

F

At this stage, we have generated plots of those chromosomes (over all chromosomes and samples)
that have unusually high BAF standard deviation. The next step in the process is to examine each
of these plots to look for evidence of sample contamination or other quality issues.

4.3 Missingness and heterozygosity within samples

This step calculates the percent of missing and heterozygous genotypes in each chromosome of
each sample. We create boxplots of missingness by individual chromosome, as well as autosomal
and X chromosome heterozygosity in each population. This allows for identification of samples
that may have relatively high heterozygosity for all chromosomes, indicating a possible mixed
sample. Further, we are able to identify any outliers with regard to missingness. Plotting by
chromosome enables visualization of chromosomal artifacts on a particular subset of SNPs that lie
on a chromosome.

We will call the function missingGenotypeByScanChrom to calculate the missing call rate. Since
the function returns missing counts per chromosome as well as snps per chromosome, we divide to
find the missing call rate per chromosome. We then make a boxplot of missingness in the autosomes,
the X chromosome, and the pseudoautosomal region, and a boxplot of X chromosome missingness
for each sex.

41

> miss <- missingGenotypeByScanChrom(genoData)

> miss.rate <- t(apply(miss$missing.counts, 1, function(x) {

+ x / miss$snps.per.chr}))

> miss.rate <- as.data.frame(miss.rate)

> cols <- names(miss.rate) %in% c(1:22, "X", "XY")

> boxplot(miss.rate[,cols], main="Missingness by Chromosome",

+ ylab="Proportion Missing", xlab="Chromosome")

21 22 X XY

0.
0

0.
1

0.
2

0.
3

0.
4

Missingness by Chromosome

Chromosome

P
ro

po
rt

io
n

M
is

si
ng

> boxplot(miss.rate$X ~ scanAnnot$sex,

+ main="X Chromosome Missingness by Sex",

+ ylab="Proportion Missing")

42

F M

0.
05

0
0.

05
5

0.
06

0
0.

06
5

0.
07

0
X Chromosome Missingness by Sex

scanAnnot$sex

P
ro

po
rt

io
n

M
is

si
ng

We will call the function hetByScanChrom to calculate the heterozygosity. We store the het-
erozygosity calculations in the sample annotation.

> # Calculate heterozygosity by scan by chromosome

> het.results <- hetByScanChrom(genoData)

> close(genoData)

> # Ensure heterozygosity results are ordered correctly

> allequal(scanAnnot$scanID, rownames(het.results))

[1] TRUE

> # Write autosomal and X chr heterozygosity to sample annot

> scanAnnot$het.A <- het.results[,"A"]

> scanAnnot$het.X <- het.results[,"X"]

> varMetadata(scanAnnot)["het.A", "labelDescription"] <-

+ "fraction of heterozygotes for autosomal SNPs"

> varMetadata(scanAnnot)["het.X", "labelDescription"] <-

+ "fraction of heterozygotes for X chromosome SNPs"

43

There are two plots for heterozygosity. First is a boxplot of heterozygosity over the autosomes,
subsetted by population. We recommend examining BAF plots for high heterozygosity outliers, to
look for evidence of sample contamination (more than 3 bands on all chromosomes). Examination
of low heterozygosity samples may also identify chromosomal anomalies with wide splits in the
intermediate BAF band. Second is a boxplot of female heterozygosity on the X chromosome,
subsetted by population.

> boxplot(scanAnnot$het.A ~ scanAnnot$race,

+ main="Autosomal Heterozygosity")

CEU YRI

0.
26

0.
28

0.
30

0.
32

Autosomal Heterozygosity

scanAnnot$race

sc
an

A
nn

ot
$h

et
.A

> female <- scanAnnot$sex == "F"

> boxplot(scanAnnot$het.X[female] ~ scanAnnot$race[female],

+ main="X Chromosome Heterozygosity in Females")

44

CEU YRI

0.
24

0.
26

0.
28

0.
30

X Chromosome Heterozygosity in Females

scanAnnot$race[female]

sc
an

A
nn

ot
$h

et
.X

[fe
m

al
e]

45

5 Sample Identity Checks

This step performs a series of identity checks on the samples. First, samples are analyzed to
determine if there exist any discrepancies between the annotated sex and genetic sex in the sample.
Next, the relatedness among samples is investigated through IBD estimation. Finally, the samples
are checked for potential population substructure, which if unidentified can threaten the validity of
subsequent analyses.

5.1 Mis-annotated Sex Check

This section looks for discrepancies between the annotated sex and genetic sex. Sex is usually
inferred from X chromosome heterozygosity, but our experience is that this variable can give am-
biguous results when used alone (for example, in XXY males or due to genotyping artifacts). Plots
of the mean allelic intensities of SNPs on the X and Y chromosomes can identify mis-annotated
sex as well as sex chromosome aneuploidies. It is important to have accurate sex annotation not
only for completeness but also for analyses which treat male and female samples separately. Any
found sex mis-annotations are presented to the investigators in order to resolve discrepancies. If a
genetic and recorded sex do not match, a collective decision must be made regarding the inclusion
of those genetic data. In some cases a recording error explains the discrepancy, but more often the
discrepancy is unexplained. These cases are assumed to be a sample mis-identification and these
samples are excluded from subsequent analyses.

In order to compare the mean X and Y chromosome intensities for all samples, we must calculate
the mean intensity for each sample by chromosome. The function meanIntensityByScanChrom

calculates for each sample the mean and standard deviation of the sum of the two allelic intensities
for each probe on a given chromosome. A matrix with one row per sample and one column per
chromosome with entries [i, j] corresponding to either the mean or standard deviation of all probe
intensities for the ith sample and the jth chromosome is returned from the function. Note that “X”
and “Y” in the list names refer to the X and Y intensity values and not to the chromosomes.

> qxyfile <- system.file("extdata", "illumina_qxy.gds", package="GWASdata")

> intenGDS <- GdsIntensityReader(qxyfile)

> inten.by.chrom <- meanIntensityByScanChrom(intenGDS)

> close(intenGDS)

> names(inten.by.chrom)

[1] "mean.intensity" "sd.intensity" "mean.X" "sd.X"

[5] "mean.Y" "sd.Y"

Now we will use the calculated mean intensities by sample to identify any sex mis-annotation
or sex chromosome aneuploidies. For the plots, we will create a color coding corresponding to the
annotated sex, with blue for males and red for females. We also use the SNP annotation to find
the probe counts for the X and Y chromosomes; we use these in the plot axis labels.

> mninten <- inten.by.chrom[[1]] # mean intensities

> dim(mninten)

[1] 77 6

46

> # Check to be sure sample ordering is consistent

> allequal(scanAnnot$scanID, rownames(mninten))

[1] TRUE

> # Assign each sex a color

> xcol <- rep(NA, nrow(scanAnnot))

> xcol[scanAnnot$sex == "M"] <- "blue"

> xcol[scanAnnot$sex == "F"] <- "red"

> nx <- sum(snpAnnot$chromosome == 23)

> ny <- sum(snpAnnot$chromosome == 25)

For two of the plots we will create next, we use the autosome and X chromosome heterozygosity
values calculated in an earlier step and stored in the sample annotation. Four plots will now be
created: mean X chromosome intensity versus mean Y chromosome intensity, mean X chromosome
intensity versus X chromosome heterozygosity, mean X chromosome heterozygosity versus mean Y
chromosome intensity and mean autosomal heterozygosity versus mean X chromosome heterozy-
gosity. The fourth plot applies to annotated females only, since males are expected to have zero
heterozygosity on the X chromosome.

> #All intensities

> x1 <-mninten[,"X"]; y1 <- mninten[,"Y"]

> main1 <- "Mean X vs \nMean Y Chromosome Intensity"

> #Het on X vs X intensity

> x2 <- mninten[,"X"]; y2 <- scanAnnot$het.X

> main2 <- "Mean X Chromosome Intensity vs

+ Mean X Chromosome Heterozygosity"

> # Het on X vs Y intensity

> y3 <- mninten[,"Y"]; x3 <- scanAnnot$het.X

> main3 <- "Mean X Chromosome Heterozygosity vs

+ Mean Y Chromosome Intensity"

> # X vs A het

> x4 <- scanAnnot$het.A[scanAnnot$sex == "F"]

> y4 <- scanAnnot$het.X[scanAnnot$sex == "F"]

> main4 <- "Mean Autosomal Heterozygosity vs

+ Mean X Chromosome Heterozygosity"

> cols <- c("blue","red")

> mf <- c("male", "female")

> xintenlab <- paste("X intensity (n=", nx, ")", sep="")

> yintenlab <- paste("Y intensity (n=", ny, ")", sep="")

> pdf("DataCleaning-sex.pdf")

> par(mfrow=c(2,2))

> plot(x1, y1, xlab=xintenlab, ylab=yintenlab,

+ main=main1, col=xcol, cex.main=0.8)

> legend("topright",mf,col=cols,pch=c(1,1))

> plot(x2, y2, col=xcol, xlab=xintenlab,

47

+ ylab="X heterozygosity", main=main2, cex.main=0.8)

> plot(x3, y3, col=xcol, ylab=yintenlab,

+ xlab="X heterozygosity", main=main3, cex.main=0.8)

> plot(x4,y4, col="red", xlab="Autosomal heterozygosity",

+ ylab="X heterozygosity", main=main4, cex.main=0.8)

> dev.off()

0.7 0.8 0.9 1.0 1.1

0.
4

0.
6

0.
8

1.
0

Mean X vs
Mean Y Chromosome Intensity

X intensity (n=1000)

Y
 in

te
ns

ity
 (

n=
10

0)

male
female

0.7 0.8 0.9 1.0 1.1

0.
00

0.
10

0.
20

0.
30

Mean X Chromosome Intensity vs
 Mean X Chromosome Heterozygosity

X intensity (n=1000)

X
 h

et
er

oz
yg

os
ity

0.00 0.10 0.20 0.30

0.
4

0.
6

0.
8

1.
0

Mean X Chromosome Heterozygosity vs
 Mean Y Chromosome Intensity

X heterozygosity

Y
 in

te
ns

ity
 (

n=
10

0)

0.27 0.29 0.31 0.33

0.
24

0.
26

0.
28

0.
30

Mean Autosomal Heterozygosity vs
 Mean X Chromosome Heterozygosity

Autosomal heterozygosity

X
 h

et
er

oz
yg

os
ity

5.2 Relatedness and IBD Estimation

In most studies, there are discrepancies between pedigrees provided and relatedness inferred from
the genotype data. To infer genetic relatedness, we estimate coefficients of identity by descent
(IBD). It is important to identify and record unannotated relationships so that analyses assuming
all subjects are unrelated can use a filtered subset of samples. From our experience, it is difficult
to accurately estimate low levels of relatedness, but higher levels can be more reliably determined.

