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1 Introduction
This document offers an introduction and overview of the R Bioconductor package DiffBind ,
which provides functions for processing ChIP-Seq data enriched for genomic loci where spe-
cific protein/DNA binding occurs, including peak sets identified by ChIP-Seq peak callers and
aligned sequence read datasets. It is designed to work with multiple peak sets simultane-
ously, representing different ChIP experiments (antibodies, transcription factor and/or histone
marks, experimental conditions, replicates) as well as managing the results of multiple peak
callers.
The primary emphasis of the package is on identifying sites that are differentially bound
between two sample groups. It includes functions to support the processing of peak sets,
including overlapping and merging peak sets, counting sequencing reads overlapping intervals
in peak sets, and identifying statistically significantly differentially bound sites based on
evidence of binding affinity (measured by differences in read densities). To this end it uses
statistical routines developed in an RNA-Seq context (primarily the Bioconductor packages
edgeR and DESeq2 ). Additionally, the package builds on Rgraphics routines to provide a
set of standardized plots to aid in binding analysis.
This guide includes a brief overview of the processing flow, followed by four sections of
examples: the first focusing on the core task of obtaining differentially bound sites based on
affinity data, the second working through the main plotting routines, the third discussing the
use of a blocking factor, and the fourth revisiting occupancy data (peak calls) in more detail,
as well as comparing the results of an occupancy-based analysis with an affinity-based one.
Finally, certain technical aspects of the how these analyses are accomplished are detailed.

2 Processing overview
DiffBind works primarily with peaksets, which are sets of genomic intervals representing
candidate protein binding sites. Each interval consists of a chromosome, a start and end
position, and usually a score of some type indicating confidence in, or strength of, the peak.
Associated with each peakset are metadata relating to the experiment from which the peakset
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was derived. Additionally, files containing mapped sequencing reads (generally .bam files) can
be associated with each peakset (one for the ChIP data, and optionally another representing
a control sample).
Generally, processing data with DiffBind involves five phases:

1. Reading in peaksets: The first step is to read in a set of peaksets and associated
metadata. Peaksets are derived either from ChIP-Seq peak callers, such as MACS
([1]), or using some other criterion (e.g. genomic windows, or all the promoter regions
in a genome). The easiest way to read in peaksets is using a comma-separated value
(csv) sample sheet with one line for each peakset. (Spreadsheets in Excel® format, with
a .xls or .xlsx suffix, are also accepted.) A single experiment can have more than
one associated peakset; e.g. if multiple peak callers are used for comparison purposes
each sample would have more than one line in the sample sheet. Once the peaksets
are read in, a merging function finds all overlapping peaks and derives a single set of
unique genomic intervals covering all the supplied peaks (a consensus peakset for the
experiment).

2. Occupancy analysis: Peaksets, especially those generated by peak callers, provide
an insight into the potential occupancy of the protein being ChIPed for at specific
genomic loci. After the peaksets have been loaded, it can be useful to perform some
exploratory plotting to determine how these occupancy maps agree with each other,
e.g. between experimental replicates (re-doing the ChIP under the same conditions),
between different peak callers on the same experiment, and within groups of samples
representing a common experimental condition. DiffBind provides functions to enable
overlaps to be examined, as well as functions to determine how well similar samples
cluster together. Beyond quality control, the product of an occupancy analysis may be
a consensus peakset, representing an overall set of candidate binding sites to be used
in further analysis.

3. Counting reads: Once a consensus peakset has been derived, DiffBind can use the
supplied sequence read files to count how many reads overlap each interval for each
unique sample. The peaks in the consensus peakset may be re-centered and trimmed
based on calculating their summits (point of greatest read overlap) in order to provide
more standardized peak intervals. The final result of counting is a binding affinity matrix
containing a (normalized) read count for each sample at every potential binding site.
With this matrix, the samples can be re-clustered using affinity, rather than occupancy,
data. The binding affinity matrix is used for QC plotting as well as for subsequent
differential analysis.

4. Differential binding affinity analysis: The core functionality of DiffBind is the
differential binding affinity analysis, which enables binding sites to be identified that
are statistically significantly differentially bound between sample groups. To accomplish
this, first a contrast (or contrasts) is established, dividing the samples into groups to
be compared. Next the core analysis routines are executed, by default using DESeq2 .
This will assign a p-value and FDR to each candidate binding site indicating confidence
that they are differentially bound.

5. Plotting and reporting: Once one or more contrasts have been run, DiffBind pro-
vides a number of functions for reporting and plotting the results. MA plots give an
overview of the results of the analysis, while correlation heatmaps and PCA plots show
how the groups cluster based on differentially bound sites. Boxplots show the distri-
bution of reads within differentially bound sites corresponding to whether they gain or
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lose affinity between the two sample groups. A reporting mechanism enables differen-
tially bound sites to be extracted for further processing, such as annotation, motif, and
pathway analyses.

3 Example: Obtaining differentially bound sites
This section offers a quick example of how to use DiffBind to identify significantly differentially
bound sites using affinity (read count) data.
The dataset for this example consists of ChIPs against the transcription factor ERa using five
breast cancer cell lines ([2]). Three of these cell lines are responsive to tamoxifen treatment,
while two others are resistant to tamoxifen. There are at least two replicates for each of the
cell lines, with one cell line having three replicates, for a total of eleven sequenced libraries.
Of the five cell lines, two are based on MCF7 cells: the regular tamoxifen responsive line,
as well as MCF7 cells specially treated with tamoxifen until a tamoxifen resistant cell line
is obtained. For each sample, we have one peakset originally derived using the MACS peak
caller ([1]), for a total of eleven peaksets. Note that to save space in the package, only data
for chromosome 18 is used for the vignette. The metadata and peak data are available in
the extra subdirectory of the DiffBind package directory; you can make this your working
directory by entering:
> library(DiffBind)

Obtaining the sites significantly differentially bound (DB) between the samples that respond
to tamoxifen and those that are resistant can be done in a five-step script:
> tamoxifen <- dba(sampleSheet="tamoxifen.csv")

> tamoxifen <- dba.count(tamoxifen)

> tamoxifen <- dba.contrast(tamoxifen)

> tamoxifen <- dba.analyze(tamoxifen)

> tamoxifen.DB <- dba.report(tamoxifen)

The following subsections describe these steps in more detail

3.1 Reading in the peaksets
The easiest way to set up an experiment to analyze is with a sample sheet. The sample sheet
can be a dataframe, or it can be read directly from a csv file. Here is the example sample
sheet read into a dataframe form a csv file:
> samples <- read.csv(file.path(system.file("extra", package="DiffBind"),

+ "tamoxifen.csv"))

> names(samples)

[1] "SampleID" "Tissue" "Factor" "Condition" "Treatment"

[6] "Replicate" "bamReads" "ControlID" "bamControl" "Peaks"

[11] "PeakCaller"

> samples

SampleID Tissue Factor Condition Treatment Replicate

1 BT4741 BT474 ER Resistant Full-Media 1

2 BT4742 BT474 ER Resistant Full-Media 2
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3 MCF71 MCF7 ER Responsive Full-Media 1

4 MCF72 MCF7 ER Responsive Full-Media 2

5 MCF73 MCF7 ER Responsive Full-Media 3

6 T47D1 T47D ER Responsive Full-Media 1

7 T47D2 T47D ER Responsive Full-Media 2

8 MCF7r1 MCF7 ER Resistant Full-Media 1

9 MCF7r2 MCF7 ER Resistant Full-Media 2

10 ZR751 ZR75 ER Responsive Full-Media 1

11 ZR752 ZR75 ER Responsive Full-Media 2

bamReads ControlID bamControl

1 reads/Chr18_BT474_ER_1.bam BT474c reads/Chr18_BT474_input.bam

2 reads/Chr18_BT474_ER_2.bam BT474c reads/Chr18_BT474_input.bam

3 reads/Chr18_MCF7_ER_1.bam MCF7c reads/Chr18_MCF7_input.bam

4 reads/Chr18_MCF7_ER_2.bam MCF7c reads/Chr18_MCF7_input.bam

5 reads/Chr18_MCF7_ER_3.bam MCF7c reads/Chr18_MCF7_input.bam

6 reads/Chr18_T47D_ER_1.bam T47Dc reads/Chr18_T47D_input.bam

7 reads/Chr18_T47D_ER_2.bam T47Dc reads/Chr18_T47D_input.bam

8 reads/Chr18_TAMR_ER_1.bam TAMRc reads/Chr18_TAMR_input.bam

9 reads/Chr18_TAMR_ER_2.bam TAMRc reads/Chr18_TAMR_input.bam

10 reads/Chr18_ZR75_ER_1.bam ZR75c reads/Chr18_ZR75_input.bam

11 reads/Chr18_ZR75_ER_2.bam ZR75c reads/Chr18_ZR75_input.bam

Peaks PeakCaller

1 peaks/BT474_ER_1.bed.gz bed

2 peaks/BT474_ER_2.bed.gz bed

3 peaks/MCF7_ER_1.bed.gz bed

4 peaks/MCF7_ER_2.bed.gz bed

5 peaks/MCF7_ER_3.bed.gz bed

6 peaks/T47D_ER_1.bed.gz bed

7 peaks/T47D_ER_2.bed.gz bed

8 peaks/TAMR_ER_1.bed.gz bed

9 peaks/TAMR_ER_2.bed.gz bed

10 peaks/ZR75_ER_1.bed.gz bed

11 peaks/ZR75_ER_2.bed.gz bed

The peaksets are read in using the following DiffBind function:
> tamoxifen <- dba(sampleSheet="tamoxifen.csv",

