
MOSim

Sonia Tarazona, Carlos Martínez

April 4, 2020

Package

MOSim 1.0.2

Contents

1 Introduction . 2

2 MOSim input parameters . 4

3 Running the simulation: mosim 4

3.1 Providing custom data: omicData 6

3.2 Changing omic settings: omicSim 9

4 Working with simulation results 10

4.1 Retrieving the simulation settings: omicSettings 10

4.2 Accessing the count data matrices: omicResults 12

4.3 Plotting results: plotProfile 13

5 Advanced use cases . 14

5.1 Negative binomial variance . 14

6 Setup. 15

http://bioconductor.org/packages/MOSim

MOSim

1 Introduction

MOSim package simulates multi-omic experiments that mimic regulatory mechanisms within
the cell. Gene expression (RNA-seq count data) is the central data type and the rest of
available omic data types act as regulators of genes and include ATAC-seq (DNase-seq),
ChIP-seq, small RNA-seq and Methyl-seq. In addition, transcription factor (TF) regulation
can also be modeled.
MOSim algorithm returns the simulated count data matrices, regulatory connections between
genes and omic features and a detailed description of the simulation settings. Thus, these
results can be used to test new integration methods, to tune or prepare analysis pipelines, or
as example data in users’ manuals or for teaching purposes.
MOSim requires a seed count dataset for each omic to be simulated. For regulatory omics
and TFs, an association table linking genes to regulators must also be given. For convenience,
MOSim includes default datasets from STATegra project (mouse data) for all omics, so the
package can be still used in absence of custom data.
Due do the potentially great amount of information generated, multiple helper functions are
available for both passing the necessary input data and retrieving the generated data.
The outcome of the simulation process depends on two types of input information: the
specific parameters to the omics to be simulated and the experimental design.
The experimental design options are flexible. The user can choose the number of experimental
groups and the number of replicates. Time series data can also be simulated and, again, the
user decided the number of time points.
The process starts by simulating RNA-seq (gene expression) data. To do that, the program
takes a sample from the supplied identifiers (row names of the initial count dataset) and labels
them as differentially expressed genes (DEG). The percentage of DEG can be configured by
the user, as many other settings that will be described in this vignette. A gene is considered
to be differentially expressed if the expression of the gene changes (i) between the reference
experimental group (group 1) and at least one of the remaining groups in the experimental
design or (ii) across time.
When time course data is to be simulated, MOSim assigns one of the following profiles to
each of the DEGs (Figure 1) in each of the experimental groups:
Continuous induction lineal increase of the activity of the gene with time.
Continuous repression lineal decrease of the activity of the gene with time.
Transitory induction inactive gene at the initial time, with progressive increasing of the

activity followed by a decrease.
Transitory repression active gene at the initial time, with progressive decreasing of the

activity followed by an increase.
Flat the activity of the gene remains constant along time.
If a DEG is assigned to a flat profile in all groups, the algorithm will model a change in
expression for at least one of the experimental groups (up or down regulation).
For other experimental designs not including time series, all DEGs are labeled as flat and
the change in expression is modeled as indicated above, that is, for at least one of the
experimental groups with regard to the first group.

2

http://bioconductor.org/packages/MOSim
http://bioconductor.org/packages/MOSim
http://bioconductor.org/packages/MOSim
http://bioconductor.org/packages/MOSim
http://bioconductor.org/packages/MOSim

MOSim

Flat

Continuous induction (CI)

Continuous repression (CR)

Transitory induction (TI)

Transitory repression (TR)

Figure 1: Time profiles representation

Once the gene expression settings have been set the regulatory omics are configured. This is
done first by assigning a potential effect (activation, repression or none) to each regulator.
In a similar way as the percentage of DEG could be specified for RNA-seq, in regulatory
omics the user can indicate the percentage of regulators that should be activators, repressors
or with no effect in each omic. However, these initial percentages can be affected because
regulatory relationships must be coherent with assigned profiles or selection of DEG. For
instance, when a regulator has effect on more than one DEG and these DEGs have opposite
profiles, the type of effect must be forced to match the profiles. In fact, and related to this, if
a regulator is potentially associated to more than one DEG with different profiles, the system
has to decide which profile must be assigned to the regulator. For that, MOSim takes the
profile class (combination of profiles for all groups, for example CI-FL-CR in groups 1, 2 and
3 respectively) with more DEGs associated to the regulator (majority class) and assigns the
corresponding profile to the regulator: depending on the regulator effect, the profile will be
the same for activation effect (following the example, CI-FL-CR for groups 1, 2 and 3) or the
opposite for repression (CR-FL-CI). The interactions with genes not included in the majoritary
class are automatically classified as "activator" if the profiles are the same, "repressor" if the
are the totally opposite (CI vs CR, TI vs TR) or "no effect" in any other case.
In brief, MOSim usage can be summed up in 3 main steps that will be described in the next
sections:

1. Decide the experimental design, omics list and input data to use.
2. Generate a simulation object using the wrapper function mosim, in combination with

the methods omicData and omicSim.
3. Extract the results from the simulation object with the helper functions omicResults

and omicSettings.

3

http://bioconductor.org/packages/MOSim
http://bioconductor.org/packages/MOSim

MOSim

2 MOSim input parameters

For the experimental design of the simulation, there are 3 parameters to be set: the number
of experimental groups or conditions, the number of time points (1, if time series are not to
be considered) and the number of replicates per condition. The only requirements, so that
the algorithm can simulate differential expression, are at least 2 groups with no time points,
or 1 group with at least 2 time points.
The list of omics to be simulated must be also provided. At this moment MOSim supports
the following data types:

• RNA-seq (compulsory)
• DNase-seq
• ChIP-seq
• Methyl-seq
• miRNA-seq

The simulation needs gene expression to be present so RNA-seq will be included always even
if it is not specified by the user. The simulation of transcription factors is also supported as
a subset of RNA-seq simulated data.
Optionally, the seed samples to start the simulation can also be given. They are used for
extracting the feature identifiers from the row names, and as the initial count distribution
to generate the rest of simulated samples. The algorithm includes mouse default samples
from STATegra project but users may provide seed samples from any other organism or
experiment. For each regulatory omic, the association list linking regulator IDs to genes that
they potentially regulate is also needed. If provided, extra care must be taken to ensure
that the identifiers between RNA-seq and the association lists are correctly matched. Again,
for STATegra data, these association files are included in the package. If TF-target gene
associations are provided, TF regulation will be also simulated.
The structure of the custom data and how to correctly pass it to MOSim will be described
in the following sections.

3 Running the simulation: mosim

MOSim simulations are stored in a custom class S4 object, which means that the information
is contained in slots and can be accessed using the standard way (with the operator @).
However, this is not recommended and the preferred way to access the information are the
accessors or utility function provided by the package, as additional transformations can be
applied by these.
The first of these functions is mosim. This helper method takes all the options, performs the
simulation, and returns the simulation object.
Internally, this helper function creates a series of S4 objects according to the options passed
by the user and calls the required methods to simulate the data, gather the results and
return them. The user only needs to set the simulation options, as indicated in the following
example:

4

http://bioconductor.org/packages/MOSim
http://bioconductor.org/packages/MOSim
http://bioconductor.org/packages/MOSim
http://bioconductor.org/packages/MOSim

MOSim

mosim(omics, omicsOptions = NULL, diffGenes = .15, numberReps = 3, numberGroups =

2, times = c(0, 2, 4, 12, 24), depth = 74, profileProbs = list(continuous.induction

= .235, continuous.repression = .235, transitory.induction = .235, transitory.repression

= .235, flat = .06), minMaxFC = c(3, 8), TFtoGene = NULL)

The main arguments accepted by mosim function are:
omics Character vector containing the names of the omics to simulate, which can be "RNA-

seq", "miRNA-seq", "DNase-seq", "ChIP-seq" or "Methyl-seq" (e.g. c("RNA-seq",
"miRNA-seq")). It can also be a list with the omic names as names and their options
as values, but we recommend to use the argument omicsOptions to provide the options
to simulate each omic.

omicsOptions List containing the options to simulate each omic. We recommend to apply
the helper method omicSim to create this list in a friendly way, and the function omic

Data to provide custom data (see the related sections for more information). Each omic
may have different configuration parameters, but the common ones are:
simuData/idToGene Seed sample and association tables for regulatory omics. The

helper function omicData should be used to provide this information (see the
following section).

regulatorEffect For regulatory omics. List containing the percentage of effect types
(repressor, activator or no effect) over the total number of regulators. For example
list(’repressor’ = 0.05, ’NE’ = 0.95). Remember that these numbers might
be modified by the algorithm as explained in section 1.