48

Users are encouraged to employ analyses which take into accounts the IBD estimates themselves
rather than discrete relationship coefficients for any relationships.

The SNPRelate package includes three methods for calculating IBD: maximum likelihood es-
timation (MLE), which is accurate but computationally intensive, PLINK Method of Moments
(MoM), which is faster but does not perform well with multiple ancestry groups analyzed together,
and KING, which is robust to population structure3. This example will use the KING method.

> library(SNPRelate)

> gdsfile <- system.file("extdata", "illumina_geno.gds", package="GWASdata")

> gdsobj <- snpgdsOpen(gdsfile)

> ibdobj <- snpgdsIBDKING(gdsobj)

IBD analysis (KING method of moment) on genotypes:

Excluding 1,300 SNPs on non-autosomes

Excluding 39 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)

of samples: 77

of SNPs: 1,961

using 1 thread

No family is specified, and all individuals are treated as singletons.

Relationship inference in the presence of population stratification.

KING IBD: the sum of all selected genotypes (0,1,2) = 134860

CPU capabilities: Double-Precision SSE2

Mon Apr 27 20:28:28 2020 (internal increment: 65536)

[..] 0%, ETC: ---

[==] 100%, completed, 0s

Mon Apr 27 20:28:28 2020 Done.

> snpgdsClose(gdsobj)

> names(ibdobj)

[1] "sample.id" "snp.id" "afreq" "IBS0" "kinship"

> dim(ibdobj$kinship)

[1] 77 77

> ibdobj$kinship[1:5,1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] 0.50000000 0.50000000 0.2430314 0.2435009 0.01695652

[2,] 0.50000000 0.50000000 0.2425829 0.2430556 0.01611498

[3,] 0.24303136 0.24258290 0.5000000 0.4995645 0.26872822

[4,] 0.24350087 0.24305556 0.4995645 0.5000000 0.27000000

[5,] 0.01695652 0.01611498 0.2687282 0.2700000 0.50000000

3Manichaikul et al, Robust relationship inference in genome-wide association studies, Bioinformatics,
26(22):2867–2873, 2010

49

We find the expected relationships between samples based on the pedigree data that is stored
in the sample annotation file. We will create a subset of the sample annotation that has one line
per sample and columns that hold family, father and mother ids, where an entry of 0 indicates
no familial data. Then the function pedigreeCheck is called, which determines if there are any
duplicates, singleton families, mothers/fathers whose sex does not match, impossible relationships,
subfamilies, or missing entries.

> ped <- pData(scanAnnot)[,c("family", "subjectID", "father", "mother", "sex")]

> dim(ped)

[1] 77 5

> names(ped) <- c("family", "individ", "father", "mother", "sex")

> ped[1:5,]

family individ father mother sex

1 1341 200191449 0 0 F

2 1341 200191449 0 0 F

3 1341 200030290 200099417 200191449 F

4 1341 200030290 200099417 200191449 F

5 1341 200099417 0 0 M

> (chk <- pedigreeCheck(ped))

$duplicates

family individ copies match

1 1341 200191449 2 TRUE

2 1341 200030290 2 TRUE

3 1341 200099417 2 TRUE

4 1341 200015835 2 TRUE

5 1340 200099636 2 TRUE

6 1340 200076256 2 TRUE

7 1408 200074814 2 TRUE

8 1408 200094287 2 TRUE

9 1408 200019401 2 TRUE

10 1334 200016815 2 TRUE

11 1334 200118596 2 TRUE

12 1334 200019634 2 TRUE

13 1344 200071490 2 TRUE

14 1344 200116780 2 TRUE

15 1344 200005043 2 TRUE

16 1347 200121301 2 TRUE

17 1347 200009887 2 TRUE

18 1347 200044196 2 TRUE

19 1362 200024383 2 TRUE

20 1362 200187448 2 TRUE

21 1362 200169440 2 TRUE

50

22 1362 200018192 2 TRUE

23 1362 200118709 2 TRUE

24 4 200047857 2 TRUE

25 4 200073630 2 TRUE

26 5 200102386 2 TRUE

27 5 200079101 2 TRUE

28 5 200022488 2 TRUE

29 9 200066330 2 TRUE

30 9 200033736 2 TRUE

31 12 200066777 2 TRUE

32 12 200160551 2 TRUE

33 28 200003216 2 TRUE

34 28 200034659 2 TRUE

$parent.no.individ.entry

row.num family no_individ_entry parentID

1 13 1341 mother 200039107

2 14 1341 mother 200039107

$subfamilies.ident

family subfamily individ

1 58 1 200122151

2 58 2 200105428

The functions that determine expected relationships require no duplicates in the pedigree, so
we remove them with pedigreeDeleteDuplicates.

> dups <- chk$duplicates

> uni.ped <- pedigreeDeleteDuplicates(ped, dups)

> (chk <- pedigreeCheck(uni.ped))

$parent.no.individ.entry

row.num family no_individ_entry parentID

1 8 1341 mother 200039107

$subfamilies.ident

family subfamily individ

7 58 1 200122151

8 58 2 200105428

1 1362 1 200003297

2 1362 1 200169440

3 1362 1 200187448

6 1362 2 200018192

4 1362 2 200024383

5 1362 2 200118709

There is one parent with no individual entry, so we add a row for that parent.

51

> ni <- chk$parent.no.individ.entry

> parent <- data.frame(family=ni$family, individ=ni$parentID,

+ father=0, mother=0, sex="F",

+ stringsAsFactors=FALSE)

> ped.complete <- rbind(uni.ped, parent)

> (chk <- pedigreeCheck(ped.complete))

$subfamilies.ident

family subfamily individ

13 58 1 200122151

14 58 2 200105428

2 1341 1 200030290

3 1341 1 200099417

1 1341 1 200191449

5 1341 2 200015835

6 1341 2 200039107

4 1341 2 200122600

7 1362 1 200003297

8 1362 1 200169440

9 1362 1 200187448

12 1362 2 200018192

10 1362 2 200024383

11 1362 2 200118709

There are multiple subfamilies identified, so we will need to assign new family IDs to the
subfamilies. One subfamily has two unrelated people (likely founders), so we remove this family
from the pedigree.

> ped.complete <- ped.complete[ped.complete$family != 58,]

> subf <- chk$subfamilies.ident

> table(subf$family)

58 1341 1362

2 6 6

> subf.ids <- subf$individ[subf$subfamily == 2]

> newfam <- ped.complete$individ %in% subf.ids

> ped.complete$family[newfam] <- paste0(ped.complete$family[newfam], "-2")

> table(ped.complete$family)

12 1334 1340 1341 1341-2 1344 1347 1362 1362-2 1408 28

3 3 3 3 3 3 3 3 3 3 3

4 5 9

3 3 3

> pedigreeCheck(ped.complete)

52

NULL

The revised pedigree passes all checks. Now from the verified sample list excluding duplicate
samples, we can calculate the expected relationships among the samples by calling the function
pedigreePairwiseRelatedness. The relationships looked for as annotated include: unrelated
(U), parent/offspring (PO), full siblings (FS), second-degree relatives (half-siblings, avuncular and
grandparent-grandchild), and third-degree relatives (first cousins). Families where mothers and
fathers are related are also looked for among the family annotations.

> rels <- pedigreePairwiseRelatedness(ped.complete)

> length(rels$inbred.fam)

[1] 0

> relprs <- rels$relativeprs

> relprs[1:5,]

Individ1 Individ2 relation kinship family

1 200191449 200030290 PO 0.25 1341

2 200191449 200099417 U 0.00 1341

3 200030290 200099417 PO 0.25 1341

4 200099636 200032162 U 0.00 1340

5 200099636 200076256 PO 0.25 1340

> table(relprs$relation)

PO U

28 14

In order to plot the IBD coefficient estimates color coded by expected relationships, we retrieve
a data.frame of sample pairs with KC > 1/32. The samples must be coded in terms of subject id
and each pair of samples must be annotated with the expected relationship. We can also assign
observed relationships based on the values of k0 and k1.

