
M3D: Statistical Testing for RRBS Data Sets

Tom Mayo

Modified: 5 September, 2016. Compiled: April 27, 2020

Contents

1 Introduction . 1

2 Analysis Pipeline . 2

2.1 Reading in Data . 2

2.2 Computing the MMD, and coverage-MMD 5

2.3 Generating p-values . 8

2.4 Identifying highly variable regions: outlier detection 9

3 Using the ’lite’ functions . 10

4 Using ENCODE data . 10

5 Acknowledgements. 12

6 sessionInfo() . 12

1 Introduction
**** Please note, that as of 17th June 2016, we have introduced new ’lite’ functions, detailed
in section 3. These are faster and more memory efficient than their predecessors and we
recommend their use where possible ****

RRBS experiments offer a cost-effective method for measuring the methylation levels of
cytosines in CpG dense regions. Statistical testing for differences in CpG methylation between
sample groups typically involves beta-binomial modelling of CpG loci individually and testing
across samples, such as with the BiSeq and MethylSig packages. Individual CpGs are then
chained together to output a list of putative differentially methylated regions (DMRs).

We take a different approach, instead testing pre-defined regions of interest for changes in the
distribution of the methylation profiles. Changes are compared to inter-replicate differences
to establish which regions vary in a manner that cannot be explained by replicate variation
alone. We utilise the maximum mean discrepancy (MMD) [1] to perform the test, adjusting
this measure to account for changes in the coverage profile between the testing groups. For
a similar application of the MMD to ChIP-Seq data, please see the MMDiff Bioconductor
package, and associated paper [2].

M3D: Statistical Testing for RRBS Data Sets

In this vignette, we run through an analysis of a toy data set using the M3D method. We
use the same data structures as the ’BiSeq’ package, and assume that we have data stored
in an rrbs structure with an accompanying GRanges object describing the regions of interest
we want to test. For a fuller explanation and exploration of the method, please see the open
access journal article [3].

2 Analysis Pipeline

2.1 Reading in Data
We use the same data structures as the ’BiSeq’ package. Please see their manual for manip-
ulating the data structures.

We have supplied a function for reading in different types of bed files. This can be done with
the readBedFiles function. Which we use as follows:

rrbs <- readBedFiles(files, colData, bed_type = 'Encode', eData=NaN)

Where ’files’ is a vector of character strings, with each string pointing to a bed file for a
sample. ’colData’ is a data frame that specifies the names of the samples and the groups (or
conditions) to which they belong. For example, if we are comparing two ENCODE samples
from H1-hESC cells to two samples from K562 leukemia cells, we would do the following,
assuming the current working directory contains the files:

files <- c('wgEncodeHaibMethylRrbsH1hescHaibSitesRep1.bed.gz',

'wgEncodeHaibMethylRrbsH1hescHaibSitesRep2.bed.gz',

'wgEncodeHaibMethylRrbsK562HaibSitesRep1.bed.gz',

'wgEncodeHaibMethylRrbsK562HaibSitesRep2.bed.gz')

group <- factor(c('H1-hESC','H1-hESC','K562','K562'))

samples <- c('H1-hESC1','H1-hESC2','K562-1','K562-2')

colData <- DataFrame(group,row.names= samples)

Here DataFrame has been defined in the BiSeq package, so be sure to load that first.

As mentioned previously, bed files come in different styles or types. You can check yours on
linus by using ’less’ followed by the file name. This will print to the console a table of the
first few rows, from which you can deduce which one you have.

The following description was taken from the RnBeads vignette. The names in inverted
commas are all options that we pass to readBedFiles in the bed_type argument.
’BisSNP’ The bed files are assumed to have been generated by the methylation calling tool

BisSNP. A tab-separated file contains the chromosome name, start coordinate, end
coordinate, methylation value in percent, the coverage, the strand, as well as additional
information not used in the package. The file should contain a header line. Coordinates
are 0-based, spanning the first and the last coordinate in a site (i.e. end-start = 1 for
a CpG). Sites on the negative strand are shifted by +1. Here are some example lines
(genome assembly hg19):
t r a c k name=f i l e _ s o r t e d . r e a l i g n . r e c a l . cpg . f i l t e r e d . s o r t .CG. bed type=b e d D e t a i l d e s c r i p t i o n ="CG m e t h y l a t i o n
chr1 10496 10497 79 .69 64 + 10496 10497 180 ,60 ,0 0 0
chr1 10524 10525 90 .62 64 + 10524 10525 210 ,0 ,0 0 0
chr1 864802 864803 58 .70 46 + 864802 864803 120 ,120 ,0 0 5
chr1 864803 864804 50 .00 4 − 864803 864804 90 ,150 ,0 1 45
. . .

