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Introduction

This package implements the statistical procedure described in [2] (with some small modifi-
cations). Notably, batch effect removal and the application of the bootstrap to linear models
of Efron and Tibshirani [1] need additional code.

For any given type of data, it is usually necessary to make a number of choices and/or trans-
formations before the bump hunting methodology is ready to be applied. Typically, these
modifications resides in other packages. Examples are charm (for CHARM-like methylation
microarrays), bsseq (for whole-genome bisulfite sequencing data) and minfi (for Illumina
450k methylation arrays). In some cases (specifically bsseq) only parts of the methodology
as implemented in the bumphunter package is applied, although the conceptual approach is
still build on bump hunting.

In other words, this package is mostly intended for developers wishing to adapt the general
methodology to their specific applications.

The core of the package is encapsulated in the bumphunter method which uses the under-
lying bumphunterEngine to do the heavy lifting. However, bumphunterEngine consists of a
number of useful functions that does much of the specific tasks involved in bump hunting.
This document attempts to describe the overall workflow as well as the specific functions.
The relevant functions are clusterMaker, getSegments, findRegions.

> library(bumphunter)



Note that this package is written with genomic data as an illustrative example but most of
it is easily generalizable to other data types.

Other functions

Most of the bumphunter package is code for bump hunting. But we also include a number
of convenience functions we have found useful, which are not necessarily part of the bump
hunting exercise. At the time of writing, this include annotateNearest.

The Statistical Model

The bump hunter methodology is meant to work on data with several biological replicates,
similar to the 1mFit function in limma. While the package is written using genomic data
as an illustrative example, most of it is generalizable to other data types (with some one-
dimensional location information).

We assume we have data Y;; where ¢ represents (biological) replicate and [/; represents genomic
location. The use of j and [; is a convenience notation, allowing us to discuss the “next”
observation j + 1 which may be some distance [j + 1 —[; away. Note that we assume in this
notation that all replicates have been observed at the same set of genomic locations.

The basic statistical model is the following:
Yij = Bolly) + Bu(l;) X + &

with ¢ representing subject, {; representing the jth location, X; is the covariate of interest
(for example X; = 1 for cases and X; = 0 otherwise), ¢;; is measurement error, Gy(I) is a
baseline function, and (1 (l) is the parameter of interest, which is a function of location. We
assume that ;(!) will be equal to zero over most of the genome, and we want to identify
stretched where (1(l) # 0, which we call bumps.

We want to share information between nearby locations, typically through some form of
smoothing.



Creating clusters

For many genomic applications the locations are clustered. Each cluster is a distinct unit
where the model fitting will be done separately, and each cluster does not depend on the
data, only on the locations [;. Typically there is some maximal distance, and we do not
want to smooth between observations separated by more than this distance. The choice of
distance is very application dependent.

“Clusters” are simply groups of locations such that two consecutive locations in the cluster
are separated by less than some distance maxGap. For genomic applications, the biggest
possible clusters are chromosomes.

The function clusterMaker defines such grouping locations.

Example: We first generate an example of typical genomic locations

> pos <- list(posl=seq(1,1000,35),

+ pos2=seq(2001,3000, 35),

+ pos3=seq(1,1000,50))

> chr <- rep(pasteO('"chr",c(1,1,2)), times = sapply(pos,length))
> pos <- unlist(pos, use.names=FALSE)

Now we run the function to obtain the three clusters from the positions. We use the default
gap of 300 base pairs (bps), i.e. any two points more than 300 bps away are put in a new
cluster. Also, locations from different chromosomes are separated.

> ¢l <- clusterMaker(chr, pos, maxGap = 300)
> table(cl)

cl
1 2 3
29 29 20

The output is an indexing variable telling us which cluster each location belongs to. Locations
on different chromosomes are always on different clusters.

Note that data from the first chromosome has been split into two clusters:



> ind <- which(chr=="chr1")
> plot(pos[ind], rep(1,length(ind)), col=cl[ind],
+ xlab="locations", ylab="")
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Breaking into segments

The function getSegments is used to find segments that are positive, near zero, and negative.
Specifically we have a vector of numbers 6; with each number associated with a genomic
location /; (thinks either test statistics or estimates of 3;(1)). A segment is a list of consecutive
locations such that all #; in the segment are either “positive”, “near zero” or “negative”. In
order to define “positive” etc we need a cutoff which is one number L (in which case “near
zero” is [—L, L]) or two numbers L, U (in which case “near zero” is [L; U]).

