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1 Introduction
The primary purpose of the HelloRanges package, from the pedagogical perspective, is to
map bedtools “recipes” to R scripts. The package was born out of the recognition that
Bioconductor lacks a cookbook that explains how to achieve common, specific tasks using
the Ranges infrastructure. And that writing a compiler is more fun (and hopefully more useful)
than writing documentation. The goal is to enable those who already use R/Bioconductor
for modeling and plotting to unify their workflow by integrating their upstream processing.

HelloRanges provides an R function corresponding to each bedtools command. The output
is an R language object, and we can print the object to copy and integrate the code into
an R script. Ideally, the code is first integrated (by copy/paste) into an R script. Unlike
bedtools, the result of evaluation is an R object that is suitable for further analysis. There
is no automatic output to files, because once we are in R, we want to stay there. Assuming
that the reader is interested in learning Bioconductor, we encourage the reader to inspect the
code prior to evaluation by printing the language object. The generated code is meant to
be correct, readable, conformant to best practices and performant (in that order). While the
code is much more verbose than the corresponding bedtools call, we argue that the explicit,
low-level Ranges API has the advantage of being self-documenting and more flexible. And,
of course, it directly integrates with the rest of Bioconductor .

Obviously, performing I/O with each operation will have a negative impact on performance, so
it is recommended to import the data once, and perform subsequent operations on in-memory
data structures. If memory is exhausted, consider distributing computations.

For the sake of comparison, this tutorial closely follows that of bedtools itself (http://
quinlanlab.org/tutorials/bedtools/bedtools.html). We will analyze the data from Maurano
et al [1] assessment of DnaseI hypersensitivy across a range of fetal tissues (20 samples).
The bedtools tutorial mostly consists of arbitrary range operations on the annotation tracks.
Near the end, we will compare samples from the Maurano study in terms of their mutual
overlap.

2 Data
The data are provided via the HelloRangesData package, which we load presently:

> library(HelloRanges)

> library(HelloRangesData)

To have convenient paths to the data, we switch our working directory to the one with the
data files:

> oldwd <- setwd(system.file("extdata", package="HelloRangesData"))

In our working directory are 20 BED files from the DnaseI study, as well as BED files rep-
resenting the CpG islands (‘cpg.bed’), Refseq exons (‘exons.bed’), disease-associated SNPs
(‘gwas.bed’), and functional annotations output by chromHMM given ENCODE human em-
brionic stem cell ChIP-seq data (‘hesc.chromHmm.bed’). There is also a ‘hg19.genome’ file
indicating the chromosome lengths of the hg19 genome build.

One of the advantages of R, compared to the shell, is its unified package management
system. R packages can contain data, and even completed analyses, in addition to libraries of
functions. Bioconductor provides many annotations and sample datasets through packages.
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Packages make obtaining data easy, and they also help with reproducibility and provenance
through versioning. Thus, they are more convenient and safer compared to downloading from
live URLs. Some packages provide APIs to download data from repositories, and we can use
them to programmatically generate data packages in a reproducible way.

For example, the TxDb packages provide transcript annotations for an individual reference
genome. Bioconductor provides pre-built TxDb packages for the commonly used genome
builds, and it is easy to generate a custom TxDb package using annotations from Biomart,
UCSC, or just a GFF file. The rtracklayer package supports automated retrieval of any
dataset from the UCSC table browser, without any pointing-and-clicking involved. We will
demonstrate some of these tools later in the tutorial.

3 Overlap and Intersection

One of the most useful ways to compare two tracks is to determine which ranges overlap,
and where they intersect (see the above image from the bedtools tutorial).

By default, bedtools outputs the region of intersection for each overlap between the two
tracks. We compile the code for intersecting the CpG islands and the exons.

> code <- bedtools_intersect("-a cpg.bed -b exons.bed -g hg19.genome")

> code

{

genome <- import("hg19.genome")

gr_a <- import("cpg.bed", genome = genome)

gr_b <- import("exons.bed", genome = genome)

pairs <- findOverlapPairs(gr_a, gr_b, ignore.strand = TRUE)

ans <- pintersect(pairs, ignore.strand = TRUE)

ans

}

This code should be integrated into an R script that implements a larger workflow. For the
purposes of this tutorial, we will call eval on the language object to yield the result:

> ans <- eval(code)

> mcols(ans)$hit <- NULL

> ans
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GRanges object with 45500 ranges and 1 metadata column:

seqnames ranges strand | name

<Rle> <IRanges> <Rle> | <character>

[1] chr1 29321-29370 * | CpG:_116

[2] chr1 135125-135563 * | CpG:_30

[3] chr1 327791-328229 * | CpG:_29

[4] chr1 327791-328229 * | CpG:_29

[5] chr1 327791-328229 * | CpG:_29

... ... ... ... . ...

[45496] chrY 59213949-59214117 * | CpG:_36

[45497] chrY 59213949-59214117 * | CpG:_36

[45498] chrY 59213949-59214117 * | CpG:_36

[45499] chrY 59213949-59214117 * | CpG:_36

[45500] chrY 59213949-59214117 * | CpG:_36

-------

seqinfo: 93 sequences from hg19 genome

The result is an instance of GRanges, the central data structure in Bioconductor for genomic
data. A GRanges takes the form of a table and resembles a BED file, with a column for
the chromosome, start, end, strand. We will see GRanges a lot, along with its cousin,
GRangesList, which stores what bedtools calls “split” ranges.