’EPP’ The bed files are assumed to have the format as output files from the Epigenome
Processing Pipeline developed by Fabian Müller and Christoph Bock. A tab-separated
file contains: the chromosome name, start coordinate, end coordinate, methylation

2

M3D: Statistical Testing for RRBS Data Sets

value and coverage as a string (’#M/#T’), methylation level scaled to the interval 0
to 1000, strand, and additional information not used in this package. The file should
not contain a header line. Coordinates are 0-based, spanning the first coordinate in a
site and the first coordinate outside the site (i.e. end-start = 2 for a CpG). Here are
some example lines (genome assembly mm9):
chr1 3010957 3010959 '27/27 ' 1000 +
chr1 3010971 3010973 '10/20 ' 500 +
chr1 3011025 3011027 '57/70 ' 814 −
. . .

’bismarkCov’ The cov files are assumed to have the format as defined by Bismark’s cov-
erage file output converted from its bedGraph output (Bismark’s bismark2bedGraph
module; see the section “Optional bedGraph output” in the Bismark User Guide). A
tab-separated file contains: the chromosome name, cytosine coordinate, cytosine coor-
dinate (again), methylation value in percent, number of methylated reads (#M) and
the number of unmethylated reads (#U). The file should not contain a header line.
Coordinates are 1-based. Strand information does not need to be provided, but is in-
ferred from the coordinates: Coordinates on the negative strand specify the cytosine
base position (G on the positive strand). Coordinates referring to cytosines not in CpG
content are automatically discarded. Here are some example lines (genome assembly
hg19):
. . .
ch r9 73252 73252 100 1 0
chr9 73253 73253 0 0 1
chr9 73256 73256 100 1 0
chr9 73260 73260 0 0 1
chr9 73262 73262 100 1 0
chr9 73269 73269 100 1 0
. . .

’bismarkCytosine’ The bed files are assumed to have the format as defined by Bismark’s
cytosine report output (Bismark’s coverage2cytosine module; see the section “Optional
genome-wide cytosine report output” in the Bismark User Guide). A tab-separated file
contains: the chromosome name, cytosine coordinate, strand, number of methylated
reads (#M), number of unmethylated reads (#U), and additional information not used
in this package. The file should not contain a header line. Coordinates are 1-based.
Coordinates on the negative strand specify the cytosine position (G on the positive
strand). CpG without coverage are allowed, but not required. Here are some example
lines (genome assembly hg19):
. . .
chr22 16050097 + 0 0 CG CGG
chr22 16050098 − 0 0 CG CGA
chr22 16050114 + 0 0 CG CGG
chr22 16050115 − 0 0 CG CGT
. . .
chr22 16115591 + 1 1 CG CGC
chr22 16117938 − 0 2 CG CGT
chr22 16122790 + 0 1 CG CGC
. . .

’Encode’ The bed files are assumed to have the format as the ones that can be downloaded
from UCSC’s ENCODE data portal. A tab-separated file contains: the chromosome
name, start coordinate, end coordinate, some identifier, read coverage (#T), strand,
start and end coordinates again (we discard this duplicated information), some color
value, read coverage (#T) and the methylation percentage. The file should contain a
header line. Coordinates are 0-based. Note that this file format is very similar but not
identical to the ’BisSNP’ one. Here are some example lines (genome assembly hg19):
t r a c k name="SL1815 MspIRRBS" d e s c r i p t i o n ="HepG2_B1__GC_" v i s i b i l i t y =2 itemRgb="On"
chr1 1000170 1000171 HepG2_B1__GC_ 62 + 1000170 1000171 55 ,255 ,0 62 6
chr1 1000190 1000191 HepG2_B1__GC_ 62 + 1000190 1000191 0 ,255 ,0 62 3
chr1 1000191 1000192 HepG2_B1__GC_ 31 − 1000191 1000192 0 ,255 ,0 31 0
chr1 1000198 1000199 HepG2_B1__GC_ 62 + 1000198 1000199 55 ,255 ,0 62 10
chr1 1000199 1000200 HepG2_B1__GC_ 31 − 1000199 1000200 0 ,255 ,0 31 0
chr1 1000206 1000207 HepG2_B1__GC_ 31 − 1000206 1000207 55 ,255 ,0 31 10
. . .