Example: we are going to create a simulated (/) with a couple of real bumps.

> Indexes <- split(seq_along(cl), cl)

> betal <- rep(0, length(pos))

> for(i in seq(along=Indexes)){

ind <- Indexes[[i]]

x <- pos[ind]

z <- scale(x, median(x), max(x)/12)

betal[ind] <- i*(-1)~(i+1)*pmax(1-abs(z)"3,0) "3 ##multiply by i to vary size

+ + + + +

We now find bumps of this functions by



> segs <- getSegments(betal, cl, cutoff=0.05)
Now we can make, for example, a plot of all the positive bumps

> par(mfrow=c(1,2))

> for(ind in segs$upIndex){
+ index <- which(cl==cl[ind[1]])

+ plot(pos[index], betal[index],

+ xlab=paste("position on", chr[ind[1]]),
+ ylab="betal")

+ points(pos[ind], betall[ind], pch=16, col=2)
+ abline(h = 0.05, col = "blue")

+

}
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This function is used by regionFinder which is described next.

regionFinder

This function packages up the results of getSegments into a table of regions with the location
and characteristics of bumps.

> tab <- regionFinder (betal, chr, pos, cl, cutoff=0.05)
> tab



chr start end value area cluster indexStart indexEnd L

3 chrl 2281 2701 -1.2636037 16.426848 2 38 50 13

2 chr2 451 501 2.7262463 5.452493 3 68 69 2

1 chril 421 561 0.5336474 2.668237 1 13 17 b
clusterL

3 29

2 20

1 29

In the plot in the preceding section we show two of these regions in red.
Note that regionFinder and getSegments do not really contain any statistical model. All

it does is finding regions based on segmenting a vector 6; associated with genomic locations
.

Bumphunting

Bumphunter is a more complicated function. In addition to regionFinder and clusterMaker
it also implements a statistical model as well as permutation testing to assess uncertainty.

We start by creating a simulated data set of 10 cases and 10 controls (recall that betal was
defined above).

> betal <- 3*sin(2*pi*pos/720)

> X <- cbind(rep(1,20), rep(c(0,1), each=10))

> error <- matrix(rnorm(20*length(betal), 0, 1), ncol=20)
>y <= t(X[,1])%x%beta0 + t(X[,2])7%x/betal + error

Now we can run bumphunter

> tab <- bumphunter(y, X, chr, pos, cl, cutoff=.5)

> tab
$table

chr start end value area cluster indexStart indexEnd
7 chrl 2316 2666 -1.2968145 14.2649592 2 39 49



5 chr2 451 501
1 chri 456 491
3 chrl 946 981
8 chr2 201 251
9 chr2 401 401
2 chrl 876 876
11 chr2 701 701
10 chr2 601 601
4 chrl 2036 2036
6 chrl 2071 2071
L clusterL
7 11 29
5 2 20
1 2 29
3 2 29
8 2 20
9 1 20
2 1 29
11 1 20
10 1 20
4 1 29
6 1 29
$coef
[,1]
[1,] -0.1083110858
[2,] -0.1356463109
[3,] 0.4417622641
[4,] 0.3988554951
[5,] -0.1805204779
[6,] 0.4678336532
[7,] 0.1440752711
[8,] -0.0434324819
[9,] -0.0844853015
[10,] 0.4953889407
[11,] -0.1146927667
[12,] 0.4466985580
[13,] -0.0128489885
[14,] 1.4448726872
[15,] 1.5933507511
[16,] 0.4244417302
[17,] -0.3017530747

.6981133
.5191117
.6843255
.5371534
.6980846
.6958805
.6664836
.6516459
.6477982
.5080202

O O OO OO K KFH,H WwWwWwm

.3962266
.0382234
.3686510
.0743068
.6980846
.6958805
.6664836
.6516459
.6477982
.5080202

NDNWWFL WWRFE R~ W

68
14
28
63
67
26
73
71
31
32

69
15
29
64
67
26
73
71
31
32



[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
[27,]
[28,]
[29,]
[30,]
[31,]
[32,]
[33,]
[34,]
[35,]
[36,]
[37,]
[38,]
[39,]
[40,]
[41,]
[42,]
[43,]
[44,]
[45,]
[46,]
[47,]
[48,]
[49,]
[50,]
[51,]
[52,]
[53,]
[54,]
[55,]
[56,]
[57,]
[58,]
[59,]

.0979063595
.0750974642
.4426333236
.2447682767
.1981495935
.4281506984
.4725406111
.2286139826
.6958804656
.1996995253
.7205709816
.6480800414
.3493002817
.6477981846
.5080201661
.2635587051
.1462534101
.3299848383
.2442215554
.3762757002
.4787129893
.6046484071
.5410164952
.9833677219
.9271243913
.0453616874
. 7704652678
.1448697531
.2985081858
.0950059914
. 7829695914
.0716217077
.4776212442
.15683396253
.4182465559
.3085221400
.1000067441
.1776358988
.3914534613
.2771473874
.4275604430
.3606684212



[60,] -0.