+ dir=system.file("extra", package="DiffBind"))

The result is a DBA object; the metadata associated with this object can be displayed simply
as follows:
> tamoxifen

11 Samples, 2845 sites in matrix (3795 total):

ID Tissue Factor Condition Treatment Replicate Caller Intervals

1 BT4741 BT474 ER Resistant Full-Media 1 bed 1080

2 BT4742 BT474 ER Resistant Full-Media 2 bed 1122

3 MCF71 MCF7 ER Responsive Full-Media 1 bed 1556

4 MCF72 MCF7 ER Responsive Full-Media 2 bed 1046

5 MCF73 MCF7 ER Responsive Full-Media 3 bed 1339

6 T47D1 T47D ER Responsive Full-Media 1 bed 527
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1Note that due to
space limitations the
reads are not shipped
with the package.
See Section 8 for op-
tions to obtain the full
dataset. Alternatively,
you can get the result
of the dba.count call
by loading the supplied
Robject by invoking
data(tamoxifen_counts)

7 T47D2 T47D ER Responsive Full-Media 2 bed 373

8 MCF7r1 MCF7 ER Resistant Full-Media 1 bed 1438

9 MCF7r2 MCF7 ER Resistant Full-Media 2 bed 930

10 ZR751 ZR75 ER Responsive Full-Media 1 bed 2346

11 ZR752 ZR75 ER Responsive Full-Media 2 bed 2345

This shows how many peaks are in each peakset, as well as (in the first line) the total number
of unique peaks after merging overlapping ones (3795), and the dimensions of the default
binding matrix of 11 samples by the 2845 sites that overlap in at least two of the samples.
This object is available for loading using data(tamoxifen_peaks).
Using only this peak caller data, a correlation heatmap can be generated which gives an initial
clustering of the samples using the cross-correlations of each row of the binding matrix:
> plot(tamoxifen)
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Figure 1: Correlation heatmap, using occupancy (peak caller score) data
Generated by: plot(tamoxifen); can also be generated by: dba.plotHeatmap(tamoxifen).

The resulting plot (Figure 1) shows that while the replicates for each cell line cluster to-
gether appropriately, the cell lines do not cluster into groups corresponding to those that
are responsive (MCF7, T47D, and ZR75) vs. those resistant (BT474 and MCF7r) to ta-
moxifen treatment. It also shows that the two most highly correlated cell lines are the two
MCF7-based ones, even though they respond differently to tamoxifen treatment.

3.2 Counting reads
The next step is to calculate a binding matrix with scores based on read counts for every
sample (affinity scores), rather than confidence scores for only those peaks called in a specific
sample (occupancy scores). These reads are obtained using the dba.count function.1 As this
example is based on a transcription factor that binds to the DNA, resulting in "punctate",
narrow peaks, it is advisable to use the "summits" option to re-center each peak around
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the point of greatest enrichment. This keeps the peaks at a consistent width (in this case,
with summits=250, the peaks will be 500bp, extending 250bp up- and down- stream of the
summit):
> tamoxifen <- dba.count(tamoxifen, summits=250)

If you do not have the raw reads available to you, this object is available loading using
data(tamoxifen_counts). After the dba.count call, the DBA object can be examined:
> tamoxifen

11 Samples, 2845 sites in matrix:

ID Tissue Factor Condition Treatment Replicate Caller Intervals FRiP

1 BT4741 BT474 ER Resistant Full-Media 1 counts 2845 0.16

2 BT4742 BT474 ER Resistant Full-Media 2 counts 2845 0.15

3 MCF71 MCF7 ER Responsive Full-Media 1 counts 2845 0.27

4 MCF72 MCF7 ER Responsive Full-Media 2 counts 2845 0.17

5 MCF73 MCF7 ER Responsive Full-Media 3 counts 2845 0.23

6 T47D1 T47D ER Responsive Full-Media 1 counts 2845 0.10

7 T47D2 T47D ER Responsive Full-Media 2 counts 2845 0.06

8 MCF7r1 MCF7 ER Resistant Full-Media 1 counts 2845 0.20

9 MCF7r2 MCF7 ER Resistant Full-Media 2 counts 2845 0.13

10 ZR751 ZR75 ER Responsive Full-Media 1 counts 2845 0.32

11 ZR752 ZR75 ER Responsive Full-Media 2 counts 2845 0.22

This shows that all the samples are using the same, 2845 length consensus peakset. Also, a
new column has been added, called FRiP, which stands for Fraction of Reads in Peaks. This
is the proportion of reads for that sample that overlap a peak in the consensus peakset, and
can be used to indicate which samples show more enrichment overall.
> plot(tamoxifen)
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Figure 2: Correlation heatmap, using affinity (read count) data
Generated by: plot(tamoxifen); can also be generated by: dba.plotHeatmap(tamoxifen)
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2This step is actu-
ally optional: if the
main analysis function
dba.analyze is invoked
with no contrasts es-
tablished, DiffBind will
set up a default set of
contrasts automatically,
which in this case will
be the one we are inter-
ested in.

We can also plot a new correlation heatmap based on the affinity scores, seen in Figure 2.
While this shows a slightly different clustering, responsiveness to tamoxifen treatment does
not appear to form a basis for clustering when using all of the affinity scores. (Note that the
clustering can change based on what scoring metric is used; see Section 4.4 for more details).

3.3 Establishing a contrast
Before running the differential analysis, we need to tell DiffBind which cell lines fall in which
groups. This is done using the dba.contrast function, as follows:
> tamoxifen <- dba.contrast(tamoxifen, categories=DBA_CONDITION)

This uses the Condition metadata (Responsive vs. Resistant) to set up a contrast with 4
samples in the Resistant group and 7 samples in the Responsive group.2

3.4 Performing the differential analysis
The main differential analysis function is invoked as follows:
> tamoxifen <- dba.analyze(tamoxifen)

> tamoxifen

11 Samples, 2845 sites in matrix:

ID Tissue Factor Condition Treatment Replicate Caller Intervals FRiP

1 BT4741 BT474 ER Resistant Full-Media 1 counts 2845 0.16

2 BT4742 BT474 ER Resistant Full-Media 2 counts 2845 0.15

3 MCF71 MCF7 ER Responsive Full-Media 1 counts 2845 0.27

4 MCF72 MCF7 ER Responsive Full-Media 2 counts 2845 0.17

5 MCF73 MCF7 ER Responsive Full-Media 3 counts 2845 0.23

6 T47D1 T47D ER Responsive Full-Media 1 counts 2845 0.10

7 T47D2 T47D ER Responsive Full-Media 2 counts 2845 0.06

8 MCF7r1 MCF7 ER Resistant Full-Media 1 counts 2845 0.20

9 MCF7r2 MCF7 ER Resistant Full-Media 2 counts 2845 0.13

10 ZR751 ZR75 ER Responsive Full-Media 1 counts 2845 0.32

11 ZR752 ZR75 ER Responsive Full-Media 2 counts 2845 0.22

1 Contrast:

Group1 Members1 Group2 Members2 DB.DESeq2

1 Resistant 4 Responsive 7 629

This will run an DESeq2 analysis (see subsequent section discussing the technical details of
the analysis) using the default binding matrix. Displaying the resultant DBA object shows
that
of the 2845 sites are identified as being significantly differentially bound (DB) using the
default threshold of FDR <= 0.05
A correlation heatmap can be plotted, based on the result of the analysis, as shown in Figure 3.
> plot(tamoxifen, contrast=1)
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Figure 3: Correlation heatmap, using only significantly differentially bound sites
Generated by: plot(tamoxifen, contrast=1); can also be generated by: dba.plotHeatmap(tamoxifen, contrast=1)

Using only the differentially bound sites, we now see that the four tamoxifen resistant sam-
ples (representing two cell lines) cluster together, although the tamoxifen-responsive MCF7
replicates cluster closer to them than to the other tamoxifen responsive samples. Comparing
Figure 2, which uses all 2845 consensus binding sites, with Figure 3, which uses only the
differentially bound sites, demonstrates how the differential binding analysis isolates sites that
help distinguish between the Resistant and Responsive sample groups. Note this is plot is
not a "result" in the sense that the analysis is selecting for sites that differ between the two
conditions, and hence are expected to form clusters representing the conditions. Indeed, the
fact that these site do not enable a perfect clustering show the importance of checking the
results at this stage.

