
RCASPAR: A package for survival time analysis
using high-dimensional data

Douaa AS Mugahid

April 27, 2020

1 Introduction

RCASPAR allows the utilization of high-dimensional biological data as covariates
for survival time prediction based on the step-wise Cox model. The data is usu-
ally that obtained from microarray measurements, but it can be any sort of data
thought reasonable for this purpose by the user. Preprocessing must be done by
the user, and the final values needed for use in the program are what should be
provided. Figure 1 presents a step-by-step overview of how to move through the
different functions of the algorithm, there is a wrapper that combines many of the
functions to return the final predicted survival times based on the input given by
the user.

2 Arranging the input data for RCASPAR

The input data for R-CASPAR is basically the gene-expression/aCGH/protein
microarray, etc. . . values to be used as covariates in survival time prediction. The
data should be:

1. pre-processed and the provided values ready for use as such.

2. All subjects for which the data is available should have the same number of
covariates.

3. Missing covariates for some patients should be included as zeros.

The final form in which the data for all covariates for all patients is to be sub-
mitted is as a matrix, in which the rows correspond to the patients and the columns
to the covariates (ex: genes) as follows:

1

Figure 1: Figure depicting how gene-expression or aCGH data are to be entered
for a patient set

Survival information, i.e.: survival times in years, months or days (whatever
the user prefers) and censorship status as 0 for an uncensored patient, and 1 for a
censored patient is provided in a data frame as follows with at least the following
columns, with the exact column names, though extra columns are also allowed:

3 Predicting patient survival times

3.1 User-defined training and validation sets

Once the data is loaded in R and ready for use, it can be used for survival time
estimation, and for that one approach is for the user to define the training and
validation sets themselves. On doing so one must consider that the training set
be big enough to derive a meaningful model from (regression coefficients/weights
of the covariates) to be used on the validation set. Typically the training and val-
idation sets should be representative of each other (one shouldn’t contain all the
long survivors, censored patients, etc., but such features should represent almost
the same fraction of the total samples in both cases).
Once the user has defined the patients to be used in the training and validation
set (without cross-over) they should plug in the values in the function STpre-

2

Figure 2: Figure depicting how censorhip data is entered for a patient set

dictor_BLH: STpredictor_BLH(geDataS, survDataS, cut.off, file, geDataT, surv-
DataT, groups , a , b, q, s, BLHs, geneweights, method , noprior , extras)

This function trains on the data assigned in:

• geDataT: gene expression data for training samples

• survDataT: survival data for training samples,

and estimates the weights to be assigned to each of the covariates assuming that
there is a prior distribution that minimizes the effect of irrelevant covariates. This
prior is defined by arguments q and s which are chosen by the user. The choice of
the best parameters is usually dependant on the user’s experience.

The shape of the prior given the chosen parameters can be visualized by the
function pltprior(q,s).
For example, the values used in the example stated below (q=1, s=1) define a
prior distribution that can be visualized as follows (Figure 3):

> pltprior(q=1, s=1)

>

Alongside, the model assumes that baseline hazard changes with time, and the
user has to define how many different, equally spaced intervals along the time line
are expected/thought to have a different value to the others (done in the value
assigned to the groups argument) and the optimum values are estimated from the
training data. A gamma distribution defined by shape parameter (a) and scale

3

theta1
−2 −1 0 1 2 theta2

−2−10 1 2

p(theta1, theta2)

0.1
0.2
0.3
0.4
0.5

Figure 3: Plot of prior distribution with q=1 and s=1

parameter (b) is assumed as a prior on the baseline hazards and must also be
assigned by the user.
The shape of this gamma distribution can be visualised using the function pltgamma

as follows (Figure 4):

> pltgamma(a=1.558,b=0.179)

Now the arguments relevant to the optimization step in which the best model
parameters are chosen according to the training data should be assigned:

• BLHs, geneweights : are the starting values for the baseline hazards and the
covariate weights defined by the user from which the optimization algorithm
is initiated. The length of BLHs should be equal to groups, and the length
of geneweights should be equal to the number of columns in geDataS and
geDataT.