> samp <- pData(scanAnnot)[,c("scanID", "subjectID")]

> samp <- samp[match(ibdobj$sample.id, samp$scanID),]

> names(samp) <- c("scanID", "Individ")

> ibd <- snpgdsIBDSelection(ibdobj, kinship.cutoff=1/32)

> ibd <- merge(ibd, samp, by.x="ID1", by.y="scanID")

> ibd <- merge(ibd, samp, by.x="ID2", by.y="scanID", suffixes=c("1","2"))

> ibd$ii <- pasteSorted(ibd$Individ1, ibd$Individ2)

> relprs$ii <- pasteSorted(relprs$Individ1, relprs$Individ2)

> ibd <- merge(ibd, relprs[,c("ii","relation")], all.x=TRUE)

> names(ibd)[names(ibd) == "relation"] <- "exp.rel"

> ibd$exp.rel[ibd$Individ1 == ibd$Individ2] <- "Dup"

> ibd$exp.rel[is.na(ibd$exp.rel)] <- "U"

> table(ibd$exp.rel, useNA="ifany")

53

Dup PO U

34 90 130

> # assign observed relationships

> ibd$obs.rel <- ibdAssignRelatednessKing(ibd$IBS0, ibd$kinship)

> table(ibd$obs.rel, useNA="ifany")

Deg3 Dup PO U

66 34 90 64

Now the pedigree information is in the proper format for the IBD estimates to be plotted for
each pair of samples, color coded by expected relationship.

> ## thresholds for assigning relationships using kinship coefficients

> ## in table 1 of Manichaikul (2010)

> cut.dup <- 1/(2^(3/2))

> cut.deg1 <- 1/(2^(5/2))

> cut.deg2 <- 1/(2^(7/2))

> cut.deg3 <- 1/(2^(9/2))

> cols <- c(Dup="magenta", PO="cyan", U="black")

> plot(ibd$IBS0, ibd$kinship, col=cols[ibd$exp.rel],

+ xlab="Fraction of IBS=0", ylab="Kinship coefficient")

> abline(h=c(cut.deg1, cut.deg2, cut.deg3, cut.dup), lty=2, col="gray")

> legend("topright", legend=names(cols), col=cols, pch=1)

54

0.00 0.01 0.02 0.03 0.04 0.05

0.
1

0.
2

0.
3

0.
4

0.
5

Fraction of IBS=0

K
in

sh
ip

 c
oe

ffi
ci

en
t

Dup
PO
U

5.3 Population Structure

Principal Component Analysis on all ethnic groups

In this section, we perform principal component analysis (PCA) in order to detect any population
substructure that may exist among samples in a study. After calculating the eigenvectors for
the samples, we plot the values for each of the first 4 eigenvectors in a pairwise fashion for each
individual. By color coding the plots by annotated race and/or ethnicity, we can identify any
individuals whose recorded self-identified race/ethnicity differs from their inferred genetic ancestry.
Further, we can use the PCA-identified continental ancestry when stratifying samples by population
group. It may also be useful to include the values of some eigenvectors as covariates in association
tests.

For PCA, we use linkage disequilibrium (LD) pruning (snpgdsLDpruning) to select a set of
SNPs within which each pair has a low level of LD (e.g. r2 < 0.1 in a sliding 10 Mb window), from
a starting pool of autosomal SNPs with missing.n1 < 0.05 and MAF < 0.05. We also remove
SNPs in regions with known correlation (2q21 (LCT), HLA, 8p23, and 17q21.31). We must also
ensure no duplicate samples are used for the principal component calculations.

55

> filt <- get(data(pcaSnpFilters.hg18))

> chrom <- getChromosome(snpAnnot)

> pos <- getPosition(snpAnnot)

> snpID <- getSnpID(snpAnnot)

> snp.filt <- rep(TRUE, length(snpID))

> for (f in 1:nrow(filt)) {

+ snp.filt[chrom == filt$chrom[f] & filt$start.base[f] < pos

+ & pos < filt$end.base[f]] <- FALSE

+ }

> snp.sel <- snpID[snp.filt]

> length(snp.sel)

[1] 3300

> sample.sel <- scanAnnot$scanID[!scanAnnot$duplicated]

> length(sample.sel)

[1] 43

> gdsobj <- snpgdsOpen(gdsfile)

> snpset <- snpgdsLDpruning(gdsobj, sample.id=sample.sel, snp.id=snp.sel,

+ autosome.only=TRUE, maf=0.05, missing.rate=0.05,

+ method="corr", slide.max.bp=10e6,

+ ld.threshold=sqrt(0.1))

SNP pruning based on LD:

Excluding 1,300 SNPs (non-autosomes or non-selection)

Excluding 237 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05)

of samples: 43

of SNPs: 1,763

using 1 thread

sliding window: 10,000,000 basepairs, Inf SNPs

|LD| threshold: 0.316228

method: correlation

Chromosome 21: 8.40%, 84/1,000

Chromosome 22: 8.60%, 86/1,000

170 markers are selected in total.

> snp.pruned <- unlist(snpset, use.names=FALSE)

> length(snp.pruned)

[1] 170

The snpgdsPCA function is called with the SNP and sample subsets to calculate the first 32
eigenvectors.

> pca <- snpgdsPCA(gdsobj, sample.id=sample.sel, snp.id=snp.pruned)

56

Principal Component Analysis (PCA) on genotypes:

Excluding 3,130 SNPs (non-autosomes or non-selection)

Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)

of samples: 43

of SNPs: 170

using 1 thread

of principal components: 32

PCA: the sum of all selected genotypes (0,1,2) = 6280

CPU capabilities: Double-Precision SSE2

Mon Apr 27 20:28:28 2020 (internal increment: 75344)

[..] 0%, ETC: ---

[==] 100%, completed, 0s

Mon Apr 27 20:28:28 2020 Begin (eigenvalues and eigenvectors)

Mon Apr 27 20:28:28 2020 Done.

> names(pca)

[1] "sample.id" "snp.id" "eigenval" "eigenvect" "varprop" "TraceXTX"

[7] "Bayesian" "genmat"

> length(pca$eigenval)

[1] 43

> dim(pca$eigenvect)

[1] 43 32

We will make a pairs plot showing the first four eigenvectors. A simple calculation is made to
find the fraction of variance among the samples as explained by each eigenvector.

> # Calculate the percentage of variance explained

> # by each principal component.

> pc.frac <- pca$eigenval/sum(pca$eigenval)

> lbls <- paste("EV", 1:4, "\n", format(pc.frac[1:4], digits=2), sep="")

> samp <- pData(scanAnnot)[match(pca$sample.id, scanAnnot$scanID),]

> cols <- rep(NA, nrow(samp))

> cols[samp$race == "CEU"] <- "blue"

> cols[samp$race == "YRI"] <- "red"

> pairs(pca$eigenvect[,1:4], col=cols, labels=lbls,

+ main = "CEU: blue, YRI: red")

57

EV1
NaN

−
0.

2
0.

0
0.

2

−0.1 0.1

−
0.

2
0.

0
0.

2

−0.2 0.0 0.2

EV2
NaN

EV3
NaN

−0.3 −0.1 0.1 0.3

−0.2 0.0 0.2

−
0.

1
0.

1
−

0.
3

0.
0

0.
2

EV4
NaN

CEU: blue, YRI: red

Parallel Coordinates Plot

A handy method of visualizing the effects of eigenvectors on clusters for a principal components
analysis is the parallel coordinates plot. The genetic diversity in the YRI group is apparent in the
later eigenvectors, while the remaining groups remain in clusters throughout.

> par.coord <- pca$eigenvect

> rangel <- apply(par.coord, 2, function(x) range(x)[1])

> rangeh <- apply(par.coord, 2, function(x) range(x)[2])

> std.coord <- par.coord

> for (i in 1:14)

+ std.coord[,i] <- (par.coord[,i] - rangel[i])/(rangeh[i]-rangel[i])

> plot(c(0,15), c(0,1), type = 'n', axes = FALSE, ylab = "", xlab = "",

+ main = "Parallel Coordinates Plot

+ CEU: blue, YRI: red")

> for (j in 1:13)

+ for (i in sample(1:nrow(std.coord)))

58

+ lines(c(j,j+1), std.coord[i,c(j,j+1)], col=cols[i], lwd=0.25)

> axis(1, at = 1:14, labels = paste("PC",1:14, sep = "."))

Parallel Coordinates Plot
 CEU: blue, YRI: red

PC.1 PC.3 PC.5 PC.7 PC.9 PC.11 PC.14

SNP-PC correlation

We confirm that there are no correlations between SNP regions and specific eigenvectors by exam-
ining plots of SNP correlation vs. position on the chromosome. Usually we check the first 8–12
eigenvectors, but here we plot only 1–4.

> corr <- snpgdsPCACorr(pca, gdsobj, eig.which=1:4)

> snpgdsClose(gdsobj)

> snp <- snpAnnot[match(corr$snp.id, snpID),]

> chrom <- getChromosome(snp, char=TRUE)

> pdf("DataCleaning-corr.pdf")

> par(mfrow=c(4,1))

> for (i in 1:4) {

+ snpCorrelationPlot(abs(corr$snpcorr[i,]), chrom,

59

+ main=paste("Eigenvector",i), ylim=c(0,1))

+ }

> dev.off()

0.
0

0.
6

Eigenvector 1

Chromosome

ab
s(

co
rr

el
at

io
n)

21 22 X

X
Y Y M

0.
0

0.
6

Eigenvector 2

Chromosome

ab
s(

co
rr

el
at

io
n)

21 22 X

X
Y Y M

0.
0

0.
6

Eigenvector 3

Chromosome

ab
s(

co
rr

el
at

io
n)

21 22 X

X
Y Y M

0.
0

0.
6

Eigenvector 4

Chromosome

ab
s(

co
rr

el
at

io
n)

21 22 X

X
Y Y M

60

6 Case-Control Confounding

We recommend checking for case-control confounding as part of the data cleaning process for GWAS.
This involves checking both the principal components and the missing call rate for a relationship
with case status.

