# To install scGPS from github (Depending on the configuration of the local
# computer or HPC, possible custom C++ compilation may be required - see
# installation trouble-shootings below)
devtools::install_github("IMB-Computational-Genomics-Lab/scGPS")
# for C++ compilation trouble-shooting, manual download and installation can be
# done from github
git clone https://github.com/IMB-Computational-Genomics-Lab/scGPS
# then check in scGPS/src if any of the precompiled (e.g. those with *.so and
# *.o) files exist and delete them before recompiling
# then with the scGPS as the R working directory, manually install and load
# using devtools functionality
# Install the package
devtools::install()
#load the package to the workspace
library(scGPS)
The purpose of this workflow is to solve the following task:
# load mixed population 1 (loaded from day_2_cardio_cell_sample dataset, named it as day2)
library(scGPS)
day2 <- day_2_cardio_cell_sample
mixedpop1 <- new_scGPS_object(ExpressionMatrix = day2$dat2_counts,
GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters)
# load mixed population 2 (loaded from day_5_cardio_cell_sample dataset, named it as day5)
day5 <- day_5_cardio_cell_sample
mixedpop2 <- new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters)
# select a subpopulation
c_selectID <- 1
# load gene list (this can be any lists of user selected genes)
genes <- training_gene_sample
genes <- genes$Merged_unique
# load cluster information
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
#run training (running nboots = 3 here, but recommend to use nboots = 50-100)
LSOLDA_dat <- bootstrap_prediction(nboots = 3, mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes = genes, c_selectID = c_selectID,
listData = list(), cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2, trainset_ratio = 0.7)
names(LSOLDA_dat)
#> [1] "Accuracy" "ElasticNetGenes" "Deviance"
#> [4] "ElasticNetFit" "LDAFit" "predictor_S1"
#> [7] "ElasticNetPredict" "LDAPredict"
# summary results LDA
sum_pred_lda <- summary_prediction_lda(LSOLDA_dat = LSOLDA_dat, nPredSubpop = 4)
# summary results Lasso to show the percent of cells
# classified as cells belonging
sum_pred_lasso <- summary_prediction_lasso(LSOLDA_dat = LSOLDA_dat,
nPredSubpop = 4)
# plot summary results
plot_sum <-function(sum_dat){
sum_dat_tf <- t(sum_dat)
sum_dat_tf <- na.omit(sum_dat_tf)
sum_dat_tf <- apply(sum_dat[, -ncol(sum_dat)],1,
function(x){as.numeric(as.vector(x))})
sum_dat$names <- gsub("ElasticNet for subpop","sp", sum_dat$names )
sum_dat$names <- gsub("in target mixedpop","in p", sum_dat$names)
sum_dat$names <- gsub("LDA for subpop","sp", sum_dat$names )
sum_dat$names <- gsub("in target mixedpop","in p", sum_dat$names)
colnames(sum_dat_tf) <- sum_dat$names
boxplot(sum_dat_tf, las=2)
}
plot_sum(sum_pred_lasso)
# summary accuracy to check the model accuracy in the leave-out test set
summary_accuracy(object = LSOLDA_dat)
#> [1] 64.18605 59.81308 62.32558
# summary maximum deviance explained by the model
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "0.07144" "0.1023" "0.06345"
#>
#> $DeviMax
#> dat_DE$Dfd Deviance DEgenes
#> 1 0 0.1023 genes_cluster1
#> 2 1 0.1023 genes_cluster1
#> 3 2 0.1023 genes_cluster1
#> 4 3 0.1023 genes_cluster1
#> 5 4 0.1023 genes_cluster1
#> 6 remaining DEgenes remaining DEgenes remaining DEgenes
#>
#> $LassoGenesMax
#> NULL
The purpose of this workflow is to solve the following task:
(skip this step if clusters are known)
# find clustering information in an expresion data using CORE
day5 <- day_5_cardio_cell_sample
cellnames <- colnames(day5$dat5_counts)
cluster <-day5$dat5_clusters
cellnames <-data.frame("Cluster"=cluster, "cellBarcodes" = cellnames)
mixedpop2 <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
GeneMetadata = day5$dat5geneInfo, CellMetadata = cellnames)
CORE_cluster <- CORE_clustering(mixedpop2, remove_outlier = c(0), PCA=FALSE)