3.5 Retrieving the differentially bound sites
The final step is to retrieve the differentially bound sites as follows:
> tamoxifen.DB <- dba.report(tamoxifen)

These are returned as a GRanges object, appropriate for downstream processing:
> tamoxifen.DB

GRanges object with 629 ranges and 6 metadata columns:

seqnames ranges strand | Conc Conc_Resistant

<Rle> <IRanges> <Rle> | <numeric> <numeric>

2452 chr18 64490686-64491186 * | 6.36 1.39

1291 chr18 34597713-34598213 * | 5.33 0.22

976 chr18 26860997-26861497 * | 7.30 3.13

2338 chr18 60892900-60893400 * | 7.13 1.84

2077 chr18 55569087-55569587 * | 5.52 1.89
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... ... ... ... . ... ...

551 chr18 14465945-14466445 * | 6.02 4.38

2659 chr18 71909888-71910388 * | 5.58 3.73

2541 chr18 68007206-68007706 * | 3.61 2.41

1967 chr18 52609747-52610247 * | 3.87 2.39

2383 chr18 61927095-61927595 * | 1.72 -0.22

Conc_Responsive Fold p-value FDR

<numeric> <numeric> <numeric> <numeric>

2452 7.00 -5.61 3.57e-10 1.02e-06

1291 5.97 -5.75 1.10e-09 1.57e-06

976 7.92 -4.79 1.10e-08 1.05e-05

2338 7.77 -5.93 1.68e-08 1.17e-05

2077 6.13 -4.23 2.36e-08 1.17e-05

... ... ... ... ...

551 6.49 -2.11 0.0108 0.0490

2659 6.07 -2.34 0.0108 0.0491

2541 4.01 -1.60 0.0109 0.0495

1967 4.32 -1.94 0.0109 0.0495

2383 2.22 -2.44 0.0110 0.0498

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The value columns show the mean read concentration over all the samples (the default cal-
culation uses log2 normalized ChIP read counts with control read counts subtracted) and the
mean concentration over the first (Resistant) group and second (Responsive) group. The Fold
column shows the difference in mean concentrations between the two groups (Conc_Resistant
- Conc_Responsive), with a positive value indicating increased binding affinity in the Resis-
tant group and a negative value indicating increased binding affinity in the Responsive group.
The final two columns give confidence measures for identifying these sites as differentially
bound, with a raw p-value and a multiple testing corrected FDR in the final column.

4 Example: Plotting
Besides the correlation heatmaps automatically generated by the core functions, a number
of other plots are available using the affinity data. This sections covers Venn diagrams, MA
plots, PCA plots, Boxplots, and Heatmaps.

4.1 Venn diagrams
Venn diagrams are useful for examining overlaps between peaksets, particularly when de-
termining how best to derive consensus peaksets for further analysis. Section 6.2, which
discusses consensus peaksets, shows a number of Venn plots in context, and the help page
for dba.plotVenn has a number of additional examples.

4.2 PCA plots
While the correlation heatmaps already seen are good for showing clustering, plots based
on principal components analysis can be used to give a deeper insight into how samples are
associated. A PCA plot corresponding to Figure 2, which includes normalized read counts
for all the binding sites, can be obtained as follows:

10
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> data(tamoxifen_analysis)

> dba.plotPCA(tamoxifen,DBA_TISSUE,label=DBA_CONDITION)
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Figure 4: PCA plot using affinity data for all sites
Generated by: dba.plotPCA(tamoxifen,DBA_TISSUE,label=DBA_CONDITION)

The resulting plot (Figure 4) shows all the MCF7-derived samples (red) clustering on one side
of the first (horizontal) compoenent, with the Responsive and Resistance samples separable
from the Responsive samples in the second (vertical) component.
A PCA plot using only the differentially bound sites (corresponding to Figure 3), using an
FDR threshold of 0.05, can be drawn as follows:
> dba.plotPCA(tamoxifen, contrast=1,label=DBA_TISSUE)

This plot (Figure 5) shows how the differential analysis identifies sites that can be used to
separate the Resistant and Responsive sample groups along the first component.
The dba.plotPCA function is customizable. For example, if you want to see where the
replicates for each of the unique cell lines lies, type
dba.plotPCA(tamoxifen, attributes=c(DBA_TISSUE,DBA_CONDITION),label=DBA_REPLICATE.
If your installation of Rsupports 3D graphics using the rgl package, try dba.plotPCA(tamoxifen,
b3D=T). Seeing the first three principal components can be a useful exploratory exercise.

4.3 MA plots
MA plots are a useful way to visualize the effect of normalization on data, as well as seeing
which of the datapoints are being identified as differentially bound. An MA plot can be
obtained for the resistant-responsive contrast as follows:
> dba.plotMA(tamoxifen)
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Figure 5: PCA plot using affinity data for only differentially bound sites
Generated by: dba.plotPCA(tamoxifen,contrast=1,label=DBA_TISSUE)
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Figure 6: MA plot of Resistant-Responsive contrast
Sites identified as significantly differentially bound shown in red. Generated by: dba.plotMA(tamoxifen)

The plot is shown in Figure 6. Each point represents a binding site, with points in red
representing sites identified as differentially bound. The plot shows how the differentially
bound sites appear to have an absolute log fold difference of at least 2. It also suggests that
more ERa binding sites lose binding affinity in the tamoxifen resistant condition than gain
binding affinity, as evidenced by more red dots below the center line than are above it. This
same data can also be shown with the concentrations of each sample groups plotted against
each other plot using dba.plotMA(tamoxifen, bXY=TRUE).
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4.4 Volcano plots
Similar to MA plots, Volcano plots also highlight significantly differentially bound sites and
show their fold changes. Here, however, the confidence statistic (FDR or p-value) is shown
on a negative log scale.
For example, the same data as plotted in Figure 6 can be visualized as a volcano plot:
> dba.plotVolcano(tamoxifen)
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Figure 7: Volcano plot of Resistant-Responsive contrast
Sites identified as significantly differentially bound shown in red. Generated by: dba.plotVolcano(tamoxifen)

The plot is shown in Figure 7.