For illustrative purposes, we have included data from two RRBS datasets via the ENCODE
consortium [4], namely the H1-hESC human embryonic stem cells and the K562 leukemia
cell line. We clustered the data using the ’clusterSites’ and ’clusterSitesToGR’ functions in

3

M3D: Statistical Testing for RRBS Data Sets

the BiSeq package, removed any islands with a total coverage of less than 100 in any island
over any sample and included only the first 1000. Full details of where to download the data
and how to read it in are included in the section ’Using ENCODE Data’, so that this toy set
and the corresponding full data set can be used.

We load and show the data with the following.

library(BiSeq)

library(M3D)

Warning: Package ’M3D’ is deprecated and will be removed from Bioconductor

version 3.12

data(rrbsDemo)

rrbsDemo

class: BSraw

dim: 39907 4

metadata(0):

assays(2): totalReads methReads

rownames(39907): 643464 643465 ... 687062 687063

rowData names(1): cluster.id

colnames(4): H1-hESC1 H1-hESC2 K562-1 K562-2

colData names(1): group

The regions to be tested are stored in a Granges object, with each entry representing the
start and end of the region. This can be loaded as follows:

data(CpGsDemo)

CpGsDemo

GRanges object with 1000 ranges and 1 metadata column:

seqnames ranges strand | cluster.id

<Rle> <IRanges> <Rle> | <factor>

[1] chr1 840131-840357 * | chr1_1

[2] chr1 845246-845561 * | chr1_2

[3] chr1 858978-859375 * | chr1_3

[4] chr1 859529-859727 * | chr1_4

[5] chr1 875730-875953 * | chr1_5

...

[996] chr1 168105869-168106338 * | chr1_1009

[997] chr1 168148116-168148585 * | chr1_1010

[998] chr1 168194959-168195245 * | chr1_1011

[999] chr1 169075431-169075641 * | chr1_1012

[1000] chr1 170633423-170633656 * | chr1_1013

seqinfo: 25 sequences from an unspecified genome; no seqlengths

4

M3D: Statistical Testing for RRBS Data Sets

2.2 Computing the MMD, and coverage-MMD
The M3D test statistic is calculated by finding the maximum mean discrepancy, over each
island, of the full methylation data and the coverage data. Both of these are achieved using
the M3D_Wrapper function. This outputs a list, with the first entry being a matrix of the
pairwise full, methylation aware MMD of each possible sample pair, and the second being
the coverage only equivalent.

The function requires a list of overlap locations, which we create as follows:

data(CpGsDemo)

data(rrbsDemo)

overlaps <- findOverlaps(CpGsDemo,rowRanges(rrbsDemo))

The components of the M3D statistic are then generated with the code:

MMDlistDemo <- M3D_Wrapper(rrbsDemo, overlaps)

Alternatively, you can load this data directly:

data(MMDlistDemo)

We show the structure of each entry, where column names correspond to the sample pairs
being tested.

the full MMD

head(MMDlistDemo$Full)

H1-hESC1 vs H1-hESC2 H1-hESC1 vs K562-1 H1-hESC1 vs K562-2

[1,] 0.13328796 0.3711302 0.3882027

[2,] 0.15843597 0.1991325 0.1901730

[3,] 0.11149443 0.1376077 0.1476828

[4,] 0.05180868 0.1450703 0.1196117

[5,] 0.17830486 0.2438087 0.1983181

[6,] 0.02382480 0.0972950 0.1378252

H1-hESC2 vs K562-1 H1-hESC2 vs K562-2 K562-1 vs K562-2

[1,] 0.23581746 0.22551184 0.06755053

[2,] 0.14194300 0.14213741 0.04260434

[3,] 0.03963481 0.05186073 0.01802223

[4,] 0.11307940 0.07325263 0.05798640

[5,] 0.07915218 0.10918123 0.09577036

[6,] 0.09148931 0.13047384 0.05080778

the coverage only MMD

head(MMDlistDemo$Coverage)