# to update the clustering information, users can ...
key_height <- CORE_cluster$optimalClust$KeyStats$Height
optimal_res <- CORE_cluster$optimalClust$OptimalRes
optimal_index = which(key_height == optimal_res)
clustering_after_outlier_removal <- unname(unlist(
CORE_cluster$Cluster[[optimal_index]]))
corresponding_cells_after_outlier_removal <- CORE_cluster$cellsForClustering
original_cells_before_removal <- colData(mixedpop2)[,2]
corresponding_index <- match(corresponding_cells_after_outlier_removal,
original_cells_before_removal )
# check the matching
identical(as.character(original_cells_before_removal[corresponding_index]),
corresponding_cells_after_outlier_removal)
#> [1] TRUE
# create new object with the new clustering after removing outliers
mixedpop2_post_clustering <- mixedpop2[,corresponding_index]
colData(mixedpop2_post_clustering)[,1] <- clustering_after_outlier_removal
(skip this step if clusters are known)
(SCORE aims to get stable subpopulation results by introducing bagging aggregation and bootstrapping to the CORE algorithm)
# find clustering information in an expresion data using SCORE
day5 <- day_5_cardio_cell_sample
cellnames <- colnames(day5$dat5_counts)
cluster <-day5$dat5_clusters
cellnames <-data.frame("Cluster"=cluster, "cellBarcodes" = cellnames)
mixedpop2 <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
GeneMetadata = day5$dat5geneInfo, CellMetadata = cellnames )
SCORE_test <- CORE_bagging(mixedpop2, remove_outlier = c(0), PCA=FALSE,
bagging_run = 20, subsample_proportion = .8)
dev.off()
#> null device
#> 1
##3.2.1 plot CORE clustering
p1 <- plot_CORE(CORE_cluster$tree, CORE_cluster$Cluster,
color_branch = c("#208eb7", "#6ce9d3", "#1c5e39", "#8fca40", "#154975",
"#b1c8eb"))
p1
#> $mar
#> [1] 1 5 0 1
#extract optimal index identified by CORE
key_height <- CORE_cluster$optimalClust$KeyStats$Height
optimal_res <- CORE_cluster$optimalClust$OptimalRes
optimal_index = which(key_height == optimal_res)
#plot one optimal clustering bar
plot_optimal_CORE(original_tree= CORE_cluster$tree,
optimal_cluster = unlist(CORE_cluster$Cluster[optimal_index]),
shift = -2000)
#> Ordering and assigning labels...
#> 2
#> 162335NA
#> 3
#> 162335423
#> Plotting the colored dendrogram now....
#> Plotting the bar underneath now....
##3.2.2 plot SCORE clustering
#plot all clustering bars
plot_CORE(SCORE_test$tree, list_clusters = SCORE_test$Cluster)
#plot one stable optimal clustering bar
plot_optimal_CORE(original_tree= SCORE_test$tree,
optimal_cluster = unlist(SCORE_test$Cluster[SCORE_test$optimal_index]),
shift = -100)
#> Ordering and assigning labels...
#> 2
#> 24112NANANANANANA
#> 3
#> 24112224NANANANANA
#> 4
#> 24112224299NANANANA
#> 5
#> 24112224299335NANANA
#> 6
#> 24112224299335367NANA
#> 7
#> 24112224299335367414NA
#> 8
#> 24112224299335367414470
#> Plotting the colored dendrogram now....
#> Plotting the bar underneath now....
#load gene list (this can be any lists of user-selected genes)
genes <-training_gene_sample
genes <-genes$Merged_unique
#the gene list can also be objectively identified by differential expression
#analysis cluster information is requied for find_markers. Here, we use
#CORE results.
#colData(mixedpop2)[,1] <- unlist(SCORE_test$Cluster[SCORE_test$optimal_index])
suppressMessages(library(locfit))
suppressMessages(library(DESeq))
DEgenes <- find_markers(expression_matrix=assay(mixedpop2),
cluster = colData(mixedpop2)[,1],
selected_cluster=unique(colData(mixedpop2)[,1]))
#the output contains dataframes for each cluster.