totalFeatures Number of features to simulate. By default, the total number of fea-
tures in the seed dataset.

depth Sequencing depth in millions of reads. If not provided, it takes the global
parameter passed to mosim function.

replicateParams List with parameters a and b for adjusting the variability in the gener-
ation of replicates using the negative binomial. See section 5 for more information.

diffGenes Number of differentially expressed genes to simulate, given in percentage (0 - 1)
or in absolute number (> 1).

numberGroups Number of experimental groups or conditions to simulate.
numberReps Number of replicates per experimetal condition (and time point, if time series

are to be generated).
times Vector of time points to consider in the experimental design.
depth Sequencing depth in millions of reads.
minMaxFC Vector of minimum and maximum fold-change allowed for differentially ex-

pressed features.
TFtoGene A logical value indicating if default transcription factors data should be used

(TRUE) or not (FALSE), or a 3 column data frame containing custom associations as
explained in 3.1. For transcription factors, the count matrix is not simulated like in the
other omics but extracted from RNA-seq simulated data.

The most basic example of mosim function usage is calling it with only the list of omics to
simulate. In this case, the default values will be used, including the default data samples.

5

MOSim

library(MOSim)

omic_list <- c("RNA-seq")

rnaseq_simulation <- mosim(omics = omic_list)

The rnaseq_ simulation object is a Simulation class object containing the simulated data,
that can be easily accessed with the helper functions omicResults and omicSettings, as we
will see in the corresponding section.
Following with that basic example above, we can modify the experimental design to simulate
2 groups, 1 time point and 4 replicates per group:
Invalid combinations of experimental design arguments will make the algorithm stop with an
error message, like this:
rnaseq_simulation <- mosim(omics = c("RNA-seq"),

times = 0,

numberGroups = 1,

numberReps = 4)

Error in validObject(.Object): invalid class "MOSimulation" object: The design

must have a minimum of 2 times or 2 groups.

To obtain more than one omic data type, the omics list must be modified. RNA-seq is
mandatory, and will be automatically included in the simulation, no matter if it is listed or
not. Therefore these two simulations would be equivalent:
As it can be seen, mosim function accepts global simulation parameters, but specific settings
for a particular omic should be provided through two specially designed functions: omicData
and omicSim.

3.1 Providing custom data: omicData

The function omicData was designed to help users to provide their own seed data sets, as
follows:
omicData(omic, data, associationList = NULL)

This helper function accepts 3 parameters:
omic The name of the omic data type whose seed sample is to be provided. The omic names

must be included in the list of accepted omics.
data Count data. A data frame or ExpressionSet object with the omic identifiers as row

names and just one column named Counts, containing the counts to be used as seed
sample in the simulation for that omic.

associationList Only for regulatory omics. Data frame with 2 columns containing the po-
tential associations between genes and regulators. The first column, called ID, must
contain the regulator IDs, and the second column, called Gene, must contain the gene
identifiers.

For illustration purposes, consider as our custom data a subset of the default gene expression
dataset. To use it as our seed RNA-seq dataset, we can use this code:

6

MOSim

Take a subset of the included dataset for illustration

purposes. We could also load it from a csv file or RData,

as long as we transform it to have 1 column named "Counts"

and the identifiers as row names.

data("sampleData")

custom_rnaseq <- head(sampleData$SimRNAseq$data, 100)

In this case, 'custom_rnaseq' is a data frame with

the structure:

head(custom_rnaseq)

Counts

ENSMUSG00000000001 6572

ENSMUSG00000000003 0

ENSMUSG00000000028 4644

ENSMUSG00000000031 8

ENSMUSG00000000037 0

ENSMUSG00000000049 0

The helper 'omicData' returns an object with our custom data.

rnaseq_customdata <- omicData("RNA-seq", data = custom_rnaseq)

We use the associative list of 'omics' parameter to pass

the RNA-seq object.

rnaseq_simulation <- mosim(omics = list("RNA-seq" = rnaseq_customdata))

RNA-seq is a special case of omic data type because it does not require an association list to
work. For any other omic, such as DNase-seq, we need two different data frames: the seed
sample with the structure already mentioned, and the associations between regulator IDs and
genes.
Select a subset of the available data as a custom dataset

data("sampleData")

custom_dnaseseq <- head(sampleData$SimDNaseseq$data, 100)