4.5 Boxplots
Boxplots provide a way to view how read distributions differ between classes of binding sites.
Consider the example, where
differentially bound sites are identified. The MA plot (Figure 6) shows that these are not
distributed evenly between those that increase binding affinity in the Responsive group vs.
those that increase binding affinity in the Resistant groups. This can be seen quantitatively
using the sites returned in the report:
> sum(tamoxifen.DB$Fold<0)

[1] 535

> sum(tamoxifen.DB$Fold>0)

[1] 94

But how are reads distributed amongst the different classes of differentially bound sites and
sample groups? These data can be more clearly seen using a boxplot:
> pvals <- dba.plotBox(tamoxifen)

13

http://bioconductor.org/packages/DiffBind


DiffBind: Differential binding analysis of ChIP-Seq peak data

Resistant Responsive + + − −

0
2

4
6

8
10

Binding affinity

+ indicates sites with increased affinity in Responsive
− indicates sites with increased affinity in Resistant

lo
g2

 n
or

m
al

iz
ed

 r
ea

ds
 in

 b
in

di
ng

 s
ite

s

Figure 8: Box plots of read distributions for significantly differentially bound (DB) sites
Tamoxifen resistant samples are shown in red, and responsive samples are shown in blue. Left two boxes show distribu-
tion of reads over all DB sites in the Resistant and Responsive groups; middle two boxes show distributions of reads in
DB sites that increase in affinity in the Responsive group; last two boxes show distributions of reads in DB sites that
increase in affinity in the Resistant group. Generated by: dba.plotBox(tamoxifen)

The default plot (Figure 8) shows in the first two boxes that amongst differentially bound sites
overall, the Responsive samples have a somewhat higher mean read concentration. The next
two boxes show the distribution of reads in differentially bound sites that exhibit increased
affinity in the Responsive samples, while the final two boxes show the distribution of reads in
differentially bound sites that exhibit increased affinity in the Resistant samples.
dba.plotBox returns a matrix of p-values (computed using a two-sided Wilcoxon ‘Mann-
Whitney’ test, paired where appropriate) indicating which of these distributions are signifi-
cantly different from another distribution.
> pvals

Resistant.DB Responsive.DB Resistant.DB+ Responsive.DB+

Resistant.DB 1.00e+00 2.89e-74 2.80e-05 1.89e-99

Responsive.DB 2.89e-74 1.00e+00 4.67e-151 1.02e-02

Resistant.DB+ 2.80e-05 4.67e-151 1.00e+00 9.56e-94

Responsive.DB+ 1.89e-99 1.02e-02 9.56e-94 1.00e+00

Resistant.DB- 2.18e-38 1.20e-17 8.14e-51 2.44e-14

Responsive.DB- 3.33e-12 1.84e-15 5.20e-25 3.67e-20

Resistant.DB- Responsive.DB-

Resistant.DB 2.18e-38 3.33e-12

Responsive.DB 1.20e-17 1.84e-15

Resistant.DB+ 8.14e-51 5.20e-25

Responsive.DB+ 2.44e-14 3.67e-20

Resistant.DB- 1.00e+00 2.65e-17

Responsive.DB- 2.65e-17 1.00e+00
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The significance of the overall difference in distribution of concentrations amongst the differ-
entially bound sites in the two groups is shown to be p-value=2.89e-74, while those between
the Resistant and Responsive groups in the individual cases (increased in Responsive or in-
creased in Resistant) have p-values computed as 9.56e-94 and 2.65e-17.

4.6 Heatmaps
DiffBind provides two types of heatmaps. This first, correlation heatmaps, we have already
seen. For example, the heatmap shown in Figure 2 can be generated as follows:
> corvals <- dba.plotHeatmap(tamoxifen)

The effect of different scoring methods (normalization) can be examined in these plots by set-
ting the score parameter to a different value. The default value, DBA_SCORE_TMM_MINUS_FULL,
uses the TMM normalization procedure from edgeR , with control reads subtracted first and
using the full library size (total reads in library). Another scoring method is to use RPKM fold
(RPKM of the ChIP reads divided by RPKM of the control reads; a correlation heatmap for all
the data using this scoring method can be obtained by typing dba.plotHeatmap(tamoxifen,

score=DBA_SCORE_RPKM_FOLD).
Another way to view the patterns of binding affinity directly in the differentially bound sites
is via a binding affinity heatmap. This can be plotted for the example case as follows:
> corvals <- dba.plotHeatmap(tamoxifen, contrast=1, correlations=FALSE)
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Figure 9: Binding affinity heatmap showing affinities for differentially bound sites
Samples cluster first by whether they are responsive to tamoxifen treatment, then by cell line. Clusters of binding sites
show distinct patterns of affinity levels. Generated by: dba.plotHeatmap(tamoxifen, contrast=1, correlations=FALSE)

Figure 9 shows the affinities and clustering of the differentially bound sites (rows), as well as
the sample clustering (columns). This plot can be tweaked to get more contrast, for exam-
ple by using row-scaling dba.plotHeatmap(tamoxifen, contrast=1, correlations=FALSE,

scale="row").
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5 Example: Differential binding analysis using a block-
ing factor
The previous example showed how to perform a differential binding analysis using a single
factor with two values; that is, finding the significantly differentially bound sites between two
sets of samples. This section extends the example by including a second factor, potentially
with multiple values, that represents a confounding condition. Examples of experiments
where it is appropriate to use a blocking factor include ones where there are potential batch
effects, with samples from the two conditions prepared together, or a matched design (e.g.
matched normal and tumor pairs, where the primary factor of interest is to discover sites
consistently differentially bound between normal and tumor samples). In the current example,
the confounding effect we want to control for is the presence of two sets of samples, one
tamoxifen responsive and one tamoxifen resistant, that are both derived from the same MCF7
cell line.
In the previous analysis, the two MCF7-derived cell lines tended to cluster together. While
the differential binding analysis was able to identify sites that could be used to separate the
resistant from the responsive samples, the confounding effect of the common ancestry could
still be seen even when considering only the significantly differentially bound sites (Figure 2).
Using the generalized linear modelling (GLM) functionality included in edgeR and DESeq2 ,
the confounding factor can be explicitly modeled. This is done by specifying a blocking factor
to dba.contrast. There are a number of ways to specify this factor. If it is encapsulated in a
class of metadata (eg. DBA_REPLICATE, or DBA_TREATMENT etc.), simply specifying
the metadata field is sufficient. In the current case, there is no specific metadata field
that captures the factor we want to block (although an unused metadata field, such as
DBA_TREATMENT, could be used to specify this factor). An alternate way of specifying
the confounded samples is to use a mask:
> data(tamoxifen_counts)

> tamoxifen <- dba.contrast(tamoxifen,categories=DBA_CONDITION,

+ block=tamoxifen$masks$MCF7)

Now when the analysis is run, it will be run using both the single-factor comparison as well
as fitting a linear model with the second, blocking factor, for comparison:
> tamoxifen <- dba.analyze(tamoxifen)

> tamoxifen

11 Samples, 2845 sites in matrix:

ID Tissue Factor Condition Treatment Replicate Caller Intervals FRiP

1 BT4741 BT474 ER Resistant Full-Media 1 counts 2845 0.16

2 BT4742 BT474 ER Resistant Full-Media 2 counts 2845 0.15

3 MCF71 MCF7 ER Responsive Full-Media 1 counts 2845 0.27

4 MCF72 MCF7 ER Responsive Full-Media 2 counts 2845 0.17

5 MCF73 MCF7 ER Responsive Full-Media 3 counts 2845 0.23

6 T47D1 T47D ER Responsive Full-Media 1 counts 2845 0.10

7 T47D2 T47D ER Responsive Full-Media 2 counts 2845 0.06

8 MCF7r1 MCF7 ER Resistant Full-Media 1 counts 2845 0.20

9 MCF7r2 MCF7 ER Resistant Full-Media 2 counts 2845 0.13

10 ZR751 ZR75 ER Responsive Full-Media 1 counts 2845 0.32

11 ZR752 ZR75 ER Responsive Full-Media 2 counts 2845 0.22
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1 Contrast:

Group1 Members1 Group2 Members2 Block1Val InBlock1 Block2Val InBlock2

1 Resistant 4 Responsive 7 true 5 false 6

DB.DESeq2 DB.DESeq2.block

1 629 738

This indicates that where the standard, single-factor DESeq2 analysis identifies
differentially bound sites, the analysis using the blocking factor finds
such sites. An MA plot shows how the analysis has changed:
> dba.plotMA(tamoxifen,method=DBA_DESEQ2_BLOCK)
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Figure 10: MA plot of Resistant-Responsive contrast, using MCF7 origin as a blocking factor
Sites identified as significantly differentially bound shown in red. Generated by: dba.plotMA(tamoxifen,

method=DBA_DESEQ2_BLOCK)

The resulting plot is shown in Figure 10. Comparing this to Figure 6, at least two differences
can be observed. The analysis has become more sensitive, with sites being identified as
significantly differentially bound with lower magnitude fold changes (as low as twofold, as
this plot is on a log2 scale). But it is not merely lowering a fold threshold: some sites
with higher fold changes are no longer found to be significant. These were identified as
significantly differentially bound in the earlier analysis because the confounding factor was
not being modeled.
It is also interesting to compare the performance of edgeR with that of DESeq2 on this
dataset:
> tamoxifen <- dba.analyze(tamoxifen,method=DBA_ALL_METHODS)