6.1 Principal Components Differences

This step examines differences in principal components according to case-control status.
Collate PCA information with sample number, case-control status, and population group.

> princomp <- as.data.frame(pca$eigenvect)

> samples.nodup <- pData(scanAnnot)[!scanAnnot$duplicated,]

> princomp$scanID <- as.factor(samples.nodup$scanID)

> princomp$case.ctrl.status <- as.factor(samples.nodup$status)

> princomp$race <- as.factor(samples.nodup$race)

The code below gives what percent of variation is accounted for by the principal component for
the first 32 PCs.

> pc.percent <- 100 * pca$eigenval[1:32]/sum(pca$eigenval)

> pc.percent

[1] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

[20] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

> lbls <- paste("EV", 1:3, "\n", format(pc.percent[1:3], digits=2), "%", sep="")

> table(samples.nodup$status)

0 1

21 21

> cols <- rep(NA, nrow(samples.nodup))

> cols[samples.nodup$status == 1] <- "green"

> cols[samples.nodup$status == 0] <- "magenta"

We plot the principal component pairs for the first three PCs by case-control status. We
then make boxplots for the first few PCs to show differences between cases and controls, along
with a two-factor ANOVA accounting for case-control status and population group. Since we are
using randomized case-control status, we do not expect to see a significant difference in principal
components between cases and controls, when considering population group.

> pairs(pca$eigenvect[,1:3], col=cols, labels=lbls,

+ main = "First Three EVs by Case-Control Status")

61

EV1
NaN%

−
0.

2
0.

0
0.

2

−0.1 0.0 0.1 0.2

−0.2 0.0 0.2

EV2
NaN%

−
0.

1
0.

0
0.

1
0.

2
−0.3 −0.1 0.1 0.3

−
0.

3
−

0.
1

0.
1

0.
3

EV3
NaN%

First Three EVs by Case−Control Status

> boxplot(princomp[, 1] ~ princomp$case.ctrl.status,

+ ylab = "PC1", main = "PC1 vs. Case-control Status")

62

0 1

−
0.

1
0.

0
0.

1
0.

2
PC1 vs. Case−control Status

princomp$case.ctrl.status

P
C

1

> boxplot(princomp[, 2] ~ princomp$case.ctrl.status,

+ ylab = "PC2", main = "PC2 vs. Case-control Status")

63

0 1

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

PC2 vs. Case−control Status

princomp$case.ctrl.status

P
C

2

> boxplot(princomp[, 3] ~ princomp$case.ctrl.status,

+ ylab = "PC3", main = "PC3 vs. Case-control Status")

64

0 1

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3
PC3 vs. Case−control Status

princomp$case.ctrl.status

P
C

3

> aov.p1 <- aov(princomp[,1] ~ princomp$race *

+ princomp$case.ctrl.status, princomp)

> summary(aov.p1)

Df Sum Sq Mean Sq F value Pr(>F)

princomp$race 1 0.9417 0.9417 708.826 <2e-16 ***

princomp$case.ctrl.status 1 0.0005 0.0005 0.386 0.538

princomp$race:princomp$case.ctrl.status 1 0.0008 0.0008 0.623 0.435

Residuals 38 0.0505 0.0013

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

1 observation deleted due to missingness

> aov.p2 <- aov(princomp[,2] ~ princomp$race *

+ princomp$case.ctrl.status, princomp)

> summary(aov.p2)

Df Sum Sq Mean Sq F value Pr(>F)

princomp$race 1 0.0008 0.000844 0.033 0.857

65

princomp$case.ctrl.status 1 0.0166 0.016584 0.647 0.426

princomp$race:princomp$case.ctrl.status 1 0.0014 0.001350 0.053 0.820

Residuals 38 0.9745 0.025644

1 observation deleted due to missingness

> aov.p3 <- aov(princomp[,3] ~ princomp$race *

+ princomp$case.ctrl.status, princomp)

> summary(aov.p3)

Df Sum Sq Mean Sq F value Pr(>F)

princomp$race 1 0.0029 0.002851 0.109 0.743

princomp$case.ctrl.status 1 0.0001 0.000050 0.002 0.965

princomp$race:princomp$case.ctrl.status 1 0.0011 0.001108 0.042 0.838

Residuals 38 0.9929 0.026129

1 observation deleted due to missingness

6.2 Missing Call Rate Differences

This step determines whether there are differences in missing call rates between cases and controls.
As in section 6.1, we use simulated case-control status to demonstrate this step, since the HapMap
II data does not contain information on cases and controls.

Investigate the difference in mean missing call rate by case-control status, using the sample
annotation variable missing.e1. Here, since the case-control status was randomly assigned, we do
not expect to see a difference in any of the missing call rates with respect to case-control status.

> lm.all <- lm(scanAnnot$missing.e1 ~ scanAnnot$status)

> summary(aov(lm.all))

Df Sum Sq Mean Sq F value Pr(>F)

scanAnnot$status 1 0.0000647 6.474e-05 4.65 0.0343 *

Residuals 73 0.0010163 1.392e-05

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

2 observations deleted due to missingness

> boxplot(scanAnnot$missing.e1 ~ scanAnnot$status, ylab =

+ "Mean missing call rate", main="Mean missing call rate by case status")

66

0 1

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Mean missing call rate by case status

scanAnnot$status

M
ea

n
m

is
si

ng
 c

al
l r

at
e

67

7 Chromosome Anomaly Detection

This step looks for large chromosomal anomalies that may be filtered out during the final analysis.

7.1 B Allele Frequency filtering

Create an IntensityData object and a GenotypeData object.

> blfile <- system.file("extdata", "illumina_bl.gds", package="GWASdata")

> blgds <- GdsIntensityReader(blfile)

> blData <- IntensityData(blgds, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

> genofile <- system.file("extdata", "illumina_geno.gds", package="GWASdata")

> genogds <- GdsGenotypeReader(genofile)

> genoData <- GenotypeData(genogds, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

Identify some low quality samples by looking at the standard deviation of BAF.

> baf.sd <- sdByScanChromWindow(blData, genoData, var="BAlleleFreq")

> med.baf.sd <- medianSdOverAutosomes(baf.sd)

> low.qual.ids <- med.baf.sd$scanID[med.baf.sd$med.sd > 0.05]

Decide which SNPs to exclude based on genome build.

> chrom <- getChromosome(snpAnnot, char=TRUE)

> pos <- getPosition(snpAnnot)

> hla.df <- get(data(HLA.hg18))

> hla <- chrom == "6" & pos >= hla.df$start.base & pos <= hla.df$end.base

> xtr.df <- get(data(pseudoautosomal.hg18))

> xtr <- chrom == "X" & pos >= xtr.df["X.XTR", "start.base"] &

+ pos <= xtr.df["X.XTR", "end.base"]

> centromeres <- get(data(centromeres.hg18))

> gap <- rep(FALSE, nrow(snpAnnot))

> for (i in 1:nrow(centromeres)) {

+ ingap <- chrom == centromeres$chrom[i] & pos > centromeres$left.base[i] &

+ pos < centromeres$right.base[i]

+ gap <- gap | ingap

+ }

> ignore <- snpAnnot$missing.n1 == 1 #ignore includes intensity-only and failed snps

> snp.exclude <- ignore | hla | xtr | gap

> snp.ok <- snpAnnot$snpID[!snp.exclude]

We use circular binary segmentation to find change points in BAF.

> scan.ids <- scanAnnot$scanID[1:10]

> chrom.ids <- 21:23

> baf.seg <- anomSegmentBAF(blData, genoData, scan.ids=scan.ids,

+ chrom.ids=chrom.ids, snp.ids=snp.ok, verbose=FALSE)

> head(baf.seg)

68

scanID chromosome left.index right.index num.mark seg.mean

1 280 21 4 998 294 0.1669

2 280 22 1009 2000 302 0.1524

3 280 23 2020 2987 297 0.1587

4 281 21 4 998 293 0.1516

5 281 22 1009 2000 301 0.1410

6 281 23 2020 2987 297 0.1452

Filter segments to detect anomalies, treating the low quality samples differently.

> baf.anom <- anomFilterBAF(blData, genoData, segments=baf.seg,

+ snp.ids=snp.ok, centromere=centromeres, low.qual.ids=low.qual.ids,

+ verbose=FALSE)

> names(baf.anom)

[1] "raw" "filtered" "base.info" "seg.info"

> baf.filt <- baf.anom$filtered

> head(baf.filt)

scanID chromosome left.index right.index num.mark seg.mean sd.fac sex merge

1 286 22 1154 1163 10 0.401500 2.813941 M FALSE

2 287 22 1154 1163 10 0.371368 2.429629 M FALSE

homodel.adjust left.base right.base frac.used

1 FALSE 21110596 21276825 1

2 TRUE 21110596 21276825 1

7.2 Loss of Heterozygosity

We look for Loss of Heterozygosity (LOH) anomalies by identifying homozygous runs with change
in LRR. Change points in LRR are found by circular binary segmentation. Known anomalies from
the BAF detection are excluded.