#the data frame contains all genes, sorted by p-values
names(DEgenes)
#> [1] NA NA NA
#> [4] NA "DE_Subpop1vsRemaining" "DE_Subpop2vsRemaining"
#> [7] "DE_Subpop3vsRemaining" "DE_Subpop4vsRemaining"
#you can annotate the identified clusters
DEgeneList_1vsOthers <- DEgenes$DE_Subpop1vsRemaining$id
#users need to check the format of the gene input to make sure they are
#consistent to the gene names in the expression matrix
#the following command saves the file "PathwayEnrichment.xlsx" to the
#working dir
#use 500 top DE genes
suppressMessages(library(DOSE))
suppressMessages(library(ReactomePA))
suppressMessages(library(clusterProfiler))
genes500 <- as.factor(DEgeneList_1vsOthers[seq_len(500)])
enrichment_test <- annotate_clusters(genes, pvalueCutoff=0.05, gene_symbol=TRUE)
#the enrichment outputs can be displayed by running
clusterProfiler::dotplot(enrichment_test, showCategory=10, font.size = 6)
The purpose of this workflow is to solve the following task:
#select a subpopulation, and input gene list
c_selectID <- 1
#note make sure the format for genes input here is the same to the format
#for genes in the mixedpop1 and mixedpop2
genes = DEgenes$DE_Subpop1vsRemaining$id[1:500]
#run the test bootstrap with nboots = 2 runs
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
LSOLDA_dat <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes = genes, c_selectID = c_selectID,
listData = list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
#get the number of rows for the summary matrix
row_cluster <-length(unique(colData(mixedpop2)[,1]))
#summary results LDA to to show the percent of cells classified as cells
#belonging by LDA classifier
summary_prediction_lda(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster )
#> V1 V2 names
#> 1 30.4812834224599 77.0053475935829 LDA for subpop 1 in target mixedpop2
#> 2 75 30.7142857142857 LDA for subpop 2 in target mixedpop2
#> 3 13.5338345864662 55.6390977443609 LDA for subpop 3 in target mixedpop2
#> 4 35 52.5 LDA for subpop 4 in target mixedpop2
#summary results Lasso to show the percent of cells classified as cells
#belonging by Lasso classifier
summary_prediction_lasso(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster)
#> V1 V2
#> 1 64.1711229946524 26.7379679144385
#> 2 75.7142857142857 98.5714285714286
#> 3 37.593984962406 75.187969924812
#> 4 52.5 85
#> names
#> 1 ElasticNet for subpop1 in target mixedpop2
#> 2 ElasticNet for subpop2 in target mixedpop2
#> 3 ElasticNet for subpop3 in target mixedpop2
#> 4 ElasticNet for subpop4 in target mixedpop2
# summary maximum deviance explained by the model during the model training
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "0.7693" "0.318"
#>
#> $DeviMax
#> dat_DE$Dfd Deviance DEgenes
#> 1 0 0.7693 genes_cluster1