> dba.show(tamoxifen,bContrasts=T)[9:12]

DB.edgeR DB.edgeR.block DB.DESeq2 DB.DESeq2.block

1 331 599 629 738
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The main difference between the two methods is how the normalize the raw read counts.
We see that while edgeR identifies a lower number of sites than DESeq2 , when modelling
the confounding factor the greater sensitivity results in more sites being identified using
both packages. You can check this by looking at the identified sites using dba.report, and
performing MA, heatmap, and PCA plots.
We can also compare the sites identified using edgeR and DESeq2 . An easy way to do this
is to use a special feature of the dba.report function that constructs a "results-based" DBA
object:
> tam.block <- dba.report(tamoxifen,method=DBA_ALL_METHODS_BLOCK,bDB=TRUE,bAll=TRUE)

> tam.block

4 Samples, 981 sites in matrix:

ID Tissue Factor Condition Treatment Intervals

1 Resistant_vs_Responsive All DB edgeR 331

2 Resistant_vs_Responsive All DB DESeq2 629

3 Resistant_vs_Responsive All DB edgeR block 599

4 Resistant_vs_Responsive All DB DESeq2 block 738

> dba.plotVenn(tam.block,1:4,label1="edgeR",label2="DESeq2",

+ label3="edgeR Blocked", label4="DESeq2 Blocked")

Binding Site Overlaps

Resistant_vs_Responsive:DB:All

8

55 127

102

8

39

0

0

195

50

6

1426

121

230

edgeR

DESeq2 edgeR Blocked

DESeq2 Blocked

Figure 11: Venn diagram showing overlap of differentially bound peaks identified using edgeR, and DESeq2 to
do a simple and a multi-factor (blocking) analysis
Generated by plotting the result of: dba.plotVenn(tam.block,1:4, label1="edgeR",label2="DESeq2", label3="edgeR

Blocked", label4="DESeq2 Blocked")

The overlap is shown in Figure 11. The largest group of sites are identified by both edgeR
and DESeq2 using a multi-factor (blocked) analysis.
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6 Example: Occupancy analysis and overlaps
In this section, we look at the tamoxifen resistance ER-binding dataset in some more detail,
showing what a pure occupancy-based analysis would look like, and comparing it to the
results obtained using the affinity data. For this we will start by re-loading the peaksets:
> data(tamoxifen_peaks)

6.1 Overlap rates
One reason to do an occupancy-based analysis is to determine what candidate sites should
be used in a subsequent affinity-based analysis. In the example so far, we took all sites that
were identified in peaks in at least two of the eleven peaksets, reducing the number of sites
from 3795 overall to the 2845 sites used in the differential analysis. We could have used a
more stringent criterion, such as only taking sites identified in five or six of the peaksets,
or a less stringent one, such as including all 3795 sites. In making the decision of what
criteria to use many factors come into play, but it helps to get an idea of the rates at which
the peaksets overlap (for more details on how overlaps are determined, see Section 7.2 on
peak merging). A global overview can be obtained using the RATE mode of the dba.overlap

function as follows:
> olap.rate <- dba.overlap(tamoxifen,mode=DBA_OLAP_RATE)

> olap.rate

[1] 3795 2845 1773 1388 1074 817 653 484 384 202 129

The returned data in olap.rate is a vector containing the number of peaks that appear in
at least one, two, three, and so on up to all eleven peaksets.
These values can be plotted to show the overlap rate drop-off curve:
> plot(olap.rate,type='b',ylab='# peaks', xlab='Overlap at least this many peaksets')

2 4 6 8 10

0
10

00
20

00
30

00

Overlap at least this many peaksets

# 
pe

ak
s

Figure 12: Overlap rate plot
Shows how the number of overlapping peaks decreases as the overlap criteria becomes more stringent. X axis shows
the number of peaksets in which the site is identified, while the Y axis shows the number of overlapping sites. Gener-
ated by plotting the result of: dba.overlap(tamoxifen,mode=DBA_OLAP_RATE)
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3It is less clear that
limiting the potential
binding sites in this way
is appropriate when fo-
cusing on affinity data,
as the differential bind-
ing analysis method will
identify only sites that
are significantly differ-
entially bound, even if
operating on peaksets
that include incorrectly
identified sites.

The rate plot is shown in Figure 12. These curves typically exhibit a roughly geometric drop-
off, with the number of overlapping sites halving as the overlap criterion become stricter by
one site. When the drop-off is extremely steep, this is an indication that the peaksets do
not agree very well. For example, if there are replicates you expect to agree, there may be a
problem with the experiment. In the current example, peak agreement is high and the curve
exhibits a better than geometric drop-off.

6.2 Deriving consensus peaksets
When performing an overlap analysis, it is often the case that the overlap criteria are set
stringently in order to lower noise and drive down false positives.3 The presence of a peak
in multiple peaksets is an indication that it is a "real" binding site, in the sense of being
identifiable in a repeatable manner. The use of biological replicates (performing the ChIP
multiple times), as in the tamoxifen dataset, can be used to guide derivation of a consensus
peakset. Alternatively, an inexpensive but less powerful way to help accomplish this is to
use multiple peak callers for each ChIP dataset and look for agreement between peak callers
([3]).
Consider for example the standard (tamoxifen responsive) MCF7 cell line, represented by
three replicates in this dataset. How well do the replicates agree on their peak calls? The
overlap rate for just the positive MCF7 samples can be isolated using a sample mask. A set
of sample masks are automatically associated with a DBA object in the $masks field:
> names(tamoxifen$masks)

[1] "BT474" "MCF7" "T47D" "ZR75" "ER"

[6] "Resistant" "Responsive" "Full-Media" "bed" "Replicate.1"

[11] "Replicate.2" "Replicate.3" "All" "None"

Arbitrary masks can be generated using the dba.mask function, or simply by specifying a
vector of peakset numbers. In this case, a mask that isolates the MCF7 samples can be
generated by combining to pre-defined masks (MCF7 and Responsive) and passed into the
dba.overlap function:
> dba.overlap(tamoxifen,tamoxifen$masks$MCF7 & tamoxifen$masks$Responsive,

+ mode=DBA_OLAP_RATE)

[1] 1780 1215 885

There are 885 peaks (out of 1780) identified in all three replicates. A finer grained view of
the overlaps can be obtained with the dba.plotVenn function:
> dba.plotVenn(tamoxifen, tamoxifen$masks$MCF7 & tamoxifen$masks$Responsive)

The resultant plot is shown as Figure 13. This plot shows the 885 consensus peaks identified
as common to all replicates, but further breaks down how the replicates relate to each other.
The same can be done for each of the replicated cell line experiments, and rather than
applying a global cutoff (3 of 11), each cell line could be dealt with individually in deriving a
final peakset. A separate consensus peakset for each of the replicated sample types can be
added to the DBA object using dba.peakset:
> tamoxifen_consensus <- dba.peakset(tamoxifen, consensus=c(DBA_TISSUE,DBA_CONDITION),

+ minOverlap=0.66)
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Figure 13: Venn diagram showing how the ER peak calls for three replicates of responsive MCF7 cell line over-
lap
Generated by plotting the result of: dba.venn(tamoxifen,tamoxifen$masks$MCF7 & tamoxifen$masks$Responsive)

This adds a new consensus peakset for each set of samples that share the same Tissue
and Condition values. The exact effect could be obtained by calling tamoxifen_consensus

<- dba.peakset(tamoxifen, consensus=-DBA_REPLICATE) on the original set of peaks; this
tells DiffBind to generate a consensus peakset for every set of samples that have identical
metadata values except the Replicate number.
From this, a new DBA object can be generated consisting of only the five consensus peaksets
(the $Consensus mask filters peaksets previously formed using dba.peakset) :
> tamoxifen_consensus <- dba(tamoxifen_consensus, mask=tamoxifen_consensus$masks$Consensus,

+ minOverlap=1)

> tamoxifen_consensus

5 Samples, 2666 sites in matrix:

ID Tissue Factor Condition Treatment Replicate Caller

1 BT474:Resistant BT474 ER Resistant Full-Media 1-2 bed

2 MCF7:Responsive MCF7 ER Responsive Full-Media 1-2-3 bed

3 T47D:Responsive T47D ER Responsive Full-Media 1-2 bed

4 MCF7:Resistant MCF7 ER Resistant Full-Media 1-2 bed

5 ZR75:Responsive ZR75 ER Responsive Full-Media 1-2 bed

Intervals

1 896

2 1215

3 318

4 879

5 1933

and an overall consensus peakset, that includes peaks identified in at least two replicates of
at least one sample group, can be identified:
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> consensus_peaks <- dba.peakset(tamoxifen_consensus, bRetrieve=TRUE)