> loh.anom <- anomDetectLOH(blData, genoData, scan.ids=scan.ids,

+ chrom.ids=chrom.ids, snp.ids=snp.ok, known.anoms=baf.filt,

+ verbose=FALSE)

> names(loh.anom)

[1] "raw" "raw.adjusted" "filtered" "base.info" "segments"

[6] "merge"

> loh.filt <- loh.anom$filtered

> head(loh.filt)

NULL

69

7.3 Statistics

Calculate statistics for the anomalous segments found with the BAF and LOH methods.

> # create required data frame

> baf.filt$method <- "BAF"

> if (!is.null(loh.filt)) {

+ loh.filt$method <- "LOH"

+ cols <- intersect(names(baf.filt), names(loh.filt))

+ anoms <- rbind(baf.filt[,cols], loh.filt[,cols])

+ } else {

+ anoms <- baf.filt

+ }

> anoms$anom.id <- 1:nrow(anoms)

> stats <- anomSegStats(blData, genoData, snp.ids=snp.ok, anom=anoms,

+ centromere=centromeres)

> names(stats)

[1] "scanID" "chromosome"

[3] "left.index" "right.index"

[5] "num.mark" "seg.mean"

[7] "sd.fac" "sex"

[9] "merge" "homodel.adjust"

[11] "left.base" "right.base"

[13] "frac.used" "method"

[15] "anom.id" "nmark.all"

[17] "nmark.elig" "nbase"

[19] "non.anom.baf.med" "non.anom.lrr.med"

[21] "non.anom.lrr.mad" "anom.baf.dev.med"

[23] "anom.baf.dev.5" "anom.baf.dev.mean"

[25] "anom.baf.sd" "anom.baf.mad"

[27] "anom.lrr.med" "anom.lrr.sd"

[29] "anom.lrr.mad" "nmark.baf"

[31] "nmark.lrr" "cent.rel"

[33] "left.most" "right.most"

[35] "left.last.elig" "right.last.elig"

[37] "left.term.lrr.med" "right.term.lrr.med"

[39] "left.term.lrr.n" "right.term.lrr.n"

[41] "cent.span.left.elig.n" "cent.span.right.elig.n"

[43] "cent.span.left.bases" "cent.span.right.bases"

[45] "cent.span.left.index" "cent.span.right.index"

[47] "bafmetric.anom.mean" "bafmetric.non.anom.mean"

[49] "bafmetric.non.anom.sd" "nmark.lrr.low"

Plot the anomalies with relevant statistics, one anomaly per plot. Each plot has two parts:
upper part is a graph of LRR and lower part is a graph of BAF.

70

> snp.not.ok <- snpAnnot$snpID[snp.exclude]

> anomStatsPlot(blData, genoData, anom.stats=stats[1,],

+ snp.ineligible=snp.not.ok, centromere=centromeres, cex.leg=1)

20.5 21.0 21.5 22.0

−
6

−
4

−
2

0
2

anom 1 − scan 286 − M − chrom 22 − BAF

position (Mb)

LR
R

20.5 21.0 21.5 22.0

0.
0

0.
4

0.
8

green=AA, orange=AB, purple=BB, pink=ineligible, black=other missing
horiz solid red = non−anom median, horiz dashed red = anom median

position (Mb)

B
A

F

p1
3

p1
2

p1
1.

2

p1
1.

1

q1
1.

1

q1
1.

21

q1
1.

22

q1
1.

23

q1
2.

1

q1
2.

2

q1
2.

3

q1
3.

1

q1
3.

2

q1
3.

31

q1
3.

32
q1

3.
33

7.4 Identify low quality samples

To identify low quality samples, one measure we use is the standard deviation of BAF and LRR.
BAF results were found previously, now we find results for LRR. Unlike for BAF, all genotypes are
included.

> lrr.sd <- sdByScanChromWindow(blData, var="LogRRatio", incl.hom=TRUE)

> med.lrr.sd <- medianSdOverAutosomes(lrr.sd)

We also need the number of segments found using circular binary segmentation in anomaly
detection.

> baf.seg.info <- baf.anom$seg.info

> loh.seg.info <- loh.anom$base.info[,c("scanID", "chromosome", "num.segs")]

71

We identify low quality samples separately for BAF and LOH, using different threshold param-
eters. A SnpAnnotationDataFrame with an “eligible” column is required. BAF detected anomalies
for low quality BAF samples tend to have higher false positive rate. LOH detected anomalies for
low quality LOH samples tend to have higher false positive rate.

> snpAnnot$eligible <- !snp.exclude

> baf.low.qual <- anomIdentifyLowQuality(snpAnnot, med.baf.sd, baf.seg.info,

+ sd.thresh=0.1, sng.seg.thresh=0.0008, auto.seg.thresh=0.0001)

> loh.low.qual <- anomIdentifyLowQuality(snpAnnot, med.lrr.sd, loh.seg.info,

+ sd.thresh=0.25, sng.seg.thresh=0.0048, auto.seg.thresh=0.0006)

Close the IntensityData and GenotypeData objects.

> close(blData)

> close(genoData)

7.5 Filter anomalies

We can set genotypes in anomaly regions to missing for future analyses (such as Hardy-Weinberg
equilibrium and association tests). We use the function setMissingGenotypes to create a new
GDS file with anomaly regions set to NA. We recommend inspecting the plots from anomStatsPlot

for large anomalies (e.g., > 5 Mb) to identify those anomalies that case genotyping errors. We can
also exclude certain samples, such as duplicates, low quality samples, and samples with unresolved
identity issues.

> # anomalies to filter

> anom.filt <- stats[,c("scanID", "chromosome", "left.base", "right.base")]

> # whole.chrom column is required and can be used for sex chromosome

> # anomalies such as XXX

> anom.filt$whole.chrom <- FALSE

> # select unique subjects

> subj <- scanAnnot$scanID[!scanAnnot$duplicated]

> subj.filt.file <- "subj_filt.gds"

> setMissingGenotypes(genofile, subj.filt.file, anom.filt,

+ file.type="gds", sample.include=subj, verbose=FALSE)

> (gds <- GdsGenotypeReader(subj.filt.file))

File: /tmp/RtmpO2mIvz/Rbuild1fe56dad31fe/GWASTools/vignettes/subj_filt.gds (60.7K)

+ []

|--+ sample.id { Int32 43 LZMA_ra(87.2%), 157B }

|--+ snp.id { Int32 3300 LZMA_ra(25.9%), 3.3K }

|--+ snp.chromosome { UInt8 3300 LZMA_ra(3.45%), 121B } *

|--+ snp.position { Int32 3300 LZMA_ra(68.4%), 8.8K }

|--+ snp.rs.id { Str8 3300 LZMA_ra(33.6%), 11.0K }

|--+ snp.allele { Str8 3300 LZMA_ra(8.83%), 1.1K }

\--+ genotype { Bit2 3300x43, 34.6K } *

> close(gds)

72

8 SNP Quality Checks

This step finds SNPs that may not be suitable for use in GWAS studies due to genotyping artifacts.
Three methods are used to look at the genotyping error rates for each SNP: duplicate sample
discordance, Mendelian error rates and deviation from Hardy-Weinberg equilibrium.

8.1 Duplicate Sample Discordance

This step calculates the discordance of genotype calls between samples that are duplicates. Geno-
type discordance is evaluated by comparing the genotypes of samples that were genotyped more
than once. We can examine the discordance rate with respect to samples or SNPs. The discordance
rate for a pair of samples is the fraction of genotype calls that differ over all SNPs for which both
calls are non-missing. The discordance rate for a SNP is the number of calls that differ divided by
the number of duplicate pairs in which both calls are non-missing.

Keep the samples with a low enough value for the missing call rate, missing.e1. The threshold
chosen here is 0.05.

> scan.excl <- scanAnnot$scanID[scanAnnot$missing.e1 >= 0.05]

> length(scan.excl)

[1] 0

We make a vector of SNP snpIDs with missing.n1 = 1 to exclude from the comparison.
We then call the duplicateDiscordance function and save the output file. This function finds
subjectIDs for which there is more than one scanID. To look at the discordance results, we will
calculate the percentage value and look at the summary of the values for each of the duplicate
pairs. We will plot the rates color coded by continental ancestry, since experience has shown the
values often differ based upon the population group.

