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Abstract

kimod is to do multivariate data analysis of k-tables, in particular it
makes STATIS methodology, designed to handle multiple data tables that
quantity sets of variables collected on the same observations. This package
allows to work with mixed data, with the introduction of the following im-
provements: distance options (for numeric and/or categorical variables)
for each of the tables, bootstrap resampling techniques on the residual
matrix of STATIS- compromise, that enable perform confidence ellipses
for the projection of observations, and regressions Biplot to project all
variables on the compromise matrix. In this way, goodness of fit criteria
are used for variables selection and building relationships between ob-
servations and variables. Moreover, this allows generating clustering of
variables which are powerfully related to each other and consequently get
the same information. Since the main purpose of the package is to use
these techniques to omic data analysis, it includes an example data from
four different microarray platforms of the NCI-60 cell lines.

1 Introduction

In the last years, the data of microarrays has not only gained a great importance
but also it is availability for the public has increase. The ”omics” technologies
allow quantitative knowledge of hundreds of biological data of complex nature
and have enabled the opportunity of study simultaneously, based on multiple
datasets, the expression levels of thousands of genes over the effects of certain
treatments or diseases. However, the joint analysis of the different subspaces
that generate these technologies and their relations is not simple. Several sta-
tistical methods have been developed to handle these problems and to calculate
a consensus from data matrices. STATIS-ACT (des Plantes, 1976),(Escoufier
et al., 1976) is one of the families of methods that are concerned with analy-
sis of data arising from several configurations and is a powerful technique to
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compare subspaces. The aim of this package is to combine STATIS, Biplot
(Gabriel, 1971), (Demey et al., 2008) and Cluster methodologies to study the
relationships between genes expressions of multiple omics datasets measuring
the same biological samples or the expression of the same genes over different
experimental conditions.

2 STATIS methodology

The STATIS methodology is an family of exploratory technique of multivariate
data analysis based on linear algebra and especially Euclidean vector spaces
(ACT stands for Analyse Conjointe de Tableaux, STATIS stands for Structura-
tion des Tableaux A Trois Indices de la Statistique). It has been devised for
multiway data situations on the basic idea of computing Euclidean distances
between configurations of points (Escoufier, 1973).

In studies of genetic diversity the STATIS is a technique that it allows de-
termine contribution of each observation to the Euclidean distance between the
subspaces defined by the molecular markers and morphological traits.

Formally, the central idea of the technique is to compare configurations of
the same observations obtained in different circumstances. Thus we need to
introduce a measure of similarity between two configurations. This is equivalent
to define a distance between the corresponding scalar product matrices. These
matrices are:

Wk = XXT (1)

We can use the classic Euclidean norm

‖W1 −W2‖2 =
∑
k

∑
kT

[(W1 −W2)kkT ]2 = Tr[(W1 −W2)2] (2)

On some cases when the variables are not all continuous, the scalar product
can not compute. DISTATIS approach, we compute K distance matrices instead
of Scalar Product (See 1) between observations, further we transform these
matrices into cross-product matrices and then use the cross-product approach
to STATIS (See (Abdi et al., 2007), (Abdi et al., 2012)). In these works, the
autors only proposed the euclidean metrics, however in this package, we extend
this approach and incorporating different metrics, extending the use of STATIS-
ACT to other types of variables. Three aspects are considered in the application
of the method, the study of Interstructure, the boundary of the Compromise
space and the Graphical representation of the trajectories.

2.1 STEPS of STATIS

1. Interstructure: Define a distance between W ′ks configurations matrix and
generate a matrix of scalar product Wkxk, later, use the spectral decom-
positon of W to projection of all studies in a space of low dimension.

2. Compromise: Define a matrix Wnxn that
∑n

k=1 αkWk with the property
that is the linear combination of the W ′ks the most related to each Wk.
Finally, use the singular value decomposition for plotting all observations
on consensus espace.
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3. Trajectories: These gives a idea of the importance and the direction of the
change of position of all observations between the stages k and k′.

2.2 Sampling Variability and Biplot Analysis

Following (Demey, 2008), the results of any data analysis are not thorough if they
do not offer information about the stability of the solution that show whether
the structure detected by the analysis is not random. There are several ways
to accomplish this purpose, including the introduction of small perturbations in
the data, resampling techniques or applying permutations.

As for other sorting techniques, the sensitivity study of solutions in meth-
ods K- tables has hardly received any attention. Therefore, as part of this
work, intents to study the stability sample of the average projections of indi-
viduals/variables or individuals-variables on parent commitment of the various
methods.

Specifically, the use of bootstrap (Efron and Tibshirani, 1993) is proposes
for the building confidence regions on the projection of the individual on the
compromise matrix (W ).

In order to acquire the sampling variability, B configurations must be gen-
erated of matrix W , for an algorithm, which on the matrix of residuals is used
as detailed below.

The eigen-decomposition of W matrix is:

Ŵ = UqDqVq (3)

The objective is then to find a configuration P in a lower dimensional Eu-
clidean space. A lower dimensional approximation can be obtained projecting
using the equation 3 (usually q = 2). (W ), can be break down as W = Ŵ + ε
, making ε a matrix of residual with the same properties as W and Ŵ , it is
the low range estimation (q < r) of W . Resampling B times on n(n − 1)/2
different elements outside the diagonal matrix ε, B replicates are generated so
W ∗i = Ŵ + ε∗i , i = 1..B. Using the new matrices W ∗i , it is possible to gener-
ate (from eigen-decomposition) new B matrices P ∗i that can compared to the
original configuration (P ) and create the desired sampling variability.