#> 2 1 0.7693 genes_cluster1
#> 3 2 0.7693 genes_cluster1
#> 4 3 0.7693 genes_cluster1
#> 5 5 0.7693 genes_cluster1
#> 6 6 0.7693 genes_cluster1
#> 7 8 0.7693 genes_cluster1
#> 8 9 0.7693 genes_cluster1
#> 9 11 0.7693 genes_cluster1
#> 10 14 0.7693 genes_cluster1
#> 11 15 0.7693 genes_cluster1
#> 12 18 0.7693 genes_cluster1
#> 13 20 0.7693 genes_cluster1
#> 14 23 0.7693 genes_cluster1
#> 15 26 0.7693 genes_cluster1
#> 16 28 0.7693 genes_cluster1
#> 17 29 0.7693 genes_cluster1
#> 18 31 0.7693 genes_cluster1
#> 19 33 0.7693 genes_cluster1
#> 20 37 0.7693 genes_cluster1
#> 21 40 0.7693 genes_cluster1
#> 22 42 0.7693 genes_cluster1
#> 23 44 0.7693 genes_cluster1
#> 24 45 0.7693 genes_cluster1
#> 25 48 0.7693 genes_cluster1
#> 26 50 0.7693 genes_cluster1
#> 27 remaining DEgenes remaining DEgenes remaining DEgenes
#>
#> $LassoGenesMax
#> NULL
# summary accuracy to check the model accuracy in the leave-out test set
summary_accuracy(object = LSOLDA_dat)
#> [1] 75.00000 67.41071
Here we look at one example use case to find relationship between clusters within one sample or between two sample
#run prediction for 3 clusters
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
#cluster_mixedpop2 <- as.numeric(as.vector(colData(mixedpop2)[,1]))
c_selectID <- 1
#top 200 gene markers distinguishing cluster 1
genes = DEgenes$DE_Subpop1vsRemaining$id[1:200]
LSOLDA_dat1 <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop2,
mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 2
genes = DEgenes$DE_Subpop2vsRemaining$id[1:200]
LSOLDA_dat2 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 3
genes = DEgenes$DE_Subpop3vsRemaining$id[1:200]
LSOLDA_dat3 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 4
genes = DEgenes$DE_Subpop4vsRemaining$id[1:200]
LSOLDA_dat4 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
#prepare table input for sankey plot
LASSO_C1S2 <- reformat_LASSO(c_selectID=1, mp_selectID = 2,
LSOLDA_dat=LSOLDA_dat1,
nPredSubpop = length(unique(colData(mixedpop2)[,1])),
Nodes_group ="#7570b3")
LASSO_C2S2 <- reformat_LASSO(c_selectID=2, mp_selectID =2,
LSOLDA_dat=LSOLDA_dat2,
nPredSubpop = length(unique(colData(mixedpop2)[,1])),
Nodes_group ="#1b9e77")
LASSO_C3S2 <- reformat_LASSO(c_selectID=3, mp_selectID =2,
LSOLDA_dat=LSOLDA_dat3,
nPredSubpop = length(unique(colData(mixedpop2)[,1])),
Nodes_group ="#e7298a")
LASSO_C4S2 <- reformat_LASSO(c_selectID=4, mp_selectID =2,
LSOLDA_dat=LSOLDA_dat4,
nPredSubpop = length(unique(colData(mixedpop2)[,1])),
Nodes_group ="#00FFFF")
combined <- rbind(LASSO_C1S2,LASSO_C2S2,LASSO_C3S2, LASSO_C4S2 )
combined <- combined[is.na(combined$Value) != TRUE,]
nboots = 2
#links: source, target, value
#source: node, nodegroup
combined_D3obj <-list(Nodes=combined[,(nboots+3):(nboots+4)],
Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])