3.1 Sequence information
Consider the simplest invocation of bedtools intersect:

> code <- bedtools_intersect("-a cpg.bed -b exons.bed")

> code

{

genome <- Seqinfo(genome = NA_character_)

gr_a <- import("cpg.bed", genome = genome)

gr_b <- import("exons.bed", genome = genome)

pairs <- findOverlapPairs(gr_a, gr_b, ignore.strand = TRUE)

ans <- pintersect(pairs, ignore.strand = TRUE)

ans

}

The first line creates an object representing the structure of the genome build:

> genome <- eval(code[[2L]])

> genome

Seqinfo object with no sequences:

It is an empty object, because the genome identifier is unspecified (NA_character_). Hav-
ing unspecified genome bounds is dangerous and leads to accidents involving incompatible
genome builds. Besides error checking, the bounds are useful when computing coverage and
finding the gaps (see below). Luckily, bedtools lets us specify the genome as an argument:

> bedtools_intersect("-a cpg.bed -b exons.bed -g hg19.genome")

{
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genome <- import("hg19.genome")

gr_a <- import("cpg.bed", genome = genome)

gr_b <- import("exons.bed", genome = genome)

pairs <- findOverlapPairs(gr_a, gr_b, ignore.strand = TRUE)

ans <- pintersect(pairs, ignore.strand = TRUE)

ans

}

We now have a populated genome, since the tutorial had provided the ‘hg19.genome’ file.
However, in general, information on the genome build should be centralized, not sitting
somewhere in a file. Bioconductor provides GenomeInfoDb as its central source of sequence
information. We can hook into that by passing the genome identifier instead of a file name:

> bedtools_intersect("-a cpg.bed -b exons.bed -g hg19")

{

genome <- Seqinfo(genome = "hg19")

gr_a <- import("cpg.bed", genome = genome)

gr_b <- import("exons.bed", genome = genome)

pairs <- findOverlapPairs(gr_a, gr_b, ignore.strand = TRUE)

ans <- pintersect(pairs, ignore.strand = TRUE)

ans

}

3.2 Annotations
The next step is the import of the CpG islands and exons using the import function from
rtracklayer , which can load pretty much any kind of genomic data into the appropriate type
of Bioconductor object. In this case, we are loading the data as a GRanges:
> gr_a

GRanges object with 28691 ranges and 1 metadata column:

seqnames ranges strand | name

<Rle> <IRanges> <Rle> | <character>

[1] chr1 28736-29810 * | CpG:_116

[2] chr1 135125-135563 * | CpG:_30

[3] chr1 327791-328229 * | CpG:_29

[4] chr1 437152-438164 * | CpG:_84

[5] chr1 449274-450544 * | CpG:_99

... ... ... ... . ...

[28687] chrY 27610116-27611088 * | CpG:_76

[28688] chrY 28555536-28555932 * | CpG:_32

[28689] chrY 28773316-28773544 * | CpG:_25

[28690] chrY 59213795-59214183 * | CpG:_36

[28691] chrY 59349267-59349574 * | CpG:_29

-------

seqinfo: 93 sequences from hg19 genome

The rtracklayer package can also download data directly from the UCSC table browser. For
example, we could get the CpG islands directly:
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> ucsc <- browserSession()

> genome(ucsc) <- "hg19"

> cpgs <- ucsc[["CpG Islands"]]

Gene annotations, including exon coordinates, should also be stored more formally than in a
file, and Bioconductor provides them through its TxDb family of packages:

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> exons <- exons(TxDb.Hsapiens.UCSC.hg19.knownGene)

3.3 Finding Overlaps
The next step is to find all of the overlaps. The workhorse function is findOverlaps from the
IRanges package. Here, we use the variant findOverlapPairs, a convenience for creating a
Pairs object that matches up the overlapping ranges:

> pairs

Pairs object with 45500 pairs and 0 metadata columns:

first second

<GRanges> <GRanges>

[1] chr1:28736-29810 chr1:29321-29370:-

[2] chr1:135125-135563 chr1:134773-139696:-

[3] chr1:327791-328229 chr1:324439-328581:+

[4] chr1:327791-328229 chr1:324439-328581:+

[5] chr1:327791-328229 chr1:327036-328581:+

... ... ...

[45496] chrY:59213795-59214183 chrY:59213949-59214117:+

[45497] chrY:59213795-59214183 chrY:59213949-59214117:+

[45498] chrY:59213795-59214183 chrY:59213949-59214117:+

[45499] chrY:59213795-59214183 chrY:59213949-59214117:+

[45500] chrY:59213795-59214183 chrY:59213949-59214117:+

Although the ranges are displayed as succinct strings, they data are still represented as
GRanges objects.

Users of bedtools will be familiar with Pairs as the analog of the BEDPE file format. We
can use rtracklayer to export Pairs to BEDPE:

> export(pairs, "pairs.bedpe")

A key parameter to findOverlapPairs is ignore.strand=TRUE. By default, all operations
on GRanges take strand into account when determining whether two ranges overlap, and
deciding on the orientation of a range. This is surprising to many novice users, particularly to
those with bedtools experience. Most functions take the ignore.strand argument to control
this behavior. To avoid confusion, the code generated by HelloRanges is always explicit about
how it is treating strand. Users are encouraged to follow the same practice.
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3.4 Computing intersections
The final step is to find the actual intersecting region between the member of each overlapping
pair. We do this with the pintersect function, which is the “parallel” or “pairwise” version
of the default intersect function. If we had just called intersect(gr_a, gr_b) instead, the
entire set of ranges would have been treated as a set, and overlapping ranges in gr_a and
gr_b would have been merged (this is rarely desirable and requires an extra merge step in
bedtools).