• method : is the optimization method the user picks. It can be any of conjugate
gradient descent (CG), BFGS, L-BFGS-B, simulated annealing (SANN).

• noprior : defines the number of steps the optimization algorithm is run with-
out a prior on the weights.

4

0 5 10 15 20

0.
0

1.
0

2.
0

x

y

Figure 4: Plot of gamma distribution with a=1.558 and b=0.179

• extras : is a list of arguments relevant to the optimization process and corre-
sponds to the control argument in the optim function in the stats package in
R. See http://sekhon.berkeley.edu/stats/html/optim.html for details.

Once the predicted survival times are estimated, two groups, long and short sur-
vivors are returned by splitting the patients into those who have predicted survival
times equal to or greater than the cut.off value and those who have a smaller pre-
dicted survival time.
Finally the file argument defines the path into which the details and results of this
function are stored.
Example:

> data(Bergamaschi)

> data(survData)

> result <- STpredictor_BLH(geDataS=Bergamaschi[1:27, 1:2], survDataS=survData[1:27, 9:10], geDataT=Bergamaschi[28:82, 1:2],

+ survDataT=survData[28:82, 9:10], q = 1, s = 1, a = 1.558, b = 0.179, cut.off=15, groups = 3, method = "CG", noprior = 1,

+ extras = list(reltol=1))

This means that we use the patients 28 : 82 in the Bergamaschi data set for
training, and only the covariates 1 and 2 are required as part of the model. Also,
only columns 9 and 10 in the survData data frame are really necessary (since they

5

http://sekhon.berkeley.edu/stats/html/optim.html

correspond to censored and True STs).
The number of intervals thought to have differing baseline hazards are 3, for which
the BLHs and geneweights arguments are left out since they are assumed to be
equal to the default NULL. This way, the function assumes the geneweights are
all initially zero, and the BLHs the mean of the gamma distribution as defined by
a and b, which are defined by the user to be 1.558 and 0.179 respectively. The
method chosen is conjugate gradient decent (CG) and the optimization is only
performed once without a prior to prevent the algorithm from terminating at the
peaked origin. The relative tolerance is set to 1 in extras.
According to the predicted survival times determined on the patients 1 : 27 defined
in geDataS and survDataS, the user requests that the patients be split into long
and short survivors around the value of 3 years as defined in cut.off.

3.2 k-times cross validation

Another possibility is to perform a k-times cross validation on the entire data set
instead of splitting the data beforehand into training and validation sets. In this
case the user would use the function STpredictor_xvBLH:
STpredictor_xvBLH(geData, survData, k , cut.off , q, s, a , b, groups, method ,
noprior, extras),
which is very similar to the previous function except that we do not define a
training and validation set, but the whole data set we will be using as geData
and survData and the number of partitions the cross-validation is performed on is
given by k, while all other arguments apply as discussed in the previous section.

4 Accessing the weights and baseline hazards returned

4.1 STpredictor BLH

The weights and baseline hazards returned from this function can be accessed
in the “log optimization” item of the list of returned results. In the example we
mentioned before the results were assigned as result and so we can access them by
typing result$log_optimization$par. The first “group” components correspond
to the baseline hazards, while the rest correspond to the weights of the covariates.

4.2 STpredictor BLHxv

The weights can be accessed as “weights” in the list of results, and the baseline
hazards as “baselineHs” in the results. For example, if the results of the function

6

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

KM plot of long and short survivors

time

S
(t

)

long
short

Figure 5: Kaplan-Meier plot of the long and short survivors

are stored as “result”, the weights can be accessed as result$weights, and the
baseline hazards as result$baselineHs.

5 Plotting the KM curve of short and long survivors

in the same plot

To compare the survival curves of the short and long survivors returned from ei-
ther of STpredictor_BLH or STpredictor_xvBLH the user can use the function
kmplt_svrl which takes the following arguments:
kmplt_svrl(long, short, title)
In this case the arguments long and short correspond to the long and short sur-
vivor groups to be plotted. In any case, these are data frames that must contain
a column with the “True STs” and “censored” columns. On visualizing the results
as returned from the two functions in the package the function is used as follows
(Figure 5):

> kmplt_svrl(long=result$long_survivors, short=result$short_survivors,title="KM plot of long and short survivors")

In case the user also wants to plot the survivor function of the entire data set
for sake of comparison, another argument “all” can be added, where the data frame
containing the survival data for the entire data set is passed.