H1-hESC1 vs H1-hESC2 H1-hESC1 vs K562-1 H1-hESC1 vs K562-2

[1,] 0.13245172 0.3979882 0.3998015

[2,] 0.21273851 0.1709892 0.1664227

[3,] 0.11562054 0.1408935 0.1493031

[4,] 0.05353733 0.1461974 0.1205286

[5,] 0.17977249 0.2456640 0.2034446

[6,] 0.02360063 0.0988395 0.1365794

H1-hESC2 vs K562-1 H1-hESC2 vs K562-2 K562-1 vs K562-2

[1,] 0.26189520 0.23546355 0.06338745

5

M3D: Statistical Testing for RRBS Data Sets

[2,] 0.05580718 0.07902125 0.04269711

[3,] 0.04014058 0.04976709 0.01636765

[4,] 0.11230110 0.07220178 0.05731698

[5,] 0.07999092 0.11754403 0.09997088

[6,] 0.09302259 0.12916722 0.04774588

The M3D test statistic uses the difference between these values.

M3Dstat <- MMDlistDemo$Full-MMDlistDemo$Coverage

In the matrices we have stored, we can see from the column names that the columns pertaining
to inter-replicate values are 1 and 6, while 2 to 5 detail inter-group comparisons, since there
are . We can plot the values for replicates as follows:

repCols <- c(1,6)

plot(as.vector(MMDlistDemo$Full[,repCols]),

as.vector(MMDlistDemo$Coverage[,repCols]),

xlab='Full MMD',ylab='Coverage MMD')

title('Test Statistics: Replicate Comparison')

abline(a=0,b=1,col='red',lwd=2)

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Full MMD

C
ov

er
ag

e
M

M
D

Test Statistics: Replicate Comparison

And analogously for the inter-group values. Note that with the replicates, the values are close
to the red line, representing equality. With the inter-group metrics, we see that, with some
of the regions, the full MMD is greater than the coverage only version. This forms the basis
of the M3D test statistic, which is used in the following section.

groupCols <- 2:5

plot(as.vector(MMDlistDemo$Full[,groupCols]),

as.vector(MMDlistDemo$Coverage[,groupCols]),

xlab='Full MMD',ylab='Coverage MMD')

title('Test Statistics: Inter-Group Comparison')

abline(a=0,b=1,col='red',lwd=2)

6

M3D: Statistical Testing for RRBS Data Sets

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Full MMD

C
ov

er
ag

e
M

M
D

Test Statistics: Inter−Group Comparison

This can be summarised in a histogram of the M3D test statistics.

repCols <- c(1,6)

groupCols <- 2:5

M3Dstat <- MMDlistDemo$Full - MMDlistDemo$Coverage

breaks <- seq(-0.2,1.2,0.1)

WT reps

hReps <- hist(M3Dstat[,repCols], breaks=breaks,plot=FALSE)

mean between groups

hGroups <- hist(rowMeans(M3Dstat[,groupCols]),breaks=breaks,plot=FALSE)

col1 <- "#0000FF40"

col2 <- "#FF000040"

plot(hReps,col=col1, freq=FALSE, ylab='Density',

xlab='MMD statistic', main= 'M3D Stat Histogram')

plot(hGroups, col=col2, freq=FALSE, add=TRUE)

legend(x=0.5, y =3, legend=c('Replicates', 'Groups'), fill=c(col1, col2))

M3D Stat Histogram

MMD statistic

D
en

si
ty

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
1

2
3

4
5

6

Replicates
Groups

7

M3D: Statistical Testing for RRBS Data Sets

2.3 Generating p-values
P-values are calculated by using the M3D test statistic observed between all of the replicates
- our ’null’ distribution. For each island, we take the mean of the inter-group test-statistics,
and calculate the likelihood of observing that value or higher among the inter-replicate values.

We provide two methods for this calculation. ’empirical’ gives the empirical probabilities, and
is the default method. In the event that we see M3D test statistics between groups above
the range of the inter-replicate values, we get p-values of 0. This is not a concern for large
samples, but in case of small samples, we recommend using the ’model’ option, whereby
an exponential is fitted to the tails of the distribution and p-values are calculated from the
exponential.

The function ’pvals’ computes this, taking in the raw data, the regions, the test statistic and
the names of the two groups being compared as stored in the rrbs object.

This outputs a list with 2 entries. The one we are concerned with is FDRmean, the adjusted
p-values for each region. The unadjusted values are stored in ’Pmean’.