Notice again the importance of ignore.strand=TRUE. Without that, ranges on opposite
strands would have zero intersection.

And here is our result:
> ans

GRanges object with 45500 ranges and 1 metadata column:

seqnames ranges strand | name

<Rle> <IRanges> <Rle> | <character>

[1] chr1 29321-29370 * | CpG:_116

[2] chr1 135125-135563 * | CpG:_30

[3] chr1 327791-328229 * | CpG:_29

[4] chr1 327791-328229 * | CpG:_29

[5] chr1 327791-328229 * | CpG:_29

... ... ... ... . ...

[45496] chrY 59213949-59214117 * | CpG:_36

[45497] chrY 59213949-59214117 * | CpG:_36

[45498] chrY 59213949-59214117 * | CpG:_36

[45499] chrY 59213949-59214117 * | CpG:_36

[45500] chrY 59213949-59214117 * | CpG:_36

-------

seqinfo: 93 sequences from hg19 genome

Again, a GRanges object. The hit column indicates whether the pair overlapped at all (as
opposed to one range being of zero width). It’s useless in this case.

3.5 Keeping the original features
To keep the original form of the overlapping features, the generated code simply neglects to
call pintersect and ends up with the pairs object introduced previously:

> bedtools_intersect("-a cpg.bed -b exons.bed -g hg19 -wa -wb")

{

genome <- Seqinfo(genome = "hg19")

gr_a <- import("cpg.bed", genome = genome)

gr_b <- import("exons.bed", genome = genome)

pairs <- findOverlapPairs(gr_a, gr_b, ignore.strand = TRUE)

ans <- pairs

ans

}
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3.6 Computing the amount of overlap
To compute the width of the overlapping regions, we query the initial result for its width and
store as an annotation on the pairs:

> bedtools_intersect("-a cpg.bed -b exons.bed -g hg19 -wo")

{

genome <- Seqinfo(genome = "hg19")

gr_a <- import("cpg.bed", genome = genome)

gr_b <- import("exons.bed", genome = genome)

pairs <- findOverlapPairs(gr_a, gr_b, ignore.strand = TRUE)

ans <- pairs

mcols(ans)$overlap_width <- width(pintersect(ans, ignore.strand = TRUE))

ans

}

This code reveals that GRanges, along with every other vector-like object in the Ranges
infrastructure, is capable of storing tabular annotations, accessible via mcols. We actually
saw this before with the “name” column on the Cpg Islands. Here, we use it to store the
overlap width.

3.7 Counting the number of overlaps
A common query, particularly in RNA-seq analysis, is how many ranges in the subject overlap
each query range. The countOverlaps function serves this particular purpose:

> bedtools_intersect("-a cpg.bed -b exons.bed -g hg19 -c")

{

genome <- Seqinfo(genome = "hg19")

gr_a <- import("cpg.bed", genome = genome)

gr_b <- import("exons.bed", genome = genome)

ans <- gr_a

mcols(ans)$overlap_count <- countOverlaps(gr_a, gr_b, ignore.strand = TRUE)

ans

}

3.8 Excluding queries with overlaps
We might instead want to exclude all query ranges that overlap any subject range, i.e., any
CpG island that overlaps an exon. The subsetByOverlaps function is tasked with restricting
by overlap. By passing invert=TRUE, we exclude ranges with overlaps.

> bedtools_intersect("-a cpg.bed -b exons.bed -g hg19 -v")

{

genome <- Seqinfo(genome = "hg19")

gr_a <- import("cpg.bed", genome = genome)

gr_b <- import("exons.bed", genome = genome)

subsetByOverlaps(gr_a, gr_b, invert = TRUE, ignore.strand = TRUE)

}
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3.9 Restricting by fraction of overlap
The bedtools suite has deep support for restricting overlaps by the fraction of the query/subject
range that is overlapped. This is not directly supported by the Bioconductor infrastructure,
but we can filter post-hoc:

> bedtools_intersect("-a cpg.bed -b exons.bed -g hg19 -f 0.5 -wo")

{

genome <- Seqinfo(genome = "hg19")

gr_a <- import("cpg.bed", genome = genome)

gr_b <- import("exons.bed", genome = genome)

pairs <- findOverlapPairs(gr_a, gr_b, ignore.strand = TRUE)

olap <- pintersect(pairs, ignore.strand = TRUE)

keep <- width(olap)/width(first(pairs)) >= 0.5

pairs <- pairs[keep]

ans <- pairs

mcols(ans)$overlap_width <- width(olap)[keep]

ans

}

3.10 Performance
Comparing the performance of bedtools and IRanges is like comparing apples and oranges.
The typical Bioconductor workflow imports the data once, paying an upfront cost, and then
operates efficiently on in-memory data structures. The BED parser is implemented in R code
and will not compete with the parsing performance of special purpose C code. The intersect
operation itself is also slower than bedtools, but it’s still reasonably close for being mostly
implemented in R.

> a <- import("exons.bed")

> b <- import("hesc.chromHmm.bed")

> system.time(pintersect(findOverlapPairs(a, b, ignore.strand=TRUE),

+ ignore.strand=TRUE))

user system elapsed

0.539 0.048 0.587

3.11 Multiple subjects
Often, we are interested in intersections with mutiple annotation tracks, or multiple samples.
Note that the command line parser used by helloRanges requires that the filenames be
comma-separated, instead of space-separated. This is probably more readable anyway.