> snp.excl <- snpAnnot$snpID[snpAnnot$missing.n1 == 1]

> length(snp.excl)

[1] 151

> genofile <- system.file("extdata", "illumina_geno.gds", package="GWASdata")

> genoGDS <- GdsGenotypeReader(genofile)

> genoData <- GenotypeData(genoGDS, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

> dupdisc <- duplicateDiscordance(genoData, subjName.col="subjectID",

+ scan.exclude=scan.excl, snp.exclude=snp.excl)

> names(dupdisc)

[1] "discordance.by.snp" "discordance.by.subject" "correlation.by.subject"

> head(dupdisc$discordance.by.snp)

snpID discordant npair n.disc.subj discord.rate

1 999465 0 33 0 0

2 999493 0 31 0 0

73

3 999512 0 34 0 0

4 999561 0 34 0 0

5 999567 0 34 0 0

6 999569 0 34 0 0

> length(dupdisc$discordance.by.subject)

[1] 34

> dupdisc$discordance.by.subject[[2]]

282 283

282 0.0000000000 0.0003265839

283 0.0003265839 0.0000000000

> # each entry is a 2x2 matrix, but only one value of each

> # is important since these are all pairs

> npair <- length(dupdisc$discordance.by.subject)

> disc.subj <- rep(NA, npair)

> subjID <- rep(NA, npair)

> race <- rep(NA, npair)

> for (i in 1:npair) {

+ disc.subj[i] <- dupdisc$discordance.by.subject[[i]][1,2]

+ subjID[i] <- names(dupdisc$discordance.by.subject)[i]

+ race[i] <- scanAnnot$race[scanAnnot$subjectID == subjID[i]][1]

+ }

> dat <- data.frame(subjID=subjID, disc=disc.subj, pop=race,

+ stringsAsFactors=FALSE)

> summary(dat$disc)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000000 0.0000000 0.0000000 0.0002660 0.0003225 0.0019828

> # Assign colors for the duplicate samples based on population group.

> dat$col <- NA

> dat$col[dat$pop == "CEU"] <- "blue"

> dat$col[dat$pop == "YRI"] <- "red"

> dat <- dat[order(dat$disc),]

> dat$rank <- 1:npair

> # Plot the sample discordance rates color coded by race.

> plot(dat$disc, dat$rank, col=dat$col, ylab="rank",

+ xlab="Discordance rate between duplicate samples",

+ main="Duplicate Sample Discordance by Continental Ancestry")

> legend("bottomright", unique(dat$pop), pch=rep(1,2), col=unique(dat$col))

74

0.0000 0.0005 0.0010 0.0015 0.0020

0
5

10
15

20
25

30
35

Duplicate Sample Discordance by Continental Ancestry

Discordance rate between duplicate samples

ra
nk

CEU
YRI

Genotyping error rates can be estimated from duplicate discordance rates. The genotype at
any SNP may be called correctly, or miscalled as either of the other two genotypes. If α and β are
the two error rates, the probability that duplicate genotyping instances of the same participant will
give a discordant genotype is 2[(1 − α − β)(α + β) + αβ]. When α and β are very small, this is
approximately 2(α+ β) or twice the total error rate. Potentially, each true genotype has different
error rates (i.e. three α and three β parameters), but here we assume they are the same. A rough
estimate of the mean error rate is half the median discordance rate over all sample pairs.

Duplicate discordance estimates for individual SNPs can be used as a SNP quality filter. The
challenge here is to find a level of discordance that would eliminate a large fraction of SNPs with
high error rates, while retaining a large fraction with low error rates. The probability of observing
> x discordant genotypes in a total of n pairs of duplicates can be calculated using the binomial
distribution.

> duplicateDiscordanceProbability(npair)

error=1e-05 error=1e-04 error=0.001 error=0.01

dis>0 6.797706e-04 6.777101e-03 6.575540e-02 4.942376e-01

dis>1 2.243009e-07 2.234113e-05 2.147291e-03 1.459858e-01

75

dis>2 4.784862e-11 4.763922e-08 4.559737e-05 2.961468e-02

dis>3 7.366668e-15 7.382418e-11 7.051524e-07 4.476031e-03

dis>4 0.000000e+00 8.858958e-14 8.452530e-09 5.304432e-04

dis>5 0.000000e+00 9.581360e-17 8.167288e-11 5.100698e-05

dis>6 0.000000e+00 1.025893e-17 6.533692e-13 4.077516e-06

dis>7 0.000000e+00 1.019048e-17 4.402201e-15 2.758531e-07

8.2 Mendelian Error Checking

This step calculates and examines the Mendelian error rates. Mendelian errors are detected in
parent-offspring trios or pairs as offspring genotypes that are inconsistent with Mendelian inheri-
tance. We use the mendelErr function to calculate a Mendelian error rate per SNP. Lastly some
checks are done on Mendelian error rates per family.

To call the Mendelian error checking function, we first must create a mendelList object. We will
call mendelList that creates a list of trios, checking for any sex inconsistencies among annotated
father and mother samples. Then, mendelListAsDataFrame puts this list into a data frame for
easier checking. Finally, we can call the mendelErr function to find the Mendelian errors for SNPs
with missing.n1 less than 0.05.

> men.list <- with(pData(scanAnnot), mendelList(family, subjectID,

+ father, mother, sex, scanID))

> res <- mendelListAsDataFrame(men.list)

> head(res)

offspring father mother

1 329 331 332

2 329 331 333

3 330 331 332

4 330 331 333

5 334 336 338

6 334 336 339

> dim(res)

[1] 82 3

> # Only want to use SNPs with missing.n1 < 0.05

> snp.excl <- snpAnnot$snpID[snpAnnot$missing.n1 >= 0.05]

> length(snp.excl)

[1] 206

> mend <- mendelErr(genoData, men.list, snp.exclude=snp.excl)

> names(mend)

[1] "trios" "all.trios" "snp"

> head(mend$trios)

76

fam.id child.id Men.err.cnt Men.cnt mtDNA.err mtDNA.cnt chr1 chr2 chr3 chr4

1 4 200047857 1 3006.5 0 87.0 0 0 0 0

2 5 200102386 2 3003.0 0 86.5 0 0 0 0

3 9 200066330 1 3003.5 0 86.5 0 0 0 0

4 12 200013233 0 2999.5 0 82.0 0 0 0 0

5 28 200034659 0 3002.5 0 64.0 0 0 0 0

6 1334 200016815 3 2988.5 0 87.0 0 0 0 0

chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0

chr18 chr19 chr20 chr21 chr22 chrX chrXY chrY

1 0 0 0 0 0.0 0.0 1 0

2 0 0 0 0 2.0 0.0 0 0

3 0 0 0 0 1.0 0.0 0 0

4 0 0 0 0 0.0 0.0 0 0

5 0 0 0 0 0.0 0.0 0 0

6 0 0 0 1 1.5 0.5 0 0

> names(mend$snp)

[1] "check.cnt" "error.cnt"

Mendelian Errors per SNP

The Mendelian error rate is calculated for each SNP by dividing the number of errors per SNP for
all trios by the number of trios used in the error checking.

> # Calculate the error rate

> err <- mendsnperror.cnt / mendsnpcheck.cnt

> table(err == 0, useNA="ifany")

FALSE TRUE

11 3083

> plot(err, rank(err), xlab="Error Rate (fraction)",

+ ylab="rank", main="Mendelian Error Rate per SNP, ranked")

77

0.00 0.02 0.04 0.06 0.08

15
00

20
00

25
00

30
00

Mendelian Error Rate per SNP, ranked

Error Rate (fraction)

ra
nk

Next we will look at the Mendelian error rates among the trios we have in the HapMap data.
Looking at the summary of the number of families with at least one error over all SNPs, we can see
the maximum number of errors per SNP. Next, we can look at subsets of SNPs with greater than
0 and 1 errors per SNP. Finally, for those SNPs that have valid trios to detect errors, we get the
fraction of SNPs with no errors.

> fam <- mendsnperror.cnt

> n <- mendsnpcheck.cnt

> summary(fam)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000000 0.000000 0.000000 0.003555 0.000000 1.000000

> # SNPs with errors

> length(fam[n > 0 & fam > 0])

[1] 11

> # SNPs for which more than one family has an error

> length(fam[n > 0 & fam > 1])

78

[1] 0

> # Get the SNPs with valid trios for error detection

> val <- length(fam[n > 0])

> noerr <- length(fam[n > 0 & fam == 0])

> # Divide to get fraction with no errors

> noerr / val

[1] 0.9964447

We add the Mendelian error values to the SNP annotation. The number of families with at
least one error per SNP, mendsnperror.cnt, gets saved as mendel.err.count. The number of
valid families for checking, mendsnpcheck.cnt, gets saved as mendel.err.sampsize.

> snp.sel <- match(names(mendsnperror.cnt), snpAnnot$snpID)

> snpAnnot$mendel.err.count[snp.sel] <- mendsnperror.cnt

> snpAnnot$mendel.err.sampsize[snp.sel] <- mendsnpcheck.cnt

> allequal(snpAnnot$snpID, sort(snpAnnot$snpID))

[1] TRUE

> # The high number of NA values is due to the filtering out of SNPs

> # before the Mendelian error rate calculation

> sum(is.na(snpAnnot$mendel.err.count))

[1] 206

> sum(is.na(snpAnnot$mendel.err.sampsize))

[1] 206

> varMetadata(snpAnnot)["mendel.err.count", "labelDescription"] <-

+ paste("number of Mendelian errors detected in trios averaged over",

+ "multiple combinations of replicate genotyping instances")

> varMetadata(snpAnnot)["mendel.err.sampsize", "labelDescription"] <-

+ "number of opportunities to detect Mendelian error in trios"

To further investigate SNPs with a high Mendelian error rate, we will make genotype cluster
plots for the 9 SNPs with the highest Mendelian error rate. green indicates a sample with an “AA”
genotype, orange is an “AB” genotype and purple is a “BB” genotype. The black X marks indicate a
sample with a missing genotype for that SNP. We expect the plots to lack defined genotype clusters,
leading to a poor call rate.