The structure can be explored with:

data(PDemo)

Or calculated via:

group1 <- unique(colData(rrbsDemo)$group)[1]

group2 <-unique(colData(rrbsDemo)$group)[2]

PDemo <- pvals(rrbsDemo, CpGsDemo, M3Dstat,

group1, group2, smaller=FALSE, comparison='allReps', method='empirical', closePara=0.005)

head(PDemo$FDRmean)

[1] 0.98489426 0.01125402 0.72746781 0.63871473 0.87210584 0.65576324

PDemo$FDRlist is then a vector with an adjusted p-value for each region being tested. To
find which regions fall below a certain threshold, we can test very simply. For example, using
a cut off FDR of 1%:

called <- which(PDemo$FDRmean<=0.01)

head(called)

[1] 9 12 13 20 21 22

head(CpGsDemo[called])

GRanges object with 6 ranges and 1 metadata column:

seqnames ranges strand | cluster.id

<Rle> <IRanges> <Rle> | <factor>

[1] chr1 895127-895237 * | chr1_9

[2] chr1 914343-914957 * | chr1_12

[3] chr1 933515-933757 * | chr1_13

[4] chr1 968332-968583 * | chr1_20

[5] chr1 968837-969320 * | chr1_21

[6] chr1 969425-969767 * | chr1_22

seqinfo: 25 sequences from an unspecified genome; no seqlengths

8

M3D: Statistical Testing for RRBS Data Sets

We can use the function ’plotMethProfile’ to view a smoothed methylation profile for the
called regions, taking the mean of the individual methylation levels within each group.

par(mfrow=c(2,2))

for (i in 1:4){

CpGindex <- called[i]

plotMethProfile(rrbsDemo, CpGsDemo, 'H1-hESC', 'K562', CpGindex)

}

895140 895180 895220

0.
0

0.
4

0.
8

M
et

hy
la

tio
n

Le
ve

l

chr1, *

Island 9

914400 914600 914800

0.
0

0.
4

0.
8

M
et

hy
la

tio
n

Le
ve

l

chr1, *

Island 12

933550 933650 933750

0.
0

0.
4

0.
8

M
et

hy
la

tio
n

Le
ve

l

chr1, *

Island 13

968350 968450 968550

0.
0

0.
2

0.
4

M
et

hy
la

tio
n

Le
ve

l

chr1, *

Island 20

2.4 Identifying highly variable regions: outlier detection
As of October 2016, M3D now supports identifying highly variable regions in the null distri-
bution, and excluding them from the analysis. We have noticed in some experiments, some
regions of the genome have very high variability, which is not representative of the usual,
highly regulated patterns. We propose to identify these regions first, then perfrom the sta-
tistical test in the usual manner. If you are struggling to find DMRs using M3D, this may be
a reason.

To do so, we have an option ’outlier_test’ in the pvals functions. By default it is set to
FALSE, so to activate the test set this to ’TRUE’. Our method is to identify any regions,
among those presented to the function, which have a pair of regions in the null distribution
that is greater than 8 times the standard deviation of the null, above the mean of the null.
Additionally, we insist that this region must be in the top 2.5 percent of the variation within
the null group. These values (8 and 2.5 percent) are set by the parameters ’cut_off’ and
’sds’ respectively. If you are performing many tests across different groups, one can set the
threshold directly using ’thresh’. This will overwrite the calculation of the threshold.

In this setting, the p-values and FDR-valeus returned are as before, but with ’highly variable’
regions returing NA. Additionally, there is a third entry in the returned list, ’HighVariation’
which gives the indices of the identified highly variable regions.

One can confirm any selections are sensible by plotting all samples in the region using the
plotMethProfileSamples function (which gives the first group in blue and the second in red).

9

M3D: Statistical Testing for RRBS Data Sets

3 Using the ’lite’ functions
When dealing with larger data sets such as those consisting of many replicates, or if we simply
want faster processing times, we may want to reduce the amount of data stored by the M3D
method. The lite functions provide such a feature.

M3D_Wrapper_lite and M3D_Para_lite operate exactly as M3D_Wrapper and M3D_Para,
so that instead of entering the following:

MMDlistDemo <- M3D_Wrapper(rrbsDemo, overlaps)

We can enter

MMDlistDemo <- M3D_Wrapper_lite(rrbsDemo, overlaps)

The difference is in how the results are stored and returned. In the lite functions, instead
of retruning the full MMD and the coverage only MMD, for the user to subtract, the func-
tion automatically subtracts the coverage only MMD from the full MMD and returns the
difference.