> code <- bedtools_intersect(

+ paste("-a exons.bed",

+ "-b cpg.bed,gwas.bed,hesc.chromHmm.bed -wa -wb -g hg19",

+ "-names cpg,gwas,chromhmm"))

> ans <- eval(code)

> code

{

genome <- Seqinfo(genome = "hg19")
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gr_a <- import("exons.bed", genome = genome)

b <- c("cpg.bed", "gwas.bed", "hesc.chromHmm.bed")

names(b) <- c("cpg", "gwas", "chromhmm")

bl <- List(lapply(b, import, genome = genome))

gr_b <- stack(bl, "b")

pairs <- findOverlapPairs(gr_a, gr_b, ignore.strand = TRUE)

ans <- pairs

ans

}

Inspecting the code, we see that we need to loop over the database files and then stack them
into a single GRanges grouped by the column “b”:

> second(ans)

GRanges object with 541210 ranges and 2 metadata columns:

seqnames ranges strand | b name

<Rle> <IRanges> <Rle> | <Rle> <character>

[1] chr1 11538-11937 * | chromhmm 11_Weak_Txn

[2] chr1 11938-12137 * | chromhmm 14_Repetitive/CNV

[3] chr1 12138-14137 * | chromhmm 11_Weak_Txn

[4] chr1 12138-14137 * | chromhmm 11_Weak_Txn

[5] chr1 12138-14137 * | chromhmm 11_Weak_Txn

... ... ... ... . ... ...

[541206] chrY 59213795-59214183 * | cpg CpG:_36

[541207] chrY 59213795-59214183 * | cpg CpG:_36

[541208] chrY 59213795-59214183 * | cpg CpG:_36

[541209] chrY 59213795-59214183 * | cpg CpG:_36

[541210] chrY 59213795-59214183 * | cpg CpG:_36

-------

seqinfo: 298 sequences (2 circular) from hg19 genome

The “b” column is an Rle object, a run-length encoded form of an ordinary R vector, in this
case a factor. Since the data are sorted into groups, this encoding is more efficient than a
dense representation. The “seqnames” and “strand” columns also benefit from run-length
encoding. Not only can we fit more data into memory, many operations become faster.
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4 Merge

There are many ways to summarize interval data. In the Ranges infrastructure, we call
some of them range (min start to max end), reduce (bedtools merge), disjoin (involved in
bedtools multiinter) and coverage (counting the number of ranges overlapping each position,
bedtools genomecov). We are presently concerned with reduce, which combines overlapping
and adjacent ranges into a single range. The corresponding bedtools merge command requires
the data to be sorted; however, reduce does not have this constraint.

> bedtools_merge("-i exons.bed")

{

genome <- Seqinfo(genome = NA_character_)

gr_a <- import("exons.bed", genome = genome)

ans <- reduce(gr_a, ignore.strand = TRUE)

ans

}

4.1 Aggregation
As with any reduction, we often want to simultaneously aggregate associated variables and
report the summaries in the result.

We count the number of ranges overlapping each merged range:

> code <- bedtools_merge("-i exons.bed -c 1 -o count")

> code

{

genome <- Seqinfo(genome = NA_character_)

gr_a <- import("exons.bed", genome = genome)

ans <- reduce(gr_a, ignore.strand = TRUE, with.revmap = TRUE)

mcols(ans) <- aggregate(gr_a, mcols(ans)$revmap, seqnames.count = lengths(seqnames),

drop = FALSE)

ans

}
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The key to aggregation with reduce is the with.revmap=TRUE argument. That yields a
“revmap” column on the result. It is an IntegerList holding the subscripts corresponding to
each group. We pass it to aggregate to indicate the grouping. The named arguments to
aggregate, in this case seqnames.count, are effectively evaluated with respect to each group
(although they are actually evaluated only once).

This yields the result:

> eval(code)

GRanges object with 229241 ranges and 2 metadata columns:

seqnames ranges strand | grouping

<Rle> <IRanges> <Rle> | <ManyToManyGrouping>

[1] chr1 11874-12227 * | 1

[2] chr1 12613-12721 * | 2

[3] chr1 13221-14829 * | 3,4

[4] chr1 14970-15038 * | 5

[5] chr1 15796-15947 * | 6

... ... ... ... . ...

[229237] chrY 59337091-59337236 * | 459744,459745

[229238] chrY 59337949-59338150 * | 459746,459747

[229239] chrY 59338754-59338859 * | 459748,459749

[229240] chrY 59340194-59340278 * | 459750

[229241] chrY 59342487-59343488 * | 459751,459752

seqnames.count

<integer>

[1] 1

[2] 1

[3] 2

[4] 1

[5] 1

... ...

[229237] 2

[229238] 2

[229239] 2

[229240] 1

[229241] 2

-------

seqinfo: 49 sequences from an unspecified genome; no seqlengths

We see that the grouping has been preserved on the object, in case we wish to aggregate
further through joins.