Retrieve a subset of the default association list.

dnase_genes <- sampleData$SimDNaseseq$idToGene

dnase_genes <- dnase_genes[dnase_genes$ID %in%

rownames(custom_dnaseseq),]

In this case, 'custom_dnaseseq' is a data frame with

the structure:

head(custom_dnaseseq)

Counts

1_63176480_63177113 513

1_125435495_125436168 1058

1_128319376_128319506 37

1_139067124_139067654 235

1_152305595_152305752 105

7

MOSim

1_172490322_172490824 290

The association list 'dnase_genes' is another data frame

with the structure:

head(dnase_genes)

ID Gene

29195 1_3670777_3670902 ENSMUSG00000051951

29196 1_3873195_3873351 ENSMUSG00000089420

29197 1_4332428_4332928 ENSMUSG00000025900

29198 1_4346315_4346445 ENSMUSG00000025900

29199 1_4416827_4416973 ENSMUSG00000025900

29200 1_4516660_4516798 ENSMUSG00000096126

dnaseseq_customdata <- omicData("DNase-seq",

data = custom_dnaseseq,

associationList = dnase_genes)

multi_simulation <- mosim(omics = list(

"RNA-seq" = rnaseq_customdata,

"DNase-seq" = dnaseseq_customdata)

)

The two exceptions in this section are transcription factors and methylation.
The simulated transcription factor data is extracted from the generated RNA-seq data but
a data frame with 3 columns needs to be provided: TF column, with the transcription factor
identifiers (any type of identifier can be used); TFgene column, with transcription factor
identifiers that must coincide with the type of identifier used in RNA-seq; and LinkedGene

column, with the identifier of the target gene (again, the same used in RNA-seq data).
Instead of applying omicData function for this purpose, the TFtoGene argument in mosim

function must be used:
Select a subset of the available data as a custom dataset

data("sampleData")

custom_tf <- head(sampleData$SimRNAseq$TFtoGene, 100)

TF TFgene LinkedGene

1 Aebp2 ENSMUSG00000030232 ENSMUSG00000000711

2 Aebp2 ENSMUSG00000030232 ENSMUSG00000001157

3 Aebp2 ENSMUSG00000030232 ENSMUSG00000001211

4 Aebp2 ENSMUSG00000030232 ENSMUSG00000001227

5 Aebp2 ENSMUSG00000030232 ENSMUSG00000001305

6 Aebp2 ENSMUSG00000030232 ENSMUSG00000001794

multi_simulation <- mosim(omics = list(

"RNA-seq" = rnaseq_customdata,

"DNase-seq" = dnaseseq_customdata),

The option is passed directly to mosim function instead of

being an element inside "omics" parameter.

TFtoGene = custom_tf

)

8

MOSim

For methylation, a seed count sample does not need to be provided because it will be gen-
erated automatically. Methylation simulation just needs the association list containing the
CpG sites to be simulated and the associated genes. The chromosomal positions for the CpG
sites must be given in the format <chr>_<start>_<end>, that is, the chromosome number,
start and end positions separated by the char _.
Select a subset of the available data as a custom dataset

data("sampleData")

custom_cpgs <- head(sampleData$SimMethylseq$idToGene, 100)

The ID column will be splitted using the "_" char

assuming <chr>_<start>_<end>.

#

These positions will be considered as CpG sites

and used to generate CpG islands and other elements.

#

Please refer to MOSim paper for more information.

#

ID Gene

1 11_3101154_3101154 ENSMUSG00000082286

2 11_3101170_3101170 ENSMUSG00000082286

3 11_3101229_3101229 ENSMUSG00000082286

4 11_3101287_3101287 ENSMUSG00000082286

5 11_3101329_3101329 ENSMUSG00000082286

6 11_3101404_3101404 ENSMUSG00000082286

3.2 Changing omic settings: omicSim

As commented before when describing mosim function, there are two ways of passing omic
configuration options: by giving a list in the omics parameter or by giving omics as a character
vector with the omics to simulate and specifying the simulation options in the parameter omic
sOptions.
The omicsOptions parameter accepts a list, but the MOSim helper function, omicSim, allows
to do it in a more straightforward way.
omicSim(omics, depth = NULL, totalFeatures = NULL, regulatorEffect = NULL)