library(networkD3)
Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_all <-unique(c(Node_source, Node_target))
#assign IDs for Source (start from 0)
Source <-combined_D3obj$Links$Source
Target <- combined_D3obj$Links$Target
for(i in 1:length(Node_all)){
Source[Source==Node_all[i]] <-i-1
Target[Target==Node_all[i]] <-i-1
}
#
combined_D3obj$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup
#prepare node info
node_df <-data.frame(Node=Node_all)
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))
suppressMessages(library(dplyr))
Color <- combined %>% count(Node, color=NodeGroup) %>% select(2)
node_df$color <- Color$color
suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor", NodeID="Node",
Source="Source", Target="Target", fontSize = 22 )
p1
Here we look at one example use case to find relationship between clusters within one sample or between two sample
#run prediction for 3 clusters
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
row_cluster <-length(unique(colData(mixedpop2)[,1]))
c_selectID <- 1
#top 200 gene markers distinguishing cluster 1
genes = DEgenes$DE_Subpop1vsRemaining$id[1:200]
LSOLDA_dat1 <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 2
genes = DEgenes$DE_Subpop2vsRemaining$id[1:200]
LSOLDA_dat2 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 3
genes = DEgenes$DE_Subpop3vsRemaining$id[1:200]
LSOLDA_dat3 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
#prepare table input for sankey plot
LASSO_C1S1 <- reformat_LASSO(c_selectID=1, mp_selectID = 1,
LSOLDA_dat=LSOLDA_dat1, nPredSubpop = row_cluster, Nodes_group = "#7570b3")
LASSO_C2S1 <- reformat_LASSO(c_selectID=2, mp_selectID = 1,
LSOLDA_dat=LSOLDA_dat2, nPredSubpop = row_cluster, Nodes_group = "#1b9e77")
LASSO_C3S1 <- reformat_LASSO(c_selectID=3, mp_selectID = 1,
LSOLDA_dat=LSOLDA_dat3, nPredSubpop = row_cluster, Nodes_group = "#e7298a")
combined <- rbind(LASSO_C1S1,LASSO_C2S1,LASSO_C3S1)
nboots = 2
#links: source, target, value
#source: node, nodegroup
combined_D3obj <-list(Nodes=combined[,(nboots+3):(nboots+4)],
Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])
combined <- combined[is.na(combined$Value) != TRUE,]
library(networkD3)
Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_all <-unique(c(Node_source, Node_target))
#assign IDs for Source (start from 0)
Source <-combined_D3obj$Links$Source
Target <- combined_D3obj$Links$Target
for(i in 1:length(Node_all)){
Source[Source==Node_all[i]] <-i-1
Target[Target==Node_all[i]] <-i-1
}
combined_D3obj$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup
#prepare node info
node_df <-data.frame(Node=Node_all)
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))
suppressMessages(library(dplyr))
n <- length(unique(node_df$Node))