7

6 Plotting the receiver-operator curves at a particular

time point

This is done using the survivROC function which takes the following arguments:
survivROC(Stime, status, marker, predict.time, cut.values, plot), where,

• Stime: is the true survival times of the patient, which in our case (according
to the example in STpredictor) is result$predicted_STs$True_STs.

• status : denotes whether the patient is censored or not. According to our
example it can be given by result$predicted_STs$censored

• marker : requires the predicted survival times, accessed according to our
example by result$predicted_STs$Predicted_STs.

• predicted.time: gives the time point at which the ROC curve is to be con-
structed.

• cut.values : are the “cut.off” values at which the sensitivity and specificity
are calculated for constructing the ROC curve. It is a vector with all values,
or can be set to NULL and automatically assigned by the software.

• plot : a logical variable, where T indicates that the plot should be generated
and F that it should not.

7 Generating a plot of the areas under all ROC curves

and calculating the area under it

This is usually used as the most appropriate measure of predictor performance,
unbiased by the choice of cut-off value or the change in the population with time
and can be done by calling the function survivAURC which takes the following
arguments:
survivAURC(Stime, status, marker, time.max)
where Stime, status and marker are the same as in survivROC function and
time.max is the maximum time at which the ROC curves are estimated. For
example, according to the example given for the function STpredictor_BLH, the
plot of all the Areas under the ROC curves generated up till time point 20 years
with a resolution of 1 year in between is given by as seen in Figure 6:

> survivAURC(Stime=result$predicted_STs$True_STs,status=result$predicted_STs$censored, marker=result$predicted_STs$Predicted_STs, time.max=20)

8

5 10 15 20

0.
50

0.
60

0.
70

Area Under ROC curves

time
 AUC= 11.7

A
U

ea
ch

R
O

C

Figure 6: AURC curve

$AUC

[1] 11.66154

$AUeachROC

[1] 0.5076426 0.7127124 0.6375423

[4] 0.6095430 0.6095430 0.6095430

[7] 0.6095430 0.6095430 0.6095430

[10] 0.6095430 0.6095430 0.6095430

[13] 0.6095430 0.6095430 0.6095430

[16] 0.6095430 0.6095430 0.6095430

[19] 0.6095430 0.6095430

8 Comparing two populations according to their KM

survival curves

As shown in kmplot_svrl, the user can visualize how the plots of two patient pop-
ulations compare in a single plot. When wanting to determine how statistically
significant the difference between these two populations is, the user can perform a
log rank test by calling the log_rnk function. The arguments passed are simply:
logrnk(dataL, dataS), where

9

Figure 7: An overview of the functions of RCASPAR and how they feed into each
other.

• dataL: is the dataframe containing at least the true survival times (True STs)
and censorship status (censored) of the long survivors (group 1) as well as
a column “group” with entries “L” denoting that they belong to the long
survivor group.

• dataS : is a similar dataframe with the data relevant to the short survivors
where the entries in “group” are “S” instead of “L”.

Following the example we have been using so far, we can do this for the short
and long survivors returned from the previous example as follows:

> logrnk(dataL=result$long_survivors, dataS=result$short_survivors)

$Xsq

[1] 0.7582287

$pValue

[1] 0.3838834

10

	Introduction
	Arranging the input data for RCASPAR
	Predicting patient survival times
	User-defined training and validation sets
	k-times cross validation

	Accessing the weights and baseline hazards returned
	STpredictor_BLH
	STpredictor_BLHxv

	Plotting the KM curve of short and long survivors in the same plot
	Plotting the receiver-operator curves at a particular time point
	Generating a plot of the areas under all ROC curves and calculating the area under it
	Comparing two populations according to their KM survival curves