[61,]1 -O.
(62,1 O.
(63,1 -O.
[64,] -0.
[65,] O.
(66,1 -O0.
(67,1 -0.
(68,1 2.
[69,] 2.
(70,1 O.
[71,]1 -0.
[72,1 -O0.
[73,]1 -O.
(74,1 -O.
(75,1 O.
(76,1 O.
(77,1 -0.
[78,1 O.
$fitted

[1,] -0.
[2,] -0.
[3,] oO.
(4,1 oO.
[5,]1 -0.
(6,1 O.
[7,1 oO.
[8,]1 -0.
[9,]1 -0.
(10,1 O.
[11,] -0.
[12,] O.
[13,] -0.
[14,] 1.
[15,] 1.
[16,] O.
(17,1 -O.
[18,]1 O.
[19,]1 -O.

[20,] O.

2920131033
1380737479
4347987873
5001548814
5741519060
0165644293
0277624928
6980845634
9700481912
4261783804
0351631547
6516459033
2833480627
6664835860
4962033084
2112023621
0635252770
0007396093
4495864568

[,1]
1083110858
1356463109
4417622641
3988554951
1805204779
4678336532
1440752711
0434324819
0844853015
4953889407
1146927667
4466985580
0128489885
4448726872
5933507511
4244417302
3017530747
0979063595
0750974642
4426333236



[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
[27,]
[28,]
[29,]
[30,]
[31,]
[32,]
[33,]
[34,]
[35,]
[36,]
[37,]
[38,]
[39,]
[40,]
[41,]
[42,]
[43,]
[44,]
[45,]
[46,]
[47,]
[48,]
[49,]
[50,]
[51,]
[52,]
[53,]
[54,]
[55,]
[56,]
[57,]
[58,]
[59,]
[60,]
[61,]
[62,]

.2447682767
.1981495935
.4281506984
.4725406111
.2286139826
.6958804656
.1996995253
. 7205709816
.6480800414
.3493002817
.6477981846
.5080201661
.26355870561
.1462534101
.3299848383
.2442215554
.3762757002
.4787129893
.6046484071
.5410164952
.9833677219
.9271243913
.0453616874
. 7704652678
.1448697531
.2985081858
.0950059914
. 7829695914
.0716217077
.4776212442
.1583396253
.4182465559
.3085221400
.1000067441
.1776358988
.3914534613
.2771473874
.4275604430
.3606684212
.2920131033
.1380737479
.4347987873
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[63,] -0.5001548814
[64,] -0.5741519060
[65,] 0.0165644293
[66,]1 -0.0277624928
[67,] -0.6980845634
[68,] 2.9700481912
[69,] 2.4261783804
[70,] 0.0351631547
[71,] -0.6516459033
[72,] -0.2833480627
[73,] -0.6664835860
[74,] -0.4962033084
[75,]1 0.2112023621
[76,]1 0.0635252770
[77,] -0.0007396093
[78,]1 0.4495864568
$pvaluesMarginal
[1] NA

> names (tab)

[1]

"table"

[4] "pvaluesMarginal"

> tab$table

chr start end
7 chrl 2316 2666
5 chr2 451 501
1 chri 456 491
3 chril 946 981
8 chr2 201 251
9 chr2 401 401
2 chril 876 876
11 chr2 701 701
10 chr2 601 601
4 chrl 2036 2036
6 chrl 2071 2071

n Coef n

value

.2968145
.6981133
.5191117
.6843255
.b371534
.6980846
.6958805
.6664836
.6516459
.6477982
.5080202

'_\
S

O O O O OO F,H W,

.2649592
.3962266
.0382234
.3686510
.0743068
.6980846
.6958805
.6664836
.6516459
.6477982
.5080202

"fitted"

area cluster

NNWWEFL, WWFE PP, WN
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indexStart indexEnd

39
68
14
28
63
67
26
73
71
31
32

49
69
15
29
64
67
26
73
71
31
32



L clusterL
11 29
20
29
29
20
20
29
20
20
29
29

N

= N O 00 W+~ 01N

I
o

i
i i o o o ol N T (O I O]

(@]

Briefly, the bumphunter function fits a linear model for each location (like 1mFit from the
limma package), focusing on one specific column (coefficient) of the design matrix. This
coefficient of interest is optionally smoothed. Subsequently, a permutation can be used to
test is formed for this specific coefficient.