getPalette = colorRampPalette(RColorBrewer::brewer.pal(9, "Set1"))
Color = getPalette(n)
node_df$color <- Color
suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor",
NodeID="Node", Source="Source", Target="Target", fontSize = 22)
p1
devtools::session_info()
#> ─ Session info ──────────────────────────────────────────────────────────
#> setting value
#> version R version 3.6.1 (2019-07-05)
#> os Ubuntu 18.04.3 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C
#> ctype en_US.UTF-8
#> tz America/New_York
#> date 2019-10-29
#>
#> ─ Packages ──────────────────────────────────────────────────────────────
#> package * version date lib source
#> annotate 1.64.0 2019-10-29 [2] Bioconductor
#> AnnotationDbi * 1.48.0 2019-10-29 [2] Bioconductor
#> assertthat 0.2.1 2019-03-21 [2] CRAN (R 3.6.1)
#> backports 1.1.5 2019-10-02 [2] CRAN (R 3.6.1)
#> Biobase * 2.46.0 2019-10-29 [2] Bioconductor
#> BiocGenerics * 0.32.0 2019-10-29 [2] Bioconductor
#> BiocManager 1.30.9 2019-10-23 [2] CRAN (R 3.6.1)
#> BiocParallel * 1.20.0 2019-10-29 [2] Bioconductor
#> bit 1.1-14 2018-05-29 [2] CRAN (R 3.6.1)
#> bit64 0.9-7 2017-05-08 [2] CRAN (R 3.6.1)
#> bitops 1.0-6 2013-08-17 [2] CRAN (R 3.6.1)
#> blob 1.2.0 2019-07-09 [2] CRAN (R 3.6.1)
#> callr 3.3.2 2019-09-22 [2] CRAN (R 3.6.1)
#> caret * 6.0-84 2019-04-27 [2] CRAN (R 3.6.1)
#> checkmate 1.9.4 2019-07-04 [2] CRAN (R 3.6.1)
#> class 7.3-15 2019-01-01 [2] CRAN (R 3.6.1)
#> cli 1.1.0 2019-03-19 [2] CRAN (R 3.6.1)
#> clusterProfiler * 3.14.0 2019-10-29 [2] Bioconductor
#> codetools 0.2-16 2018-12-24 [2] CRAN (R 3.6.1)
#> colorspace 1.4-1 2019-03-18 [2] CRAN (R 3.6.1)
#> cowplot 1.0.0 2019-07-11 [2] CRAN (R 3.6.1)
#> crayon 1.3.4 2017-09-16 [2] CRAN (R 3.6.1)
#> data.table 1.12.6 2019-10-18 [2] CRAN (R 3.6.1)
#> DBI 1.0.0 2018-05-02 [2] CRAN (R 3.6.1)
#> DelayedArray * 0.12.0 2019-10-29 [2] Bioconductor
#> dendextend 1.12.0 2019-05-11 [2] CRAN (R 3.6.1)
#> desc 1.2.0 2018-05-01 [2] CRAN (R 3.6.1)
#> DESeq * 1.38.0 2019-10-29 [2] Bioconductor
#> devtools 2.2.1 2019-09-24 [2] CRAN (R 3.6.1)
#> digest 0.6.22 2019-10-21 [2] CRAN (R 3.6.1)
#> DO.db 2.9 2019-07-05 [2] Bioconductor
#> DOSE * 3.12.0 2019-10-29 [2] Bioconductor
#> dplyr * 0.8.3 2019-07-04 [2] CRAN (R 3.6.1)
#> dynamicTreeCut * 1.63-1 2016-03-11 [2] CRAN (R 3.6.1)
#> e1071 1.7-2 2019-06-05 [2] CRAN (R 3.6.1)
#> ellipsis 0.3.0 2019-09-20 [2] CRAN (R 3.6.1)
#> enrichplot 1.6.0 2019-10-29 [2] Bioconductor
#> europepmc 0.3 2018-04-20 [2] CRAN (R 3.6.1)
#> evaluate 0.14 2019-05-28 [2] CRAN (R 3.6.1)
#> farver 1.1.0 2018-11-20 [2] CRAN (R 3.6.1)
#> fastcluster 1.1.25 2018-06-07 [2] CRAN (R 3.6.1)
#> fastmatch 1.1-0 2017-01-28 [2] CRAN (R 3.6.1)
#> fgsea 1.12.0 2019-10-29 [2] Bioconductor
#> foreach 1.4.7 2019-07-27 [2] CRAN (R 3.6.1)
#> fs 1.3.1 2019-05-06 [2] CRAN (R 3.6.1)