Counting the overlaps by counting the “seqnames” is a little circuitous. Instead, we could
have just counted the elements in each group:

> identical(lengths(ans$grouping), ans$seqnames.count)

[1] TRUE

Note that this counting is very fast, because the “revmap” IntegerList is not actually a
list, but a partitioned vector, and the partitioning already encodes the counts. This is an
example of where the flexibility and efficient in-memory representations of Bioconductor are
particularly effective.
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4.2 Merging close features
By default, features are merged if they are overlapping or adjacent, i.e., the min.gapwidth

(the minimum gap allowed to not be merged) is 1. To merge features that are up to, say,
1000bp away, we need to pass min.gapwidth=1001:

> bedtools_merge("-i exons.bed -d 1000")

{

genome <- Seqinfo(genome = NA_character_)

gr_a <- import("exons.bed", genome = genome)

ans <- reduce(gr_a, ignore.strand = TRUE, min.gapwidth = 1001L)

ans

}

Here is another example showing how to merge multiple columns at once:

> bedtools_merge("-i exons.bed -d 90 -c 1,4 -o count,collapse")

{

genome <- Seqinfo(genome = NA_character_)

gr_a <- import("exons.bed", genome = genome)

ans <- reduce(gr_a, ignore.strand = TRUE, with.revmap = TRUE,

min.gapwidth = 91L)

mcols(ans) <- aggregate(gr_a, mcols(ans)$revmap, seqnames.count = lengths(seqnames),

name.collapse = unstrsplit(name, ","), drop = FALSE)

ans

}

5 Finding the Gaps

The bedtools complement tool finds the gaps in the sequence, i.e., the regions of sequence
the track does not cover. This is where having the sequence bounds is critical.

> bedtools_complement("-i exons.bed -g hg19.genome")

{

genome <- import("hg19.genome")

gr_a <- import("exons.bed", genome = genome)

ans <- setdiff(as(seqinfo(gr_a), "GRanges"), unstrand(gr_a))

ans

}
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The call to setdiff is a set operation, along with intersect and union. Set operations
behave a bit surprisingly with respect to strand. The “unstranded” features, those with “*”
for their strand, are considered to be in a separate space from the stranded features. If we pass
ignore.strand=TRUE, both arguments are unstranded and the result is unstranded (strand
information is discarded). This makes sense, because there is no obvious way to merge a
stranded and unstranded feature. Since we are looking for the gaps, we do not care about the
strand, so discarding the strand is acceptable. Best practice is to make this explicit by calling
unstrand instead of assuming the reader understands the behavior of ignore.strand=TRUE.

6 Computing Genomic Coverage

One of the useful ways to summarize ranges, particularly alignments, is to count how many
times a position is overlapped by a range. This is called the coverage. Unlike bedtools
genomecov, we do not require the data to be sorted.

6.1 Coverage vector
To compute the coverage, we just call coverage. For consistency with bedtools, which drops
zero runs with the “-bg” option, we convert the coverage vector to a GRanges and subset:

> bedtools_genomecov("-i exons.bed -g hg19.genome -bg")

{

genome <- import("hg19.genome")

gr_a <- import("exons.bed", genome = genome)

cov <- coverage(gr_a)

ans <- GRanges(cov)

ans <- subset(ans, score > 0)

ans

}

15
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6.2 Coverage histogram
The default behavior of genomecov is to compute a histogram showing the number and
fraction of positions covered at each level. It does this for the individual chromosome, and
the entire genome. While computing the coverage vector is as simple as calling coverage,
forming the histogram is a bit complicated. This is a bit esoteric, but it lets us demonstrate
how to aggregate data in R:

> code <- bedtools_genomecov("-i exons.bed -g hg19.genome")

> ans <- eval(code)

> code

{

genome <- import("hg19.genome")

gr_a <- import("exons.bed", genome = genome)

cov <- coverage(gr_a)

tablist <- List(lapply(cov, table))

mcols(tablist)$len <- lengths(cov, use.names = FALSE)

covhist <- stack(tablist, "seqnames", "count", "coverage")

margin <- aggregate(covhist, ~coverage, count = sum(NumericList(count)))[-1L]

margin <- DataFrame(seqnames = Rle("genome"), margin, len = sum(as.numeric(lengths(cov))))

covhist <- rbind(covhist, margin)

ans <- within(covhist, fraction <- count/len)

ans

}

The cov object is an RleList, with one Rle per sequence (chromosome).
> cov

RleList of length 93

$chr1

integer-Rle of length 249250621 with 46230 runs

Lengths: 11873 354 385 109 499 ... 64 2722 677 1868 37276

Values : 0 1 0 1 0 ... 2 0 1 2 0

$chr10

integer-Rle of length 135534747 with 18962 runs

Lengths: 92827 1227 500 111 78 ... 1936 1120 3293 260 36289

Values : 0 1 0 1 0 ... 0 8 0 8 0

$chr11

integer-Rle of length 135006516 with 25138 runs

Lengths: 126986 4387 93 58 227 ... 104 22067 864 630961

Values : 0 1 0 1 0 ... 1 0 1 0

$chr11_gl000202_random

integer-Rle of length 40103 with 1 run

Lengths: 40103

Values : 0

$chr12

integer-Rle of length 133851895 with 25290 runs
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Lengths: 87983 34 239 136 177 ... 2463 271 1428 30 39473

Values : 0 1 0 1 0 ... 0 1 0 1 0

...

<88 more elements>

We tabulate each coverage vector individually, then stack the tables into an initial histogram.
Then, we aggregate over the entire genome and combine the genome histogram with the per-
chromosome histogram. The call to NumericList is only to avoid integer overflow. Finally,
we compute the fraction covered and end up with:
> ans

DataFrame with 653 rows and 5 columns

seqnames coverage count len fraction

<Rle> <factor> <numeric> <numeric> <numeric>

1 1 0 241996316 249250621 0.97089554

2 1 1 4276763 249250621 0.01715848

3 1 2 1475526 249250621 0.00591985

4 1 3 710135 249250621 0.00284908

5 1 4 388193 249250621 0.00155744

... ... ... ... ... ...