> # Get a vector of SNPs to check

> snp <- pData(snpAnnot)

> snp$err.rate <- snp$mendel.err.count /

+ snp$mendel.err.sampsize

> snp <- snp[order(snp$err.rate, decreasing=TRUE),]

79

> snp <- snp[1:9,]

> xyfile <- system.file("extdata", "illumina_qxy.gds", package="GWASdata")

> xyGDS <- GdsIntensityReader(xyfile)

> xyData <- IntensityData(xyGDS, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

> pdf(file="DataCleaning-mendel.pdf")

> par(mfrow = c(3,3))

> mtxt <- paste("SNP", snp$rsID, "\nMendelian Error Rate",

+ format(snp$err.rate, digits=5))

> genoClusterPlot(xyData, genoData, snpID=snp$snpID, main.txt=mtxt,

+ cex.main=0.9)

> dev.off()

> close(xyData)

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

SNP rs12007967
Mendelian Error Rate 0.076923

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

7

SNP MitoC8656T
Mendelian Error Rate 0.076923

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0
0.

3
0.

5

SNP rs243700
Mendelian Error Rate 0.071429

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

1.
5

2.
0

2.
5

3.
0

SNP rs401396
Mendelian Error Rate 0.071429

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

SNP rs175152
Mendelian Error Rate 0.071429

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

SNP rs4822015
Mendelian Error Rate 0.071429

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

SNP rs11090262
Mendelian Error Rate 0.071429

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

SNP rs6003815
Mendelian Error Rate 0.071429

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

SNP rs16983313
Mendelian Error Rate 0.071429

Theta

R

80

Mendelian Errors per Family

This section does some analyses on the Mendelian Errors for each family (trio). The variable
all.trios contains results of all combinations of duplicate samples. The variable trios contains
the averages of unique trios (averages of duplicates from all.trios).

> # Calculate the fraction of SNPs with an error for each trio

> trios <- mend$trios

> trios$Mend.err <- trios$Men.err.cnt/trios$Men.cnt

> summary(trios$Mend.err)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000000 0.0000000 0.0000000 0.0001909 0.0002916 0.0010038

> # Start by pulling out the vectors needed from `trios'

> tmp <- trios[, c("fam.id", "Mend.err")]; dim(tmp)

[1] 14 2

> # Change fam.id to match the sample annotation column name

> names(tmp) <- c("family", "Mend.err.rate.fam")

> # Merge the variables into the sample annotation file

> scanAnnot$mend.err.rate.fam <- NA

> for (i in 1:nrow(tmp)) {

+ ind <- which(is.element(scanAnnot$family, tmp$family[i]))

+ scanAnnot$mend.err.rate.fam[ind] <- tmp$Mend.err.rate.fam[i]

+ }

> head(scanAnnot$mend.err.rate.fam)

[1] 0 0 0 0 0 0

> varMetadata(scanAnnot)["mend.err.rate.fam", "labelDescription"] <-

+ "Mendelian error rate per family"

The Mendelian error rate per family, broken up by continental ancestry, could illuminate issues
with SNPs that may not be accurately called across all ethnicities for the minor allele. We will plot
the Mendelian error rate per family, color coded by population group. The error rates are higher
for the YRI families as a whole, which is expected due to the higher level of genetic diversity.

> # Get the families that have non-NA values for the family

> # Mendelian error rate

> fams <- pData(scanAnnot)[!is.na(scanAnnot$mend.err.rate.fam) &

+ !duplicated(scanAnnot$family), c("family",

+ "mend.err.rate.fam", "race")]

> dim(fams)

[1] 12 3

81

> table(fams$race, useNA="ifany")

CEU YRI

7 5

> # Assign colors for the different ethnicities in these families

> pcol <- rep(NA, nrow(fams))

> pcol[fams$race == "CEU"] <- "blue"

> pcol[fams$race == "YRI"] <- "red"

> plot(fams$mend.err.rate.fam*100, rank(fams$mend.err.rate.fam),

+ main="Mendelian Error rate per Family, ranked",

+ xlab="Mendelian error rate per family (percent)",

+ ylab="rank", col=pcol)

> legend("bottomright", c("CEU", "YRI"), pch=c(1,1), col=c("blue", "red"))

0.00 0.02 0.04 0.06 0.08 0.10

4
6

8
10

12

Mendelian Error rate per Family, ranked

Mendelian error rate per family (percent)

ra
nk

CEU
YRI

82

8.3 Hardy-Weinberg Equilibrium Testing

This section uses Fisher’s exact test to examine each SNP for departure from Hardy-Weinberg
Equilibrium. For each SNP, p-values are obtained; those SNPs with extremely low values will
be considered for filtering. QQ-plots of the p-values are made for both the autosomes and X
chromosome.

To run the Hardy-Weinberg test, we will filter out duplicates and non-founders. We will run
exactHWE for the samples with European continental ancestry only, although the process is just the
same for all population groups. The X chromosome must be run separately from the autosomes
since it filters out males.

> head(pData(scanAnnot)[,c("father", "mother")])

father mother

1 0 0

2 0 0

3 200099417 200191449

4 200099417 200191449

5 0 0

6 0 0

> nonfounders <- scanAnnot$father != 0 &

+ scanAnnot$mother != 0

> table(nonfounders)

nonfounders

FALSE TRUE

51 26

> scan.excl <- scanAnnot$scanID[scanAnnot$race != "CEU" |

+ nonfounders | scanAnnot$duplicated]

> length(scan.excl)

[1] 60

> chr <- getChromosome(genoData)

> auto <- range(which(chr %in% 1:22))

> X <- range(which(chr == 23))

> hwe <- exactHWE(genoData, scan.exclude=scan.excl, snpStart=auto[1], snpEnd=auto[2])

> hweX <- exactHWE(genoData, scan.exclude=scan.excl, snpStart=X[1], snpEnd=X[2])

> hwe <- rbind(hwe, hweX)

> close(genoData)

We will look at the values calculated from the function call to exactHWE, which include p-values,
minor allele frequency, and genotype counts for each SNP on each of the chromosome types.

> names(hwe)

83

[1] "snpID" "chr" "nAA" "nAB" "nBB"

[6] "MAF" "minor.allele" "f" "pval"

> dim(hwe)

[1] 3000 9

> # Check on sample sizes for autosomes and X chromosome

> hwe$N <- hwe$nAA + hwe$nAB + hwe$nBB

> summary(hwe$N[is.element(hwe$chr,1:22)])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 17.00 17.00 16.93 17.00 17.00

> summary(hwe$N[is.element(hwe$chr,23)])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 8.000 8.000 7.597 8.000 8.000

> hwe$pval[1:10]

[1] NA NA 1.0000000 1.0000000 1.0000000 0.5372636 0.1788856

[8] 1.0000000 1.0000000 1.0000000

> sum(is.na(hwe$pval[hwe$chr == 23])) # X

[1] 300

> hwe$MAF[1:10]

[1] NaN 0.00000000 0.13333333 0.26470588 0.05882353 0.20588235

[7] 0.11764706 0.23529412 0.35294118 0.35294118

> hwe[1:3, c("nAA", "nAB", "nBB")]

nAA nAB nBB

1 0 0 0

2 0 0 17

3 0 4 11

Next we want to estimate the inbreeding coefficient per SNP calculated using the minor allele
frequencies and the total sample number count. A histogram shows the distribution is centered
around 0, which indicates there is most likely no significant population substructure.

> summary(hwe$f)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

-1.0000 -0.1806 -0.0667 -0.0405 0.1005 1.0000 515

84

> hist(hwe$f, main="Histogram of the Inbreeding Coefficient

+ For CEU Samples", xlab="Inbreeding Coefficient")

Histogram of the Inbreeding Coefficient
 For CEU Samples

Inbreeding Coefficient

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
20

0
40

0
60

0
80

0
10

00

> # Check the MAF of those SNPs with f=1

> chkf <- hwe[!is.na(hwe$f) & hwe$f==1,]; dim(chkf)

[1] 9 10

> summary(chkf$MAF)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.05882 0.05882 0.05882 0.10212 0.12500 0.25000

To see at what value the SNPs begin to deviate from the Hardy-Weinberg expected values, we
will make QQ-plots that exclude SNPs where MAF = 0. We plot of the observed p-values vs. the
expected p-values for the autosomes and X chromosome separately by calling the function qqPlot.

> hwe.0 <- hwe[hwe$MAF > 0,]; dim(hwe.0)

85

[1] 2539 10

> # Only keep the autosomal SNPs for first plot

> pval <- hwe.0$pval[is.element(hwe.0$chr, 1:22)]

> length(pval)

[1] 1785

> pval <- pval[!is.na(pval)]

> length(pval)

[1] 1785

> # X chromosome SNPs for plot 2

> pval.x <- hwe.0$pval[is.element(hwe.0$chr, 23)]

> length(pval.x)

[1] 700

> pval.x <- pval.x[!is.na(pval.x)]

> length(pval.x)

[1] 700

> pdf(file = "DataCleaning-hwe.pdf")

> par(mfrow=c(2,2))

> qqPlot(pval=pval, truncate = FALSE, main="Autosomes, all")

> qqPlot(pval=pval, truncate = TRUE, main="Autosomes, truncated")

> qqPlot(pval=pval.x, truncate = FALSE, main="X chromosome, all")

> qqPlot(pval=pval.x, truncate = TRUE, main="X chromosome, truncated")

> dev.off()

86

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
Autosomes, all

− log10(expected P)

−
lo

g 1
0(

ob
se

rv
ed

 P
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

Autosomes, truncated

− log10(expected P)

−
lo

g 1
0(

ob
se

rv
ed

 P
)

−
 tr

un
ca

te
d

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

X chromosome, all

− log10(expected P)

−
lo

g 1
0(

ob
se

rv
ed

 P
)

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

X chromosome, truncated

− log10(expected P)

−
lo

g 1
0(

ob
se

rv
ed

 P
)

−
 tr

un
ca

te
d

We plot the p-values against MAF for all SNPs with MAF greater than zero.