#> genefilter 1.68.0 2019-10-29 [2] Bioconductor
#> geneplotter 1.64.0 2019-10-29 [2] Bioconductor
#> generics 0.0.2 2018-11-29 [2] CRAN (R 3.6.1)
#> GenomeInfoDb * 1.22.0 2019-10-29 [2] Bioconductor
#> GenomeInfoDbData 1.2.2 2019-10-23 [2] Bioconductor
#> GenomicRanges * 1.38.0 2019-10-29 [2] Bioconductor
#> ggforce 0.3.1 2019-08-20 [2] CRAN (R 3.6.1)
#> ggplot2 * 3.2.1 2019-08-10 [2] CRAN (R 3.6.1)
#> ggplotify 0.0.4 2019-08-06 [2] CRAN (R 3.6.1)
#> ggraph 2.0.0 2019-09-02 [2] CRAN (R 3.6.1)
#> ggrepel 0.8.1 2019-05-07 [2] CRAN (R 3.6.1)
#> ggridges 0.5.1 2018-09-27 [2] CRAN (R 3.6.1)
#> glmnet 2.0-18 2019-05-20 [2] CRAN (R 3.6.1)
#> glue 1.3.1 2019-03-12 [2] CRAN (R 3.6.1)
#> GO.db 3.10.0 2019-10-23 [2] Bioconductor
#> GOSemSim 2.12.0 2019-10-29 [2] Bioconductor
#> gower 0.2.1 2019-05-14 [2] CRAN (R 3.6.1)
#> graph 1.64.0 2019-10-29 [2] Bioconductor
#> graphite 1.32.0 2019-10-29 [2] Bioconductor
#> graphlayouts 0.5.0 2019-08-20 [2] CRAN (R 3.6.1)
#> gridExtra 2.3 2017-09-09 [2] CRAN (R 3.6.1)
#> gridGraphics 0.4-1 2019-05-20 [2] CRAN (R 3.6.1)
#> gtable 0.3.0 2019-03-25 [2] CRAN (R 3.6.1)
#> hms 0.5.1 2019-08-23 [2] CRAN (R 3.6.1)
#> htmltools 0.4.0 2019-10-04 [2] CRAN (R 3.6.1)
#> htmlwidgets 1.5.1 2019-10-08 [2] CRAN (R 3.6.1)
#> httr 1.4.1 2019-08-05 [2] CRAN (R 3.6.1)
#> igraph 1.2.4.1 2019-04-22 [2] CRAN (R 3.6.1)
#> ipred 0.9-9 2019-04-28 [2] CRAN (R 3.6.1)
#> IRanges * 2.20.0 2019-10-29 [2] Bioconductor
#> iterators 1.0.12 2019-07-26 [2] CRAN (R 3.6.1)
#> jsonlite 1.6 2018-12-07 [2] CRAN (R 3.6.1)
#> knitr 1.25 2019-09-18 [2] CRAN (R 3.6.1)
#> labeling 0.3 2014-08-23 [2] CRAN (R 3.6.1)
#> lattice * 0.20-38 2018-11-04 [2] CRAN (R 3.6.1)
#> lava 1.6.6 2019-08-01 [2] CRAN (R 3.6.1)
#> lazyeval 0.2.2 2019-03-15 [2] CRAN (R 3.6.1)
#> lifecycle 0.1.0 2019-08-01 [2] CRAN (R 3.6.1)
#> locfit * 1.5-9.1 2013-04-20 [2] CRAN (R 3.6.1)
#> lubridate 1.7.4 2018-04-11 [2] CRAN (R 3.6.1)
#> magrittr 1.5 2014-11-22 [2] CRAN (R 3.6.1)
#> MASS 7.3-51.4 2019-03-31 [2] CRAN (R 3.6.1)
#> Matrix 1.2-17 2019-03-22 [2] CRAN (R 3.6.1)
#> matrixStats * 0.55.0 2019-09-07 [2] CRAN (R 3.6.1)
#> memoise 1.1.0 2017-04-21 [2] CRAN (R 3.6.1)
#> ModelMetrics 1.2.2 2018-11-03 [2] CRAN (R 3.6.1)
#> munsell 0.5.0 2018-06-12 [2] CRAN (R 3.6.1)
#> networkD3 * 0.4 2017-03-18 [2] CRAN (R 3.6.1)
#> nlme 3.1-141 2019-08-01 [2] CRAN (R 3.6.1)
#> nnet 7.3-12 2016-02-02 [2] CRAN (R 3.6.1)
#> org.Hs.eg.db * 3.10.0 2019-10-23 [2] Bioconductor
#> pillar 1.4.2 2019-06-29 [2] CRAN (R 3.6.1)
#> pkgbuild 1.0.6 2019-10-09 [2] CRAN (R 3.6.1)
#> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 3.6.1)
#> pkgload 1.0.2 2018-10-29 [2] CRAN (R 3.6.1)
#> plyr 1.8.4 2016-06-08 [2] CRAN (R 3.6.1)
#> polyclip 1.10-0 2019-03-14 [2] CRAN (R 3.6.1)
#> prettyunits 1.0.2 2015-07-13 [2] CRAN (R 3.6.1)