649 genome 73 135 3137161264 4.30325e-08

650 genome 74 263 3137161264 8.38338e-08

651 genome 75 1921 3137161264 6.12337e-07

652 genome 76 705 3137161264 2.24725e-07

653 genome 77 2103 3137161264 6.70351e-07

This takes 3 minutes for bedtools, but closer to 3 seconds for us, probably because it is
working too hard to conserve memory.

7 Combining operations

7.1 Chaining
Most real-world workflows involve multiple operations, chained together. The R objects
produced HelloRanges can be passed directly to existing R functions, and HelloRanges defines
an ordinary R function corresponding to each bedtools operation. The arguments of the
function correspond to bedtools arguments, except they can be R objects, like GRanges, in
addition to filenames. These functions with ordinary R semantics are prefixed by R_, so the
analog to bedtools_intersect is R_bedtools_intersect.

Consider a use case similar to the one mentioned in the bedtools tutorial: find the regions
of the CpG islands that are not covered by exons. We could do this directly with bed

tools_subtract, but let us instead compute the coverage of the exons, find the regions of
zero coverage, and intersect those with the CpG islands.

First, we generate the code for the coverage operation (and ideally copy it to a script). The
result of evaluating that code is a GRanges, which we subset for the regions with zero score.

> code <- bedtools_genomecov("-i exons.bed -g hg19.genome -bga")

> gr0 <- subset(eval(code), score == 0L) # compare to: awk '$4==0'
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> gr0

GRanges object with 229334 ranges and 1 metadata column:

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <integer>

[1] chr1 1-11873 * | 0

[2] chr1 12228-12612 * | 0

[3] chr1 12722-13220 * | 0

[4] chr1 14830-14969 * | 0

[5] chr1 15039-15795 * | 0

... ... ... ... . ...

[229330] chrY 59337237-59337948 * | 0

[229331] chrY 59338151-59338753 * | 0

[229332] chrY 59338860-59340193 * | 0

[229333] chrY 59340279-59342486 * | 0

[229334] chrY 59343489-59373566 * | 0

-------

seqinfo: 93 sequences from an unspecified genome

Next, we pass gr0 directly to the R analog of intersect, R_bedtools_intersect:

> code <- R_bedtools_intersect("cpg.bed", gr0)

> code

{

genome <- Seqinfo(genome = NA_character_)

gr_a <- import("cpg.bed", genome = genome)

gr_b <- gr0

pairs <- findOverlapPairs(gr_a, gr_b, ignore.strand = TRUE)

ans <- pintersect(pairs, ignore.strand = TRUE)

ans

}

The generated code already refers to gr0 explicitly, so it is easy to copy this into the script.

To generalize, the chaining workflow is:

1. Generate code for first operation,

2. Integrate and evaluate the code,

3. Interactively inspect the result of evaluation,

4. Perform intermediate operations, while inspecting results,

5. Call R_ analog to generate second stage code.

Generating and integrating R code is the best way to learn, and the best way to produce a
readable, flexible and performant script. However, there are probably those who are tempted
to evaluate the code directly, as we have done in this vignette. Further, there are those
who wish to chain these operations together with the so-called “pipe” operator, because it
would come so tantalizing close to the syntax of the shell. Thus, we created a third family
of functions, prefixed by do_, which provide the same interface as the R_ family, except they
evaluate the generated code:
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> do_bedtools_genomecov("exons.bed", g="hg19.genome", bga=TRUE) %>%

+ subset(score > 0L) %>%

+ do_bedtools_intersect("cpg.bed", .)

7.2 Coalescence
In the previous section, we chained together independent operations. Having access to the
underlying code gives us the flexibility to merge operations so that they are faster than the
sum of their parts. We call this coalescence.

Consider a use case cited by the bedtools tutorial: compute the distribution of coverage over
all exons. To integrate better with this tutorial, we adapt that to finding the distribution of
exon coverage over all CpG islands.

We could mimic the example by computing the coverage complete histogram and extracting
only the margin:

> bedtools_coverage("-a cpg.bed -b exons.bed -hist -g hg19.genome")

{

genome <- import("hg19.genome")

gr_a <- import("cpg.bed", genome = genome)

gr_b <- import("exons.bed", genome = genome)

cov <- unname(coverage(gr_b)[gr_a])

tab <- t(table(cov))

tab <- cbind(tab, all = rowSums(tab))

covhist <- DataFrame(as.table(tab))

colnames(covhist) <- c("coverage", "a", "count")

len <- c(lengths(cov, use.names = FALSE), sum(lengths(cov)))

covhist$len <- rep(len, each = nrow(tab))

covhist <- subset(covhist, count > 0L)

covhist$fraction <- with(covhist, count/len)

ans <- gr_a

covhistList <- split(covhist, ~a)[, -2L]

mcols(ans)$coverage <- head(covhistList, -1L)

metadata(ans)$coverage <- covhistList$all

ans

}

The code is quite complex, because the Ranges infrastructure does not attempt to generate
high-level summaries of the data. The rationale, which is validated in this case, is that the
desired summary depends on the specific question, and the number of questions is effectively
infinite. In this case, we only care about the margin, i.e., metadata(ans)$coverage.

Thus, we can simplify the code. We begin with the same lines:

> genome <- import("hg19.genome")

> gr_a <- import("cpg.bed", genome = genome)

> gr_b <- import("exons.bed", genome = genome)

> cov <- unname(coverage(gr_b)[gr_a])

And summarize all of the coverage at once:
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> all_cov <- unlist(cov)

> df <- as.data.frame(table(coverage=all_cov))

> df$fraction <- df$Freq / length(all_cov)

This is much faster, because we are only computing one table, not 30,000, and the table

method for Rle is very efficient.