This consensus peakset could then be used as the basis for the binding matrix used in
dba.count:
tamoxifen <- dba.count(tamoxifen, peaks=consensus_peaks)

Finally, consider an analysis where we wished to treat all five MCF7 samples together to look
for binding sites specific to that cell line irrespective of tamoxifen resistant/responsive status.
We can create consensus peaksets for each cell type, and look at how the resultant peaks
overlap (shown in Figure 14):
> data(tamoxifen_peaks)

> tamoxifen <- dba.peakset(tamoxifen, consensus=DBA_TISSUE, minOverlap=0.66)

> dba.plotVenn(tamoxifen, tamoxifen$masks$Consensus)
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Figure 14: Venn diagram showing how the consensus peaks for each cell type overlap
Generated by plotting the result of: dba.venn(tamoxifen,tamoxifen$masks$Consensus)

6.3 A complete occupancy analysis: identifying sites unique to a
sample group
Occupancy-based analysis, in addition to offering many ways of deriving consensus peaksets,
can also be used to identify sites unique to a group of samples. This is analogous to, but not
the same as, finding differentially bound sites. In these subsections, the two approaches are
directly compared.
Returning to the original tamoxifen dataset:
> data(tamoxifen_peaks)

We can derive consensus peaksets for the Resistant and Responsive groups. First we examine
the overlap rates:
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> dba.overlap(tamoxifen,tamoxifen$masks$Resistant,mode=DBA_OLAP_RATE)

[1] 2029 1375 637 456

> dba.overlap(tamoxifen,tamoxifen$masks$Responsive,mode=DBA_OLAP_RATE)

[1] 3416 2503 1284 865 660 284 180

Requiring that consensus peaks overlap in at least one third of the samples in each group
results in 1375 sites for the Resistant group and 1284 sites for the Responsive group:
> tamoxifen <- dba.peakset(tamoxifen, consensus=DBA_CONDITION, minOverlap=0.33)

> dba.plotVenn(tamoxifen,tamoxifen$masks$Consensus)

Binding Site Overlaps

475 417864

Resistant Responsive

Figure 15: Venn diagram showing how the ER peak calls for two response groups overlap
Generated by plotting the result of: dba.plotVenn(tamoxifen, tamoxifen$masks$Consensus)

Figure 15 shows that 475 sites are unique to the Resistant group, and 417 sites are unique to
the Responsive group, with 864 sites being identified in both groups (meaning in at least half
the Resistant samples and at least three of the seven Responsive samples). If our primary
interest is in finding binding sites that are different between the two groups, it may seem
reasonable to consider the 864 common sites to be uninteresting, and focus on the 892 sites
that are unique to a specific group. These unique sites can be obtained using dba.overlap:
> tamoxifen.OL <- dba.overlap(tamoxifen, tamoxifen$masks$Consensus)

The sites unique to the Resistant group are accessible in tamoxifen.OL$onlyA, with the
Responsive-unique sites in tamoxifen.OL$onlyB:
> tamoxifen.OL$onlyA

GRanges object with 475 ranges and 1 metadata column:

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <numeric>
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4Alternatively, we could
re-run the analysis
using the newly derived
consensus peakset by
passing it into the
counting function:
> tamoxifen <-

dba.count(tamoxifen,

peaks=tamoxifen$masks$Consensus)

2 chr18 150764-151269 * | 0.0216970

3 chr18 188982-189652 * | 0.0829604

5 chr18 311530-312172 * | 0.0647360

7 chr18 356560-357362 * | 0.0264811

8 chr18 371110-372102 * | 0.0327930

... ... ... ... . ...

1731 chr18 76528540-76529618 * | 0.0367731

1744 chr18 77056886-77057516 * | 0.0242664

1745 chr18 77062037-77062828 * | 0.0233994

1747 chr18 77300430-77301170 * | 0.0386595

1750 chr18 77424530-77425198 * | 0.0280821

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

> tamoxifen.OL$onlyB

GRanges object with 417 ranges and 1 metadata column:

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <numeric>

1 chr18 111564-112005 * | 0.0465362

6 chr18 346464-347342 * | 0.0589574

24 chr18 812595-813462 * | 0.0526327

32 chr18 1075317-1076051 * | 0.0670931

37 chr18 1241658-1242455 * | 0.0414764

... ... ... ... . ...

1742 chr18 76805366-76806312 * | 0.0398786

1748 chr18 77318446-77319078 * | 0.0358981

1749 chr18 77389690-77390304 * | 0.0237104

1752 chr18 77541035-77541645 * | 0.0499611

1756 chr18 77987044-77988289 * | 0.3000995

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The scores associated with each site are derived from the peak caller confidence score, and
are a measure of confidence in the peak call (occupancy), not a measure of how strong or
distinct the peak is.

6.4 Comparison of occupancy and affinity based analyses
So how does this occupancy-based analysis compare to the previous affinity-based analysis?
First, different criteria were used to select the overall consensus peakset. We can compare
them to see how well they agree:
> tamoxifen <- dba.peakset(tamoxifen,tamoxifen$masks$Consensus,

+ minOverlap=1,sampID="OL Consensus")

> tamoxifen <- dba.peakset(tamoxifen,!tamoxifen$masks$Consensus,

+ minOverlap=3,sampID="Consensus_3")

> dba.plotVenn(tamoxifen,14:15)

Figure 16 shows that the two sets agree on about 85% of their sites, so the results should
be directly comparable between the differing parameters used to establish the consensus
peaksets. 4
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Binding Site Overlaps

134 1531620

OL Consensus Consensus_3

Figure 16: Venn diagram showing how the ER peak calls for two different ways of deriving consensus peaksets
Generated by plotting the result of: dba.plotVenn(tamoxifen,14:15)

Next re-load the affinity analysis:
> data(tamoxifen_analysis)

To compare the sites unique to each sample group identified from the occupancy analysis
with those sites identified as differentially bound based on affinity (read count) data, we use
a feature of dba.report that facilitates evaluating the occupancy status of sites. Here we
obtain a report of all the sites (th=1) with occupancy statistics (bCalled=T):
> tamoxifen.rep <- dba.report(tamoxifen,bCalled=TRUE,th=1)

The bCalled option adds two columns to the report (Called1 and Called2), one for each
group, giving the number of samples within the group in which the site was identified as a
peak in the original peaksets generated by the peak caller. We can use these to recreate the
overlap criteria used in the occupancy analysis:
> onlyResistant <- tamoxifen.rep$Called1>=2 & tamoxifen.rep$Called2<3

> sum(onlyResistant )

[1] 473

> onlyResponsive <- tamoxifen.rep$Called2>=3 & tamoxifen.rep$Called1<2

> sum(onlyResponsive)

[1] 417

> bothGroups <- tamoxifen.rep$Called1>= 2 & tamoxifen.rep$Called2>=3

> sum(bothGroups)

[1] 864
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Comparing these numbers verifies the similarity with those seen in Figure 15, showing again
how the basic analysis is not oversensitive to differences in how the consensus peaksets are
formed. This overlap analysis suggests that 890 of the sites are uniquely bound in either the
Responsive or Resistant groups, while 864 sites are common to both.
Completing a full differential analysis and focusing on only those sites identified as significantly
differentially bound (FDR <= 0.1), however, shows a different story than that obtainable
using only occupancy data:
> tamoxifen.DB <- dba.report(tamoxifen,bCalled=T)

> onlyResistant.DB <- tamoxifen.DB$Called1>=2 & tamoxifen.DB$Called2<3

> sum(onlyResistant.DB)

[1] 70

> onlyResponsive.DB <- tamoxifen.DB$Called2>=3 & tamoxifen.DB$Called1<2

> sum(onlyResponsive.DB)

[1] 205

> bothGroups.DB <- tamoxifen.DB$Called1>=2 & tamoxifen.DB$Called2>=3

> sum(bothGroups.DB)

[1] 66

There are a number of notable differences in the results. First, overall there are many fewer
sites identified as differentially bound (70+205+66 <- 657) than are unique to one condition
(473+417 = 890). Indeed, most of the sites identified in the occupancy analysis as unique
to a sample group are not found to be significantly differentially bound using the affinity
data. While partly this is a result of the stringency of the statistical tests, it shows how
the affinity analysis can discriminate between sites where peak callers are making occupancy
decisions that do not reflect significant differences in read densities at these sites. Note that
only about 31% of sites unique to one condition are identifiable as significantly differentially
bound (70+205 = 275 out of 890). Secondly, differentially bound sites are as likely to be
called in the consensus of both response groups as they are to be unique to one group, as
about 20% of the total sites identified as significantly differentially bound (341) are called as
peaks in both response groups (66).
A final advantage of a quantitative analysis is that the differentially bound peaks identified
using the affinity analysis are associated with significance statistics (p-value and FDR) that
can be used to rank them for further examination, while the occupancy analysis yields a
relatively unordered list of peaks, as the peak caller statistics refer only to the significance of
occupancy, and not of differential binding.