> plot(hwe.0$MAF, -log10(hwe.0$pval),

+ xlab="Minor Allele Frequency", ylab="-log(p-value)",

+ main="Minor Allele Frequency vs\nP-value")

87

0.1 0.2 0.3 0.4 0.5

0
1

2
3

4
Minor Allele Frequency vs

P−value

Minor Allele Frequency

−
lo

g(
p−

va
lu

e)

88

9 Preliminary Association Tests

The final step in the data cleaning process is to perform preliminary association tests. This step
creates and examines QQ, ‘Manhattan’ signal, and genotype cluster plots. If significant SNPs
appear as a result of the association test, SNP cluster plots must be examined to determine if
the association is driven from a poorly clustering SNP. Note that HapMap data do not come
with phenotypic outcomes, thus, for purposes of the tutorial we use simulated binary outcomes
instead. The tests conducted are usually logistic regression based tests; the samples are filtered by
quality criteria and only unrelated subjects are included. In the code below we do not include any
covariates in the logistic regression as these data are not part of a case control study. For data in
the GENEVA project and other GWA studies we discuss which variables should be considered for
inclusion as covariates in the preliminary association tests. The determination is made by analyzing
a model including these covariates but without genotypes; covariates with significant effects are then
included in the final model.

9.1 Association Test

To run the association test, we call the function assocRegression. (For survival analysis, the
function assocCoxPH may be used.) We will use a logistic regression model with status as the
outcome, and sex and the first principal component as covariates.

We will use the filtered GDS file with unique subjects only that we made in section 7.5. Here we
use all unique subjects, but we would use the argument scan.exclude for those samples we wish
to filter out for the association test (such as low-quality or related samples). Typically, we do not
filter out SNPs for the association test – we run all SNPs and then filter the results. The omission
of filters may cause some SNPs to return significant p-values for association. In this example, we
will use the snpStart and snpEnd arguments to select a few SNPs on each chromosome.

> genoGDS <- GdsGenotypeReader(subj.filt.file)

> subjAnnot <- scanAnnot[scanAnnot$scanID %in% getScanID(genoGDS),]

> subjAnnot$sex <- as.factor(subjAnnot$sex)

> subjAnnot$EV1 <- pca$eigenvect[match(subjAnnot$scanID, pca$sample.id), 1]

> genoData <- GenotypeData(genoGDS, scanAnnot=subjAnnot)

> chr <- getChromosome(genoData)

> assoc.list <- lapply(unique(chr), function(x) {

+ ## Y chromsome only includes males, cannot have sex as a covariate

+ covar <- ifelse(x == 25, "EV1", c("sex", "EV1"))

+ start <- which(chr == x)[1]

+ assocRegression(genoData, outcome="status", covar=covar, model.type="logistic",

+ snpStart=start, snpEnd=start+50)

+ })

> assoc <- do.call(rbind, assoc.list)

> close(genoData)

After running the association test on the selected subset of SNPs and samples we must analyze
the results to determine if any probes with significant p-values are spurious or truly associated with
the phenotype of interest. Quantile-quantile, ‘Manhattan’ and SNP cluster plots will all be used to
further understand those probes with significant p-values.

89

9.2 QQ Plots

We create QQ plots of the ordered Wald test p-values versus the ordered expected p-values. Given
that the samples were split randomly between cases and controls, not surprisingly there are no
outliers visible in the QQ plot.

> qqPlot(pval=assoc$Wald.pval,

+ truncate=TRUE, main="QQ Plot of Wald Test p-values")

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

QQ Plot of Wald Test p−values

− log10(expected P)

−
lo

g 1
0(

ob
se

rv
ed

 P
)

−
 tr

un
ca

te
d

9.3 “Manhattan” Plots of the P-Values

To create the ‘Manhattan’ plots, we will call the function manhattanPlot. We take the negative
log transformation of the p-values and plot them for each probe.

> chrom <- getChromosome(snpAnnot, char=TRUE)

> snp.sel <- getSnpID(snpAnnot) %in% assoc$snpID

> manhattanPlot(assoc$Wald.pval, chromosome=chrom[snp.sel])

90

0
1

2
3

4
5

6

Chromosome

−
lo

g 1
0(p

)

21 22 X

X
Y Y M

9.4 SNP Cluster Plots

Next, we will create SNP cluster plots for the probes with significant p-values. It is important to
examine cluster plots of all top hits, as poor clusters not picked up by other quality checking steps
may still show up as having low p-values. We plot SNPs with the 9 most significant p-values from
the Wald test.

> # Identify SNPs with lowest p-values

> snp <- pData(snpAnnot)[snp.sel, c("snpID", "rsID")]

> snp$pval <- assoc$Wald.pval

> snp <- snp[order(snp$pval),]

> snp <- snp[1:9,]

> xyfile <- system.file("extdata", "illumina_qxy.gds", package="GWASdata")

> xyGDS <- GdsIntensityReader(xyfile)

> xyData <- IntensityData(xyGDS, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

> genofile <- system.file("extdata", "illumina_geno.gds", package="GWASdata")

> genoGDS <- GdsGenotypeReader(genofile)

91

> genoData <- GenotypeData(genoGDS, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

> pdf(file="DataCleaning-cluster.pdf")

> par(mfrow = c(3,3))

> mtxt <- paste("SNP", snp$rsID, "\np =", format(snp$pval, digits=4))

> genoClusterPlot(xyData, genoData, snpID=snp$snpID, main.txt=mtxt)

> dev.off()

> close(xyData)

> close(genoData)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

SNP rs439328
p = 0.004239

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

SNP rs3115511
p = 0.004635

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
9

1.
1

1.
3

SNP rs458959
p = 0.004878

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

SNP rs5962067
p = 0.005181

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
8

1.
2

1.
6

SNP rs6639846
p = 0.007144

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
4

1.
8

SNP rs2823109
p = 0.007404

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
4

1.
8

2.
2

SNP rs1153312
p = 0.015127

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

SNP rs2822577
p = 0.019746

Theta

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
8

1.
2

SNP rs7881769
p = 0.024269

Theta

R

These cluster plots look like high-quality SNPs with well-defined clusters (orange=AA, green=AB,
fuschia=BB).

92

10 Acknowledgements

This manual reflects the work of many people. In the first place the methods described were
developed and implemented by a team headed by Cathy Laurie. The team included David Crosslin,
Stephanie Gogarten, David Levine, Caitlin McHugh, Sarah Nelson, Jess Shen, Bruce Weir, Qi
Zhang and Xiuwen Zheng. Before any the work started, valuable advice was provided by Thomas
Lumley and Ken Rice. Preparation of the manual began with a team headed by Ian Painter and
Stephanie Gogarten. The team included Marshall Brown, Matthew Conomos, Patrick Danaher,
Kevin Rubenstein, Emily Weed and Leila Zelnick.

The data cleaning activities of the GENEVA Coordinating Center have been greatly helped by
the experience and advice from other participants in the GENEVA program: the genotyping centers
at CIDR and the Broad; the dbGaP group at the National Center for Biotechnology Information
(NCBI); and the many study investigators. Particular thanks to Kim Doheny and Elizabeth Pugh
at CIDR and Stacey Gabriel and Daniel Mirel at the Broad and Justin Paschall at NCBI.

Funding for the GENEVA project includes HG 004446 (PI: Bruce Weir) for the Coordinating
Center, U01 HG 004438 (PI: David Vallee) for CIDR, HG 004424 (PI: Stacey Gabriel) for the
Broad.

The continuing guidance of Dr. Teri Manolio of NHGRI is deeply appreciated.

93

	1 Overview
	2 Preparing Data
	2.1 Data formats used in GWASTools
	2.2 Creating the SNP Annotation Data Object
	2.3 Creating the Scan Annotation Data Object
	2.4 Creating the Data Files
	2.5 Combining data files with SNP and Scan annotation

	3 Batch Quality Checks
	3.1 Calculate Missing Call Rate for Samples and SNPs
	3.2 Calculate Missing Call Rates by Batch
	3.3 Chi-Square Test of Allelic Frequency Differences in Batches

	4 Sample Quality Checks
	4.1 Sample genotype quality scores
	4.2 B Allele Frequency variance analysis
	4.3 Missingness and heterozygosity within samples

	5 Sample Identity Checks
	5.1 Mis-annotated Sex Check
	5.2 Relatedness and IBD Estimation
	5.3 Population Structure

	6 Case-Control Confounding
	6.1 Principal Components Differences
	6.2 Missing Call Rate Differences

	7 Chromosome Anomaly Detection
	7.1 B Allele Frequency filtering
	7.2 Loss of Heterozygosity
	7.3 Statistics
	7.4 Identify low quality samples
	7.5 Filter anomalies

	8 SNP Quality Checks
	8.1 Duplicate Sample Discordance
	8.2 Mendelian Error Checking
	8.3 Hardy-Weinberg Equilibrium Testing

	9 Preliminary Association Tests
	9.1 Association Test
	9.2 QQ Plots
	9.3 ``Manhattan'' Plots of the P-Values
	9.4 SNP Cluster Plots

	10 Acknowledgements