We now have a simple data.frame that we can plot as an inverted ECDF:

> plot((1-cumsum(fraction)) ~ as.integer(coverage), df, type="s",

+ ylab = "fraction of bp > coverage", xlab="coverage")
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8 Jaccard Statistic
In order to compare the DnaseI hypersenstivity across tissues, we will employ the bedtools
jaccard statistic, a measure of similarity between two tracks. It is defined as the total width
of their intersection over the total width of their union.
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We might expect, for example, that the similarity within a tissue is higher than that between
two tissues, and this is indeed the case:

> code <- bedtools_jaccard(

+ paste("-a fHeart-DS16621.hotspot.twopass.fdr0.05.merge.bed",

+ "-b fHeart-DS15839.hotspot.twopass.fdr0.05.merge.bed"))

> heart_heart <- eval(code)

> code <- bedtools_jaccard(

+ paste("-a fHeart-DS16621.hotspot.twopass.fdr0.05.merge.bed",

+ "-b fSkin_fibro_bicep_R-DS19745.hg19.hotspot.twopass.fdr0.05.merge.bed"))

> heart_skin <- eval(code)

> mstack(heart_heart=heart_heart, heart_skin=heart_skin)

DataFrame with 2 rows and 5 columns

name intersection union jaccard n_intersections

<Rle> <integer> <integer> <numeric> <integer>

1 heart_heart 81269248 160493950 0.506370 130852

2 heart_skin 28076951 164197278 0.170995 73261

The generated code makes the statistic self-documenting:

> code

{

genome <- NA_character_

gr_a <- import("fHeart-DS16621.hotspot.twopass.fdr0.05.merge.bed",

genome = genome)

gr_b <- import("fSkin_fibro_bicep_R-DS19745.hg19.hotspot.twopass.fdr0.05.merge.bed",

genome = genome)

intersects <- intersect(gr_a, gr_b, ignore.strand = TRUE)

intersection <- sum(width(intersects))

union <- sum(width(union(gr_a, gr_b, ignore.strand = TRUE)))

ans <- DataFrame(intersection, union, jaccard = intersection/union,

n_intersections = length(intersects))

ans

}

We can compute the statistic over all pairs of samples using functionality included with R,
through the parallel package. There is no need to learn yet another syntax, such as that of
the parallel UNIX utility. Nor do we need to download a custom python script, and repeatedly
call perl and awk.

> files <- Sys.glob("*.merge.bed")

> names(files) <- sub("\\..*", "", files)

> ncores <- if (.Platform$OS.type == "windows") 1L else 4L

> ans <- outer(files, files,

+ function(a, b) mcmapply(do_bedtools_jaccard, a, b,

+ mc.cores=ncores))

> jaccard <- apply(ans, 1:2, function(x) x[[1]]$jaccard)

Since we are already in R, it is easy to create a simple plot:

> palette <- colorRampPalette(c("lightblue", "darkblue"))(9)

> heatmap(jaccard, col=palette, margin=c(14, 14))
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fIntestine_Sm−DS16712

fIntestine_Sm−DS17808

fIntestine_Sm−DS16559

fBrain−DS16302

fHeart−DS15839

fHeart−DS15643

fMuscle_arm−DS19053

fMuscle_leg−DS19115

fKidney_renal_cortex_L−DS17550

fLung_L−DS17154

9 Exercises
These were adapted from the bedtools tutorial. Try to complete these exercises using Bio-
conductor directly.

1. Create a GRanges containing the non-exonic regions of the genome.

2. Compute the average distance from the GWAS SNPs to the closest exon (Hint: ?bed

tools_closest and ?distanceToNearest).

3. Compute the exon coverage in 500kb windows across the genome (Hint: ?bedtools_makewindows
and ?tileGenome).

4. How many exons are completely overlapped by an enhancer (from ‘hesc.chromHmm.bed’)
(Hint: ¿%within%)?

5. What fraction of the disease-associated SNPs are exonic (Hint: (Hint: ¿%over%))?

6. Create intervals representing the canonical 2bp splice sites on either side of each exon
(bonus: exclude splice sites at the first and last exons) (Hint: ?bedtools_flank, ?in
tronsByTranscript).
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7. Which hESC ChromHMM state represents the most number of base pairs in the
genome? (Hint: ?xtabs).

9.1 Answers
Below, we give the bedtools-style answer first, followed by the essential call against the
Bioconductor API.

First, we load the files into R objects for convenience:

> genome <- import("hg19.genome")

> exons <- import("exons.bed", genome=genome)

> gwas <- import("gwas.bed", genome=genome)

> hesc.chromHmm <- import("hesc.chromHmm.bed", genome=genome)

Here are the numbered answers:

1. > bedtools_complement("-i exons.bed -g hg19.genome")

{

genome <- import("hg19.genome")

gr_a <- import("exons.bed", genome = genome)

ans <- setdiff(as(seqinfo(gr_a), "GRanges"), unstrand(gr_a))

ans

}

> ## or without HelloRanges:

> setdiff(as(seqinfo(exons), "GRanges"), unstrand(exons))

GRanges object with 229334 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 1-11873 *
[2] chr1 12228-12612 *
[3] chr1 12722-13220 *
[4] chr1 14830-14969 *
[5] chr1 15039-15795 *
... ... ... ...