Another memory and time saving step is that, since the mean of the inter group M3D statistics
is used to calculate the p-values, the lite functions calculate this mean and store it in the
first column. Thus in an m by n replicate comparison, we save m ∗ n− 1 columns of data.

Clearly the new structure will not work with the original pvals function. A pvals_lite function
has been created to cope with the new output. The workflow has therefore changed from:

MMDlistDemo <- M3D_Wrapper(rrbsDemo, overlaps)

M3Dstat <- MMDlistDemo$Full-MMDlistDemo$Coverage

PDemo <- pvals(rrbsDemo, CpGsDemo, M3Dstat,

group1, group2, smaller=FALSE, comparison='allReps', method='empirical', closePara=0.005)

Where group1 and group2 have already been defined, to:

MMDlistDemo <- M3D_Wrapper_lite(rrbsDemo, overlaps)

PDemo <- pvals_lite(rrbsDemo, CpGsDemo, M3Dstat,

group1, group2, smaller=FALSE, comparison='allReps', method='empirical', closePara=0.005)

The two differences are that we no longer subtract the two composite MMD values, and we
use ’_lite’ at the end of each function.

4 Using ENCODE data
This section will demonstrate how to load ENCODE RRBS data for use with the pack-
age. Data is available for download from: http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/wgEncodeHaibMethylRrbs/

For this package we have used the H1-ESC and K562 cell lines, each of which have two repli-
cates. We therefore download the files named: ’wgEncodeHaibMethylRrbsH1hescHaibSitesRep1.bed.gz’,
’wgEncodeHaibMethylRrbsH1hescHaibSitesRep2.bed.gz’, ’wgEncodeHaibMethylRrbsK562HaibSitesRep1.bed.gz’
and ’wgEncodeHaibMethylRrbsK562HaibSitesRep2.bed.gz’.

10

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibMethylRrbs/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibMethylRrbs/

M3D: Statistical Testing for RRBS Data Sets

To load in the data, change directory to the location of the 4 files named above and use the
readBedFiles function provided in the package, with bed_type set to ’Encode’. This function
is a adaption of BiSeq’s readBismark file to handle a variety of bed file types. Please get in
touch if you have a bed file that doesn’t fit with any of the options of the package.

change working directory to the location of the files

group <- factor(c('H1-hESC','H1-hESC','K562','K562'))

samples <- c('H1-hESC1','H1-hESC2','K562-1','K562-2')

colData <- DataFrame(group,row.names= samples)

files <- c('wgEncodeHaibMethylRrbsH1hescHaibSitesRep1.bed.gz',

'wgEncodeHaibMethylRrbsH1hescHaibSitesRep2.bed.gz',

'wgEncodeHaibMethylRrbsK562HaibSitesRep1.bed.gz',

'wgEncodeHaibMethylRrbsK562HaibSitesRep2.bed.gz')

rrbs <- readBedFiles(files,colData, bed_type = ENCODE)

We then generate the GRanges file of regions as in the BiSeq package (if we are not using a
list of regions of interest).

Create the CpGs

rrbs.CpGs <- clusterSites(object=rrbs,groups=unique(colData(rrbs)$group),

perc.samples = 3/4, min.sites = 20, max.dist=100)

CpGs <- clusterSitesToGR(rrbs.CpGs)

In this example, we cut out regions with a total coverage of less than 100 in each sample,
which is performed as follows:

inds <- vector()

overlaps <- findOverlaps(CpGs,rowRanges(rrbs.CpGs))

for (i in 1:length(CpGs)){

covs <- colSums(totalReads(rrbs.CpGs)[subjectHits(

overlaps[queryHits(overlaps)==i]),])

if (!any(covs<=100)){

inds <- c(inds,i)

}

}

CpGs <- CpGs[inds]

rm(inds)

Next, to create the toy dataset here, we took only the first 1000 regions. It is important to
update the ’overlaps’ object if you do this, so that it details the overlaps between the right
objects.

reduce the rrbs to only the cytosine sites within regions

rrbs <- rrbs.CpGs

CpGs <- CpGs[1:1000] # first 1000 regions

overlaps <- findOverlaps(CpGs,rowRanges(rrbs))

rrbs <- rrbs[subjectHits(overlaps)]

overlaps <- findOverlaps(CpGs,rowRanges(rrbs))

Following these steps produces the toy data in this package.