7 Technical notes
This section includes some technical notes explaining some of the technical details of Diff-
Bind processing.

7.1 Loading peaksets
There are a number of ways to get peaksets loaded into a DBA object. Peaksets can be
read in from files or loaded from interval sets already stored in an R object. Samples can be
specified either in a sample sheet (using dba) or loaded one at a time (using dba.peakset).
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When loading in peaksets from files, specifying what peak caller generated the file enables
peaks from supported peak callers to be read in. See the help page for dba.peakset for a list
of supported peak callers. Any string can be used to indicate the peak caller; if it is not one
of the supported callers, a default "raw" format is assumed, consisting of a text file with three
or four columns (indicating the chromosome, start position, and end position, with a score
for each interval found in the fourth column, if present). You can further control how peaks
are read using the PeakFormat, ScoreCol, and bLowerBetter fields if you want to override
the defaults for the specified peak caller identifier. For example, with the tamoxifen dataset
used in this tutorial, the peaks were called using the MACS peak caller, but the data are
supplied as text files in BED format, not the expected MACS "xls" format. To maintain the
peak caller in the metadata, we could specify the PeakCaller as "macs" but the PeakFormat

as "bed". If we wanted to use peak scores from a column other than the fifth, the scorecol

parameter could be set to indicate the appropriate column number. When handling scoring,
DiffBind by default assumes that a higher score indicates a "better" peak. If this is not the
case, for example if the score is a p-value or FDR, we could set bLowerScoreBetter to TRUE.
When using a sample sheet, values for fields missing in the sample sheet can be supplied
when calling dba. In addition to the minimal sample sheet used for the tutorial, an equivalent
sample sheet with all the metadata fields is included, called "tamoxifen_allfields.csv". See
the help page for dba for an example using this sample sheet.

7.2 Merging peaks
When forming the global binding matrix consensus peaksets, DiffBind first identifies all unique
peaks amongst the relevant peaksets. As part of this process, it merges overlapping peaks,
replacing them with a single peak representing the narrowest region that covers all peaks
that overlap by at least one base. There are at least two consequences of this that are worth
noting.
First, as more peaksets are included in analysis, the average peak width tends to become
longer as more overlapping peaks are detected and the start/end points are adjusted outward
to account for them. Secondly, peak counts may not appear to add up as you may expect
due to merging. For example, if one peakset contains two small peaks near to each other,
while a second peakset includes a single peak that overlaps both of these by at least one
base, these will all be replaced in the merged matrix with a single peak. A s more peaksets
are added, multiple peaks from multiple peaksets may be merged together to form a single,
wider peak. Use of the "summits" parameter is recommended to control for this widening
effect.

7.3 DESeq2 analysis
When dba.analyze is invoked using method=DBA_DESEQ2, a standardized differential analysis
is performed using the DESeq2package ([4]). This section details the precise steps in that
analysis.
For each contrast, a separate analysis is performed. First, a matrix of counts is constructed
for the contrast, with columns for all the samples in the first group, followed by columns for
all the samples in the second group. The raw read count is used for this matrix; if the bSub

Control parameter is set to TRUE (as it is by default), the raw number of reads in the control
sample (if available) will be subtracted. Next the library size is computed for each sample
for use in subsequent normalization. By default, this is the total number of reads in the
library (calculated from the source BAM/BED file). Alternatively, if the bFullLibrarySize
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5Note that edgeR can
be made the default
analysis method for a
DBA object by setting
DBA$config$AnalysisMethod=DBA_EDGER.

parameter is set to FALSE, the total number of reads in peaks (the sum of each column) is
used. The first step concludes with a call to DESeq2 ’s DESeqDataSetFromMatrix function,
which returns a DESeqDataSet object.
If bFullLibrarySize is set to TRUE (default), then sizeFactors is called with the number
of reads in the BAM/BED files for each ChIP sample, divided by the minimum of these;
otherwise, estimateSizeFactors is invoked.
estimateDispersions is then called with the DESeqDataSet object and fitType set to lo

cal. Next the model is fitted and tested using nbinomWaldTest. The final results (as a
DESeqDataSet) are accessible within the DBA object as
DBA$contrasts[[n]]$DESeq2$DEdata

and may be examined and manipulated directly for further customization. Note however
that if you wish to use this object directly with DESeq2 functions, then the bReduceObjects

parameter should be set to FALSE, otherwise the default value of TRUE will result in essential
object fields being stripped.
If a blocking factor has been added to the contrast, an additional DESeq2 analysis is carried
out by setting the design to include all the unique values for the blocking factor. This occurs
before the dispersion values are calculated. The resultant DESeqDataSet object is accessible
as
DBA$contrasts[[n]]$DESeq2$block$DEdata.

7.4 edgeR analysis
When dba.analyze is invoked using the default method=DBA_EDGER5, a standardized differ-
ential analysis is performed using the edgeR package ([5]). This section details the precise
steps in that analysis.
For each contrast, a separate analysis is performed. First, a matrix of counts is constructed
for the contrast, with columns for all the samples in the first group, followed by columns
for all the samples in the second group. The raw read count is used for this matrix; if the
bSubControl parameter is set to TRUE (as it is by default), the raw number of reads in the
control sample (if available) will be subtracted (with a minimum final read count of 1). Next
the library size is computed for each sample for use in subsequent normalization. By default,
this is the total number of reads in the library (calculated from the source BAM//BED file).
Alternatively, if the bFullLibrarySize parameter is set to FALSE,the total number of reads
in peaks (the sum of each column) is used. Note that "effective" library size (bFullLibrary
Size=FALSE) may be more appropriate for situations when the overall signal (binding rate)
is expected to be directly comparable between the samples. Next comes a call to edgeR ’s
DGEList function. The DGEList object that results is next passed to calcNormFactors with
method="TMM" and doWeighting=FALSE, returning an updated DGEList object. This is passed
to estimateCommonDisp with default parameters.
If the method is DBA_EDGER_CLASSIC, then if bTagwise is TRUE (most useful when there
are at least three members in each group of a contrast), the resulting DGEList object is
then passed to estimateTagwiseDisp, with the prior set to 50 divided by two less than the
total number of samples in the contrast, and trend="none". The final steps are to perform
testing to determine the significance measure of the differences between the sample groups
by calling exactTest ([6]) using the DGEList with the dispersion set based on the bTagwise
parameter.
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6Note that DESeq can
be made the default
analysis method for a
DBA object by setting
DBA$config$AnalysisMethod=DBA_DESEQ.

If the method is DBA_EDGER_GLM (the default), then a a design matrix is generated with two
coefficients (the Intercept and one of the groups). Next estimateGLMCommonDisp is called; if
bTagwise=TRUE, estimateGLMTagwiseDisp is called as well. The model is fitted by calling glm

Fit, and the specific contrast fitted by calling glmLRT, specifying that the second coefficient be
dropped. Finally, an exactTest ([7]) is performed, using either common or tagwise dispersion
depending on the value specified for bTagwise.
This final DGEList for contrast n is stored in the DBA object as
DBA$contrasts[[n]]$edgeR

and may be examined and manipulated directly for further customization. Note however
that if you wish to use this object directly with edgeR functions, then the bReduceObjects

parameter should be set to FALSE, otherwise the default value of TRUE will result in essential
object fields being stripped.
If a blocking factor has been added to the contrast, an additional edgeR analysis is carried out.
This follows the DBA_EDGER_GLM case detailed above, except a more complex design matrix is
generated that includes all the unique values for the blocking factor. These coefficients are
all included in the glmLRT call. The resultant object is accessible as
DBA$contrasts[[n]]$edgeR$block.