The description of the parameters was explained in section 3.
Back to the first basic example of RNA-seq simulation using the default dataset, the code to
use if we wish to restrict the number of features is:
omic_list <- c("RNA-seq")

rnaseq_options <- omicSim("RNA-seq", totalFeatures = 2500)

The return value is an associative list compatible with

'omicsOptions'

rnaseq_simulation <- mosim(omics = omic_list,

omicsOptions = rnaseq_options)

9

http://bioconductor.org/packages/MOSim

MOSim

When having multiple omics, we concatenate the information like follows:
omics_list <- c("RNA-seq", "DNase-seq")

In R concatenaning two lists creates another one merging

its elements, we use that for 'omicsOptions' parameter.

omics_options <- c(omicSim("RNA-seq", totalFeatures = 2500),

omicSim("DNase-seq",

Limit the number of features to simulate

totalFeatures = 1500,

Modify the percentage of regulators with effects.

regulatorEffect = list(

'activator' = 0.68,

'repressor' = 0.3,

'NE' = 0.02

)))

set.seed(12345)

multi_simulation <- mosim(omics = omics_list,

omicsOptions = omics_options)

The objects generated by omicData and omicSim are different and special attention must be
paid to combine them. The following code shows an example on how to do it:
rnaseq_customdata <- omicData("RNA-seq", data = custom_rnaseq)

rnaseq_options <- omicSim("RNA-seq", totalFeatures = 100)

rnaseq_simulation <- mosim(omics = list("RNA-seq" = rnaseq_customdata),

omicsOptions = rnaseq_options)

4 Working with simulation results

The information contained in a simulation object can be classified in two categories: the
simulation settings used to perform the simulation, and the count data matrices generated
by the process.
To access this information, MOSim provides two helper functions: omicSettings to retrieve
the simulation settings and omicResults for accessing the count matrices.

4.1 Retrieving the simulation settings: omicSettings

The helper function omicSettings is used to extract the settings used in the simulation:
omicSettings(simulation, omics = NULL, association = FALSE, reverse = FALSE, only.linked

= FALSE, include.lagged = TRUE)

The following parameters are accepted by the function:
simulation Simulation object returned by mosim function.

10

http://bioconductor.org/packages/MOSim

MOSim

omics List with the names of the omic data types whose settings are to be retrieved.
association A logical value. If TRUE, the original association lists used in the simulation

are included.
reverse A logical value. If TRUE, it swaps the column order in the association list in case

we want to use the output directly and the program requires a different ordering.
only.linked A logical value. If TRUE, it returns only the regulator-gene interactions with

effect.
include.lagged A logical value. If TRUE it will return the full settings table including

regulator-gene interactions in which the minimum/maximum value for transitory profiles
does not perfectly match, otherwise they will be filtered.

Users can choose to recover the setting for all the simulated omics or just for some of them:
This will be a data frame with RNA-seq settings (DE flag, profiles)

rnaseq_settings <- omicSettings(multi_simulation, "RNA-seq")

This will be a list containing all the simulated omics (RNA-seq

and DNase-seq in this case)

all_settings <- omicSettings(multi_simulation)

For RNA-seq, the settings table has an structure similar to this:

ID DE Group1 Group2 Tmax.Group1 Tmax.Group2
ENSMUSG00000017204 TRUE transitory.induction continuous.repression 2.57 NA
ENSMUSG00000097082 TRUE transitory.induction transitory.induction 1.46 2.23
ENSMUSG00000055493 TRUE transitory.induction continuous.repression 2.37 NA
ENSMUSG00000017221 TRUE transitory.induction continuous.induction 2.63 NA
ENSMUSG00000020205 TRUE transitory.induction continuous.induction 2.83 NA
ENSMUSG00000087802 FALSE flat flat NA NA

Each column provides different information about the settings used to carry on the simulation:
ID Gene identifier.
DEG A logical value indicating if the gene was selected as differentially expressed (TRUE)

or not (FALSE).
GroupX There will be as many group columns as groups defined in the experimental design,

each one containing the type of expression profile assigned to the gene in the simulation.
Tmax.GroupX For transitory profiles, the time point with the absolute maximum (or mini-

mum) value.
For regulatory omics, the structure will slightly differ from RNA-seq, adding additional
columns. Note that in this example, for reading purposes, the last 4 columns containing
the Tmax.GroupX and Lagged.GroupX have been omitted:

ID Gene Effect.Group1 Effect.Group2 Group1 Group2 ...
10_111588324_111588448 ENSMUSG00000097082 activator activator transitory.induction transitory.induction ...
10_111588324_111588448 ENSMUSG00000020205 activator NA transitory.induction transitory.induction ...
10_11358301_11358431 ENSMUSG00000055493 activator activator transitory.induction continuous.repression ...
10_11358301_11358431 ENSMUSG00000087802 NA NA transitory.induction continuous.repression ...
11_98682094_98682786 ENSMUSG00000017204 repressor activator transitory.repression continuous.repression ...
11_98682094_98682786 ENSMUSG00000017221 repressor repressor transitory.repression continuous.repression ...