[229330] chrY 59337237-59337948 *
[229331] chrY 59338151-59338753 *
[229332] chrY 59338860-59340193 *
[229333] chrY 59340279-59342486 *
[229334] chrY 59343489-59373566 *
-------

seqinfo: 93 sequences from hg19 genome

2. > bedtools_closest("-a gwas.bed -b exons.bed -d")

{

genome <- Seqinfo(genome = NA_character_)

gr_a <- import("gwas.bed", genome = genome)

gr_b <- import("exons.bed", genome = genome)

hits <- nearest(gr_a, gr_b, ignore.strand = TRUE, select = "all")
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ans <- pair(gr_a, gr_b, hits, all.x = TRUE)

mcols(ans)$distance <- distance(ans)

ans

}

> ## or

> distanceToNearest(gwas, exons)

Hits object with 17674 hits and 1 metadata column:

queryHits subjectHits | distance

<integer> <integer> | <integer>

[1] 1 235 | 1319

[2] 2 249 | 0

[3] 3 426 | 0

[4] 4 1163 | 2385

[5] 5 1163 | 2894

... ... ... . ...

[17670] 17676 455399 | 371

[17671] 17677 455399 | 371

[17672] 17678 455464 | 5898

[17673] 17679 455674 | 324706

[17674] 17680 456097 | 135628

-------

queryLength: 17680 / subjectLength: 459752

3. > code <- bedtools_makewindows("-g hg19.genome -w 500000")

> code

{

genome <- import("hg19.genome")

ans <- tile(as(genome, "GRanges"), width = 500000L)

ans

}

> windows <- unlist(eval(code))

> R_bedtools_intersect(windows, exons, c=TRUE)

{

genome <- Seqinfo(genome = NA_character_)

gr_a <- windows

gr_b <- exons

ans <- gr_a

mcols(ans)$overlap_count <- countOverlaps(gr_a, gr_b, ignore.strand = TRUE)

ans

}

> ## or

> str(countOverlaps(tileGenome(seqinfo(exons), tilewidth=500000),

+ exons))

int [1:6275] 37 197 477 445 209 96 83 271 9 12 ...
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4. > bedtools_intersect(

+ paste("-a exons.bed -b <\"grep Enhancer hesc.chromHmm.bed\"",

+ "-f 1.0 -wa -u"))

{

genome <- Seqinfo(genome = NA_character_)

gr_a <- import("exons.bed", genome = genome)

gr_b <- import(BEDFile(pipe("grep Enhancer hesc.chromHmm.bed")),

genome = genome)

hits <- findOverlaps(gr_a, gr_b, ignore.strand = TRUE, type = "within")

gr_a[countQueryHits(hits) > 0L]

}

> quote(length(ans))

length(ans)

> ## or

> sum(exons %within%

+ subset(hesc.chromHmm, grepl("Enhancer", name)))

[1] 13746

5. > bedtools_intersect("-a gwas.bed -b exons.bed -u")

{

genome <- Seqinfo(genome = NA_character_)

gr_a <- import("gwas.bed", genome = genome)

gr_b <- import("exons.bed", genome = genome)

subsetByOverlaps(gr_a, gr_b, ignore.strand = TRUE)

}

> quote(length(gr_a)/length(ans))

length(gr_a)/length(ans)

> ## or

> mean(gwas %over% exons)

[1] 0.09191176

6. > bedtools_flank("-l 2 -r 2 -i exons.bed -g hg19.genome")

{

genome <- import("hg19.genome")

gr_a <- import("exons.bed", genome = genome)

left <- flank(gr_a, 2, ignore.strand = TRUE)

right <- flank(gr_a, 2, start = FALSE, ignore.strand = TRUE)

ans <- zipup(Pairs(left, right))

ans

}

> ## or, bonus:

> txid <- sub("_exon.*", "", exons$name)

> tx <- split(exons, txid)
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> bounds <- range(tx)

> transpliced <- lengths(bounds) > 1

> introns <- unlist(psetdiff(unlist(bounds[!transpliced]),

+ tx[!transpliced]))

> Pairs(resize(introns, 2L), resize(introns, 2L, fix="end"))

Pairs object with 386125 pairs and 0 metadata columns:

first second

<GRanges> <GRanges>

[1] chr12:9220777-9220778:- chr12:9220436-9220437:-

[2] chr12:9221334-9221335:- chr12:9220821-9220822:-

[3] chr12:9222339-9222340:- chr12:9221439-9221440:-

[4] chr12:9223082-9223083:- chr12:9222410-9222411:-

[5] chr12:9224953-9224954:- chr12:9223175-9223176:-

... ... ...

[386121] chr9:123626325-123626326:- chr9:123625028-123625029:-

[386122] chr9:123627986-123627987:- chr9:123626395-123626396:-

[386123] chr9:123628304-123628305:- chr9:123628109-123628110:-

[386124] chr9:123629146-123629147:- chr9:123628375-123628376:-

[386125] chr9:123631084-123631085:- chr9:123629244-123629245:-

> ## better way to get introns:

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

> introns <- unlist(intronsByTranscript(txdb))

7. > system.time(names(which.max(xtabs(width ~ name,

+ hesc.chromHmm))))

user system elapsed

0.147 0.012 0.159

> ## or

> names(which.max(sum(with(hesc.chromHmm,

+ splitAsList(width, name)))))

[1] "13_Heterochrom/lo"

> ## or

> df <- aggregate(hesc.chromHmm, ~ name, totalWidth=sum(width))

> df$name[which.max(df$totalWidth)]

[1] 13_Heterochrom/lo

15 Levels: 10_Txn_Elongation 11_Weak_Txn 12_Repressed ... 9_Txn_Transition
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