11

M3D: Statistical Testing for RRBS Data Sets

5 Acknowledgements
This package was developed at the University of Edinburgh in the School of Informatics, with
support from Guido Sanguinetti and Gabriele Schweikert.

The work was supported by grants EP/F500385/1 and BB/F529254/1 from the UK Engi-
neering and Physical Sciences Research Council, UK Biotechnology and Biological Sciences
Research Council, and the UK Medical Research Council.

6 sessionInfo()
This vignette was built using:

sessionInfo()

R version 4.0.0 (2020-04-24)

Platform: x86_64-apple-darwin17.0 (64-bit)

Running under: macOS Mojave 10.14.6

##

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

##

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

attached base packages:

[1] parallel stats4 stats graphics grDevices utils datasets

[8] methods base

##

other attached packages:

[1] M3D_1.22.0 BiSeq_1.28.0

[3] Formula_1.2-3 SummarizedExperiment_1.18.0

[5] DelayedArray_0.14.0 matrixStats_0.56.0

[7] Biobase_2.48.0 GenomicRanges_1.40.0

[9] GenomeInfoDb_1.24.0 IRanges_2.22.0

[11] S4Vectors_0.26.0 BiocGenerics_0.34.0

##

loaded via a namespace (and not attached):

[1] zoo_1.8-7 modeltools_0.2-23

[3] xfun_0.13 splines_4.0.0

[5] lattice_0.20-41 vctrs_0.2.4

[7] htmltools_0.4.0 rtracklayer_1.47.0

[9] yaml_2.2.1 survival_3.1-12

[11] blob_1.2.1 XML_3.99-0.3

[13] rlang_0.4.5 DBI_1.1.0

[15] BiocParallel_1.22.0 bit64_0.9-7

[17] GenomeInfoDbData_1.2.3 stringr_1.4.0

[19] zlibbioc_1.34.0 Biostrings_2.56.0

[21] memoise_1.1.0 globaltest_5.42.0

[23] evaluate_0.14 knitr_1.28

12

M3D: Statistical Testing for RRBS Data Sets

[25] lmtest_0.9-37 flexmix_2.3-15

[27] AnnotationDbi_1.50.0 highr_0.8

[29] Rcpp_1.0.4.6 xtable_1.8-4

[31] BiocManager_1.30.10 annotate_1.66.0

[33] XVector_0.28.0 bit_1.1-15.2

[35] Rsamtools_2.4.0 BiocStyle_2.16.0

[37] digest_0.6.25 stringi_1.4.6

[39] grid_4.0.0 tools_4.0.0

[41] bitops_1.0-6 sandwich_2.5-1

[43] magrittr_1.5 RSQLite_2.2.0

[45] RCurl_1.98-1.2 lokern_1.1-8

[47] crayon_1.3.4 Matrix_1.2-18

[49] betareg_3.1-3 rmarkdown_2.1

[51] sfsmisc_1.1-6 GenomicAlignments_1.24.0

[53] nnet_7.3-14 compiler_4.0.0

References
[1] Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard Schölkopf, and

Alexander J Smola. A kernel method for the two-sample-problem. Advances in neural
information processing systems, 19:513, 2007.

[2] Gabriele Schweikert, Botond Cseke, Thomas Clouaire, Adrian Bird, and Guido
Sanguinetti. MMDiff: quantitative testing for shape changes in ChIP-Seq data sets.
BMC genomics, 14(1):826, 2013.

[3] Tom R Mayo, Gabriele Schweikert, and Guido Sanguinetti. M3d: a kernel-based test for
spatially correlated changes in methylation profiles. Bioinformatics, page btu749, 2014.

[4] ENCODE Project Consortium and others. An integrated encyclopedia of DNA elements
in the human genome. Nature, 489(7414):57–74, 2012.

13

	1 Introduction
	2 Analysis Pipeline
	2.1 Reading in Data
	2.2 Computing the MMD, and coverage-MMD
	2.3 Generating p-values
	2.4 Identifying highly variable regions: outlier detection

	3 Using the 'lite' functions
	4 Using ENCODE data
	5 Acknowledgements
	6 sessionInfo()