Each row describes a regulator-gene interaction, with the following columns:
ID : Regulator identifier.

11

MOSim

Gene : Gene identifier.
Effect.GroupX : There will be as many effect group columns as groups in the experimental

design. Each one will contain the effect of the regulator on the gene. As explained in
previous sections, if both gene (being a DEG) and regulator share the same profile, the
regulator is considered to act as activator; if they have completely opposite profiles,
the regulator will be a repressor; for any other case, NA value will be set.

GroupX : There will be as many group columns as groups defined in the experimental
design, each one containing the type of expression profile assigned to the regulator in
the simulation, as described in section 1.

Tmax.GroupX : For transitory profiles, the time point with the absolute maximum (or
minimum) value.

Lagged.GroupX : For transitory profiles, a logical value indicating if regulator and gene
share the same maximum (or minimum) time point or not. The difference between
points could explain potentially low correlation values between the two.

To retrieve the original association lists, the parameter association must be set to TRUE:
This will be a list with 3 keys: settings, association and regulators

dnase_settings <- omicSettings(multi_simulation, "DNase-seq", association = TRUE)

When settings the association parameter to TRUE, the output object will be a list of lists
with the following key names:
association List containing the association table for each omic.
settings List containing the setting data frames for each omic.
regulators Data frame combining the settings from all regulatory omics, adding an additional

column Omic.

4.2 Accessing the count data matrices: omicResults

The last helper function is omicResults:
omicResults(simulation, omics = NULL)

This function can accept 2 parameters: the simulation output object and, optionally, the
omics we want to retrieve. As in the previous helper function, retrieving one omic will result
in a data frame object, and for more than one a list of data frames will be provided.
multi_simulation is an object returned by mosim function.

This will be a data frame with RNA-seq counts

rnaseq_simulated <- omicResults(multi_simulation, "RNA-seq")

Group1.Time0.Rep1 Group1.Time0.Rep2 Group1.Time0.Rep3 ...

ENSMUSG00000073155 4539 5374 5808 ...

ENSMUSG00000026251 0 0 0 ...

ENSMUSG00000040472 2742 2714 2912 ...

ENSMUSG00000021598 5256 4640 5130 ...

ENSMUSG00000032348 421 348 492 ...

ENSMUSG00000097226 16 14 9 ...

12

MOSim

ENSMUSG00000027857 0 0 0 ...

ENSMUSG00000032081 1 0 0 ...

ENSMUSG00000097164 794 822 965 ...

ENSMUSG00000097871 0 0 0 ...

This will be a list containing RNA-seq and DNase-seq counts

all_simulated <- omicResults(multi_simulation)

The structure of the final count matrix will have the features as row names, and the conditions
as column names following the scheme <Group>.<Timepoint>.<Replicate>.
Alternatively a ExpressionSet object can be returned by setting the format argument to
"ExpressionSet".

4.3 Plotting results: plotProfile

Graphical plots are useful to check a feature profile or to compare gene & regulator interac-
tions. To generate them, the function plotProfile needs the simulation object, the omic or
two omics to plot, and one feature for each omic.
The methods returns a ggplot plot, if called directly

it will be automatically plotted.

plotProfile(multi_simulation,

omics = c("RNA-seq", "DNase-seq"),

featureIDS = list(

"RNA-seq" = "ENSMUSG00000024691",

"DNase-seq" = "19_12574278_12574408"

))

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Group1 Group2

Tim
e0

Tim
e2

Tim
e4

Tim
e1

2

Tim
e2

4

Tim
e0

Tim
e2

Tim
e4

Tim
e1

2

Tim
e2

4

2e+05

3e+05

4e+05

5e+05

6e+05

20000

30000

40000

50000

60000

Time point

E
N

S
M

U
S

G
00

00
00

24
69

1 19_12574278_12574408

Omic

●●

●●

DNase−seq

RNA−seq

ENSMUSG00000024691 − 19_12574278_12574408

The returned ggplot can be stored in a variable to customize other attributes.