The simplest way to use permutations to create a null distribution is to set B. If the number
of samples is large this can be set to a large number, such as 1000. Note that this will
be slow and we have therefore provided parallelization capabilities. In cases were the user
wants to define the permutations, for example cases in which all possible permutations can
be enumerated, these can be supplied via the permutation argument.

Note that the function permits the matrix X to have more than two columns. This can be
useful for those wanting to fit models that try to adjust for confounders, such as age and
sex. However, when X has columns other than those representing an intercept term and the
covariate of interest, the permutation test approach is not recommended. The function will
run but give a warning. A method based on the bootstrap for linear models of Efron and
Tibshirani [1] may be more appropriate but this is not currently implemented.

Faster bumphunting with multiple cores

bumphunter can be speeded up by using multiple cores. We use the foreach package which
allows different parallel "back-ends” that will distribute the computation across multiple
cores in a single machine, or across multiple machines in a cluster. The most straight-
forward usage, illustrated below, involves multiple cores on a single machine. See the foreach
documentation for more complex use cases, as well as the packages doParallel and doSNOW
(among others). Finally, we use doRNG to ensure reproducibility of setting the seed within
the parallel computations.

12



In order to use the foreach package we need to register a backend, in this case a multicore
machine with 2 cores.

> library(doParallel)
> registerDoParallel(cores = 2)

bumphunter will now automatically use this backend

> tab <- bumphunter(y, X, chr, pos, cl, cutoff=.5, B=250, verbose = TRUE)
> tab

a 'bumps' object with 11 bumps
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Cleanup

This is a cleanup step for the vignette on Windows; typically not needed for users.

> bumphunter: : :foreachCleanup ()

SessionInfo

e R version 4.0.0 (2020-04-24), x86_64-apple-darwinl7.0
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Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
Running under: mac0S Mojave 10.14.6

Matrix products: default

BLAS:
/Library/Frameworks/R.framework/Versions/4.0/Resources/1ib/1ibRblas.dylib

LAPACK:
/Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,
utils

Other packages: BiocGenerics 0.34.0, GenomelnfoDb 1.24.0, GenomicRanges 1.40.0,
[Ranges 2.22.0, S4Vectors 0.26.0, bumphunter 1.30.0, doParallel 1.0.15, doRNG 1.8.2,
foreach 1.5.0, iterators 1.0.12, locfit 1.5-9.4, rngtools 1.5

Loaded via a namespace (and not attached): AnnotationDbi 1.50.0, Biobase 2.48.0,
BiocFileCache 1.12.0, BiocParallel 1.22.0, Biostrings 2.56.0, DBI 1.1.0,

DelayedArray 0.14.0, GenomelnfoDbData 1.2.3, GenomicAlignments 1.24.0,
GenomicFeatures 1.40.0, Matrix 1.2-18, R6 2.4.1, RCurl 1.98-1.2, RSQLite 2.2.0,
Repp 1.0.4.6, Rsamtools 2.4.0, SummarizedExperiment 1.18.0, XML 3.99-0.3,
XVector 0.28.0, askpass 1.1, assertthat 0.2.1, biomaRt 2.44.0, bit 1.1-15.2, bit64 0.9-7,
bitops 1.0-6, blob 1.2.1, codetools 0.2-16, compiler 4.0.0, crayon 1.3.4, curl 4.3,
dbplyr 1.4.3, digest 0.6.25, dplyr 0.8.5, ellipsis 0.3.0, glue 1.4.0, grid 4.0.0, hms 0.5.3,
httr 1.4.1, lattice 0.20-41, lifecycle 0.2.0, magrittr 1.5, matrixStats 0.56.0,

memoise 1.1.0, openssl 1.4.1, pillar 1.4.3, pkgconfig 2.0.3, prettyunits 1.1.1,

progress 1.2.2, purrr 0.3.4, rappdirs 0.3.1, rlang 0.4.5, rtracklayer 1.47.0, stringi 1.4.6,
stringr 1.4.0, tibble 3.0.1, tidyselect 1.0.0, tools 4.0.0, vctrs 0.2.4, zlibbioc 1.34.0
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