7.5 DESeq analysis
This section is included for backward compatibility.
When dba.analyze is invoked using method=DBA_DESEQ6, a standardized differential analysis
is performed using the DESeq package ([8]). This section details the steps in that analysis.
For each contrast, a separate analysis is performed. First, a matrix of counts is constructed
for the contrast, with columns for all the samples in the first group, followed by columns
for all the samples in the second group. The raw read count is used for this matrix; if
the bSubControl parameter is set to TRUE (as it is by default), the raw number of reads
in the control sample (if available) will be subtracted. Next the library size is computed
for each sample for use in subsequent normalization. By default, this is the total number
of reads in the library (calculated from the source BAM//BED file). Alternatively, if the
bFullLibrarySize parameter is set to FALSE,the total number of reads in peaks (the sum
of each column) is used. Note that "effective" library size (bFullLibrarySize=FALSE) may
be more appropriate for situations when the overall signal (binding rate) is expected to be
directly comparable between the samples. The first step concludes with a call to DESeq’s
newCountDataSet function, which returns a CountDataSet object. If bFullLibrarySize is
set to TRUE, then sizeFactors is called with the number of reads in the BAM/BED files
for each ChIP sample, divided by the minimum of these; otherwise, estimateSizeFactors is
invoked. Next, estimateDispersions is called with the CountDataSet object and fitType

set to local. If there are no replicates, (only one sample in each group), method is set to
blind. Otherwise, if bTagwise is TRUE, method is set to per-condition; if it is FALSE,
method is set to pooled (or pooled-CR for a blocking analysis).
If the method is DBA_DESEQ_CLASSIC, nbinomTest is called, and the result (reordered by
adjusted p-value) saved for reporting.
If the method is DBA_DESEQ_GLM (the default), two models are fitted using fitNbinomGLMs:
a full model is fitted with all the coefficients, and a second model is fitted with the second
coefficient dropped. These are tested against each other using nbinomGLMTest, with the
resulting p values adjusted using p.adjust (with method="BH").
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The final results are accessible within the DBA object as
DBA$contrasts[[n]]$DESeq1$DEdata

and may be examined and manipulated directly for further customization. Note however
that if you wish to use this object directly with DESeq functions, then the bReduceObjects

parameter should be set to FALSE, otherwise the default value of TRUE will result in essential
object fields being stripped.
If a blocking factor has been added to the contrast, an additional DESeq analysis is carried
out. This follows the DBA_DESEQ_GLM case detailed above, except a more complex design is
generated when newCountDataSet is called that includes all the unique values for the blocking
factor. These coefficients are all included in the fitNbinomGLMs calls. The resultant object
is accessible as
DBA$contrasts[[n]]$DESeq1$block$DEdata.

8 Vignette Data
Due to space limitations, the aligned reads associated with the cell line data used in this
vignette are not included as part of the DiffBind package.
Data for the vignette are available for download at http://DiffBind.starkhome.com.
The full data for all chromosomes are also available in the Short Read Archive (GEO accession
number GSE32222). Email for detailed instructions on how to retrieve them in the appropriate
form.

9 Using DiffBind and ChIPQC together
DiffBind and ChIPQC are both packages that help manage and analyze ChIP-seq experi-
ments, and are designed to be used together.
If you already have a project in DiffBind , then ChIPQC can accept a DBA object in place of
the sample sheet when creating a ChIPQCexperiment object.
Once a ChIPQCexperiment object has been constructed, it can be used in place of a DBA
object in most calls to DiffBind . All plotting, counting, and analysis functions are available
from DiffBind .
It is also possible to extract a DBA object from a ChIPQCexperiment object using the QCdba

method. The resulting DBA object can be used in DiffBind without restriction, although
neither it nor DBA objects based on it can be re-attached to the original ChIPQCexperiment
object (although they can be used in lieu of a sample sheet when creating a new one.)
In a typical workflow, the first step would be to run a ChIPQC analysis before peak calling to
assess library quality and establish what filtering should be done at the read level (mapping
quality, duplicates, and blacklists). Next peaks would be called externally, and read into a
new ChIPQCexperiment object to assess peak-based metrics, such as FRiP, peak profiles,
and clustering.
At this point, DiffBind could be used to perform occupancy analysis, derive consensus peak
sets, re-count reads to form a binding matrix, and set up contrasts to carry out full differential
binding analyses using the edgeR and DESeq2 packages, along with plotting and reporting
functions.
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11 Session Info

> toLatex(sessionInfo())

• R version 4.0.2 (2020-06-22), x86_64-apple-darwin17.0
• Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
• Running under: macOS Mojave 10.14.6

• Matrix products: default
• BLAS:

/Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib

• LAPACK:
/Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,
utils

• Other packages: Biobase 2.48.0, BiocGenerics 0.34.0, DelayedArray 0.14.1,
DiffBind 2.16.2, GenomeInfoDb 1.24.2, GenomicRanges 1.40.0, IRanges 2.22.2,
S4Vectors 0.26.1, SummarizedExperiment 1.18.2, matrixStats 0.56.0

• Loaded via a namespace (and not attached): AnnotationDbi 1.50.3,
AnnotationForge 1.30.1, BSgenome 1.56.0, BiocFileCache 1.12.1,
BiocManager 1.30.10, BiocParallel 1.22.0, BiocStyle 2.16.0, Biostrings 2.56.0,
Category 2.54.0, DBI 1.1.0, DESeq2 1.28.1, DOT 0.1, GO.db 3.11.4,
GOstats 2.54.0, GSEABase 1.50.1, GenomeInfoDbData 1.2.3,
GenomicAlignments 1.24.0, GenomicFeatures 1.40.1, KernSmooth 2.23-17,
Matrix 1.2-18, R6 2.4.1, RBGL 1.64.0, RColorBrewer 1.1-2, RCurl 1.98-1.2,
RSQLite 2.2.0, Rcpp 1.0.5, Rgraphviz 2.32.0, Rsamtools 2.4.0, ShortRead 1.46.0,
V8 3.2.0, VariantAnnotation 1.34.0, XML 3.99-0.5, XVector 0.28.0, amap 0.8-18,
annotate 1.66.0, askpass 1.1, assertthat 0.2.1, backports 1.1.9, base64url 1.4,
batchtools 0.9.13, biomaRt 2.44.1, bit 4.0.4, bit64 4.0.5, bitops 1.0-6, blob 1.2.1,
brew 1.0-6, caTools 1.18.0, checkmate 2.0.0, colorspace 1.4-1, compiler 4.0.2,
crayon 1.3.4, curl 4.3, data.table 1.13.0, dbplyr 1.4.4, debugme 1.1.0, digest 0.6.25,
dplyr 1.0.2, edgeR 3.30.3, ellipsis 0.3.1, evaluate 0.14, farver 2.0.3, gdata 2.18.0,
genefilter 1.70.0, geneplotter 1.66.0, generics 0.0.2, ggplot2 3.3.2, ggrepel 0.8.2,
glue 1.4.2, gplots 3.0.4, graph 1.66.0, grid 4.0.2, gtable 0.3.0, gtools 3.8.2,
hms 0.5.3, htmltools 0.5.0, httr 1.4.2, hwriter 1.3.2, jpeg 0.1-8.1, jsonlite 1.7.1,
knitr 1.29, labeling 0.3, lattice 0.20-41, latticeExtra 0.6-29, lifecycle 0.2.0,
limma 3.44.3, locfit 1.5-9.4, magrittr 1.5, memoise 1.1.0, munsell 0.5.0,
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openssl 1.4.2, pheatmap 1.0.12, pillar 1.4.6, pkgconfig 2.0.3, png 0.1-7,
prettyunits 1.1.1, progress 1.2.2, purrr 0.3.4, rappdirs 0.3.1, rjson 0.2.20,
rlang 0.4.7, rmarkdown 2.3, rsvg 2.1, rtracklayer 1.48.0, scales 1.1.1, splines 4.0.2,
stringi 1.5.3, stringr 1.4.0, survival 3.2-3, systemPipeR 1.22.0, tibble 3.0.3,
tidyselect 1.1.0, tools 4.0.2, vctrs 0.3.4, withr 2.2.0, xfun 0.17, xtable 1.8-4,
yaml 2.2.1, zlibbioc 1.34.0
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