13

MOSim

library(ggplot2)

Store the plot in a variable

profile_plot <- plotProfile(multi_simulation,

omics = c("RNA-seq", "DNase-seq"),

featureIDS = list(

"RNA-seq" = "ENSMUSG00000024691",

"DNase-seq" = "19_12574278_12574408"

))

Modify the title and print

profile_plot +

ggtitle("My custom title") +

theme_bw() +

theme(legend.position="top")

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Group1 Group2

Time0 Time2 Time4 Time12 Time24 Time0 Time2 Time4 Time12 Time24

2e+05

3e+05

4e+05

5e+05

6e+05

20000

30000

40000

50000

60000

Time point

E
N

S
M

U
S

G
00

00
00

24
69

1 19_12574278_12574408

Omic ●● ●●DNase−seq RNA−seq

My custom title

5 Advanced use cases

Most of the common users’ needs should be covered by the previously showed examples,
but this section describes some advanced settings as the variability of the negative binomial
distribution that is used to generate replicates.

5.1 Negative binomial variance

In a negative binomial distribution, the variance depends on the mean. In MOSim, the
generated counts for a given condition (and/or time point) are taken as the mean of the
distribution. To model the dependence between the negative binomial mean and variance for
each omic, we analyzed several data sets and experiments, and observed a linear relationship
between log-transformed count values of means and variances (R2 > 0.95 for all models):

14

http://bioconductor.org/packages/MOSim

MOSim

σ2 = 10a ∗ (µ+ 1)b − 1. To assure a minimum variance we really used the maximum of this
value and 0.03. A regression model was applied to estimate coefficients a and b and these
estimations were used as default values. The default values for a and b can be changed by
users to increase or decrease the default variability in each omic data type.

6 Setup

This vignette was built on:
• R version 3.6.3 (2020-02-29), x86_64-w64-mingw32
• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,

LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

• Running under: Windows Server 2012 R2 x64 (build 9600)

• Matrix products: default
• Base packages: base, datasets, grDevices, graphics, methods, stats, utils
• Other packages: MOSim 1.0.2, ggplot2 3.3.0
• Loaded via a namespace (and not attached): BiocGenerics 0.32.0,

BiocManager 1.30.10, BiocStyle 2.14.4, HiddenMarkov 1.8-11, IRanges 2.20.2,
R6 2.4.1, Rcpp 1.0.4, S4Vectors 0.24.3, assertthat 0.2.1, cli 2.0.2, codetools 0.2-16,
colorspace 1.4-1, compiler 3.6.3, crayon 1.3.4, digest 0.6.25, dplyr 0.8.5, ellipsis 0.3.0,
evaluate 0.14, fansi 0.4.1, farver 2.0.3, formatR 1.7, glue 1.4.0, grid 3.6.3,
gtable 0.3.0, highr 0.8, htmltools 0.4.0, knitr 1.28, labeling 0.3, lattice 0.20-41,
lazyeval 0.2.2, lifecycle 0.2.0, magrittr 1.5, matrixStats 0.56.0, munsell 0.5.0,
parallel 3.6.3, pillar 1.4.3, pkgconfig 2.0.3, purrr 0.3.3, rlang 0.4.5, rmarkdown 2.1,
scales 1.1.0, stats4 3.6.3, stringi 1.4.6, stringr 1.4.0, tibble 3.0.0, tidyr 1.0.2,
tidyselect 1.0.0, tools 3.6.3, vctrs 0.2.4, withr 2.1.2, xfun 0.12, yaml 2.2.1, zoo 1.8-7

15

	1 Introduction
	2 MOSim input parameters
	3 Running the simulation: [functioncolor]mosim
	3.1 Providing custom data: [functioncolor]omicData
	3.2 Changing omic settings: [functioncolor]omicSim

	4 Working with simulation results
	4.1 Retrieving the simulation settings: [functioncolor]omicSettings
	4.2 Accessing the count data matrices: [functioncolor]omicResults
	4.3 Plotting results: [functioncolor]plotProfile

	5 Advanced use cases
	5.1 Negative binomial variance

	6 Setup