#> processx 3.4.1 2019-07-18 [2] CRAN (R 3.6.1)
#> prodlim 2018.04.18 2018-04-18 [2] CRAN (R 3.6.1)
#> progress 1.2.2 2019-05-16 [2] CRAN (R 3.6.1)
#> ps 1.3.0 2018-12-21 [2] CRAN (R 3.6.1)
#> purrr 0.3.3 2019-10-18 [2] CRAN (R 3.6.1)
#> qvalue 2.18.0 2019-10-29 [2] Bioconductor
#> R6 2.4.0 2019-02-14 [2] CRAN (R 3.6.1)
#> rappdirs 0.3.1 2016-03-28 [2] CRAN (R 3.6.1)
#> RColorBrewer 1.1-2 2014-12-07 [2] CRAN (R 3.6.1)
#> Rcpp 1.0.2 2019-07-25 [2] CRAN (R 3.6.1)
#> RcppArmadillo 0.9.800.1.0 2019-10-09 [2] CRAN (R 3.6.1)
#> RcppParallel 4.4.4 2019-09-27 [2] CRAN (R 3.6.1)
#> RCurl 1.95-4.12 2019-03-04 [2] CRAN (R 3.6.1)
#> reactome.db 1.70.0 2019-10-28 [2] Bioconductor
#> ReactomePA * 1.30.0 2019-10-29 [2] Bioconductor
#> recipes 0.1.7 2019-09-15 [2] CRAN (R 3.6.1)
#> remotes 2.1.0 2019-06-24 [2] CRAN (R 3.6.1)
#> reshape2 1.4.3 2017-12-11 [2] CRAN (R 3.6.1)
#> rlang 0.4.1 2019-10-24 [2] CRAN (R 3.6.1)
#> rmarkdown 1.16 2019-10-01 [2] CRAN (R 3.6.1)
#> rpart 4.1-15 2019-04-12 [2] CRAN (R 3.6.1)
#> rprojroot 1.3-2 2018-01-03 [2] CRAN (R 3.6.1)
#> RSQLite 2.1.2 2019-07-24 [2] CRAN (R 3.6.1)
#> Rtsne 0.15 2018-11-10 [2] CRAN (R 3.6.1)
#> rvcheck 0.1.5 2019-10-01 [2] CRAN (R 3.6.1)
#> S4Vectors * 0.24.0 2019-10-29 [2] Bioconductor
#> scales 1.0.0 2018-08-09 [2] CRAN (R 3.6.1)
#> scGPS * 1.0.0 2019-10-29 [1] Bioconductor
#> sessioninfo 1.1.1 2018-11-05 [2] CRAN (R 3.6.1)
#> SingleCellExperiment * 1.8.0 2019-10-29 [2] Bioconductor
#> stringi 1.4.3 2019-03-12 [2] CRAN (R 3.6.1)
#> stringr 1.4.0 2019-02-10 [2] CRAN (R 3.6.1)
#> SummarizedExperiment * 1.16.0 2019-10-29 [2] Bioconductor
#> survival 2.44-1.1 2019-04-01 [2] CRAN (R 3.6.1)
#> testthat 2.2.1 2019-07-25 [2] CRAN (R 3.6.1)
#> tibble 2.1.3 2019-06-06 [2] CRAN (R 3.6.1)
#> tidygraph 1.1.2 2019-02-18 [2] CRAN (R 3.6.1)
#> tidyr 1.0.0 2019-09-11 [2] CRAN (R 3.6.1)
#> tidyselect 0.2.5 2018-10-11 [2] CRAN (R 3.6.1)
#> timeDate 3043.102 2018-02-21 [2] CRAN (R 3.6.1)
#> triebeard 0.3.0 2016-08-04 [2] CRAN (R 3.6.1)
#> tweenr 1.0.1 2018-12-14 [2] CRAN (R 3.6.1)
#> urltools 1.7.3 2019-04-14 [2] CRAN (R 3.6.1)
#> usethis 1.5.1 2019-07-04 [2] CRAN (R 3.6.1)
#> vctrs 0.2.0 2019-07-05 [2] CRAN (R 3.6.1)
#> viridis 0.5.1 2018-03-29 [2] CRAN (R 3.6.1)
#> viridisLite 0.3.0 2018-02-01 [2] CRAN (R 3.6.1)
#> withr 2.1.2 2018-03-15 [2] CRAN (R 3.6.1)
#> xfun 0.10 2019-10-01 [2] CRAN (R 3.6.1)
#> XML 3.98-1.20 2019-06-06 [2] CRAN (R 3.6.1)
#> xml2 1.2.2 2019-08-09 [2] CRAN (R 3.6.1)
#> xtable 1.8-4 2019-04-21 [2] CRAN (R 3.6.1)
#> XVector 0.26.0 2019-10-29 [2] Bioconductor
#> yaml 2.2.0 2018-07-25 [2] CRAN (R 3.6.1)
#> zeallot 0.1.0 2018-01-28 [2] CRAN (R 3.6.1)
#> zlibbioc 1.32.0 2019-10-29 [2] Bioconductor
#>
#> [1] /tmp/RtmpAdmfWj/Rinst1d6d46fbeb95
#> [2] /home/biocbuild/bbs-3.10-bioc/R/library