2.3 Using Biplot to project variables on compromise

In general, from the use of methods STATIS is only possible to show in a graph
of individual or variables and no individual and variables. Often, researchers do
not only want to know the relationships established between observations, but
also between these and variables involved or between the variables themselves.
In case of omics data where K-tables can be different platforms or technologies,
study relationship between genes and observations is appropiate and necessary
and enables gene selection. The classical definition of these methods is that
enables the graphical approximation of the multivariable data matrixes -of order
(nxp) and range r−, using columns and lines makers to study the relationships
between individuals and variables from the singular values decomposition. In
this case,Y be the matrix obtained by interactively coding all the matrices Y =
[X1|X2|...XK ]:

Y = UDV T (4)
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The approximation of equation can also be performed through a general
multiplicative bilinear model (Vicente-Villardón et al., 2006), (Demey et al.,
2008), (Sánchez and Vicente-Villardón, 2013):

Y = PβT + ε (5)

Which can be understood as a multivariate regression of Y on the coordinates
of individuals P , when they are fixed, or they are multivariate regression Y T on
the coordinates of the variables β, if they are who are fixed.

We add here a biplot interpretation of the method, based on the projection
of the all variables onto the compromise space. Let Y be the matrix obtained
by interactively coding all the matrices (Xk: Y = [X1|X2|...XK ], of order nxJ ,

where J is J =
∑K

i=1 ji, and P is an fixed matrix of the projection of all obser-
vations on the compromise, obtained from the eigen-decomposition of Wc, such
as stated in section 1.
Given that P coordinates are known, obtaining the β′s is equivalent to perform-
ing a linear regression using the j − th column of Y as a response variable and
the columns of P as regressors. Thus, the projection of a individuals on the
direction of an variable predicts the level of expression of such variable on this
observations. With this biplot approximation on the compromise in the classic
STATIS method, it is possible to project the variables of different data tables
(in other words, all the genes involved in the study) and determine relationships
between tissues and genes, genes with each other.

In classical STATIS, it is not possible to interpret the relationship between
variables or variables and observations. With biplot aproximation, obtained by
fitting linear regressions to that configuration as described in this section, itÂ´s
posible obtain these relationships.
Due to the high number of variables usually studied, it is convenient to situate
on the graph only those that are related to the configuration, i.e. those that have
an adequate goodness of fit after adjusting the regression model (Demey, 2008).
In addition, the technique can be used to select candidate genes, representatives
of the data structure, using measures of goodness of fit, among this can be the
adjusted R-squared, p value, p-value corrected by Bonferroni or criteria AIC
(Akaike Information Criterious) and BIC (Bayesian Information Criterious).
Besides, these method allows generate groups of variables using a clustering
algorithm.

3 Examples

In this section we provide an overview of the kimod package. The example consist
in the analysis of four different microarrays platforms (i.e., Agilent, Afymetrix
HGU 95, Afymetrix HGU 133 and Afymetrix HGU 133plus 2.0) on the NCI-60
cell lines (Shankavaram et al., 2009),(Reinhold et al., 2012). These datasets are
illustrative and they have only a subset of microarray gene expression of the
NCI 60 cell lines from four different platforms.

3.1 Package overview

The original data Files are available at Cell-Miner WebSite (Shankavaram et al.,
2009),(Reinhold et al., 2012). In this dataset, the 60 human tumour cell lines are
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derived from patients with leukaemia, melanoma, lung, colon, central nervous
system, ovarian, renal, breast and prostate cancers. The cell line panel is widely
used in anti-cancer drug screen. In this dataset, a subset of microarray gene
expression of the NCI 60 cell lines from four different platforms are combined
in a list.

> library("kimod")

> data(NCI60Selec_ESet)

Once we call the datasets, we ckeck your class using the class() comand:

> class(NCI60Selec_ESet)

[1] "list"

Then, check the dimensions of datasets.

> lapply(NCI60Selec_ESet,dim)

[[1]]

Features Samples

60 300

[[2]]

Features Samples

60 298

[[3]]

Features Samples

60 268

[[4]]

Features Samples

60 288

Finally, we ckeck if all tables have the same observations:

> Tissues<-c(rep("Breast",5),rep("CNS",6),rep("Colon",7),

+ rep("Leukemia",6),rep("Melanoma",10),rep("Lung",9),

+ rep("Ovarian",7),rep("Prostate",2),rep("Renal",8))

Next command returns an array with the rownames of all tables

> Names<-sapply(NCI60Selec_ESet,rownames)

And if the following command is TRUE, it means of all matrix have the same
observations:

> unique(apply(Names[,-1],2,function(y)identical(y,Names[,1])))

[1] TRUE

Once the preprocessing of the experiment data is completed, the STATIS
method can be carried out using by calling DiStatis function of kimod package:
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> Z1<-DiStatis(NCI60Selec_ESet)

> class(Z1)

[1] "DiStatis"

attr(,"package")

[1] "kimod"

Z1 if an object of DiStatis S4-class, if is printing the main slots of Z1
are: distance. methods (that indicates the kind of distance (or scalar prod-
uct) that is calculated in each study, Inertia of Vectorial Correlation, Euclidean
image of studies, compromise matrix, P matrix for projection all observations
in consensus- space, representation quality of observations and trajectories(i.e,
the rows of the initial tables are projected in the the compromise-strucucture).
To obtain the euclidean image of studies, runs:

> RVPlot(Z1)

The figure 1 shows the relative contributions of each of the tables to Com-
ponents 1 and 2. Thus, we can see that Study 1 (correspondent to Agilent
platform it has the lowest contribute to the compromise.
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Figure 1: Contribution of all tables to the compromise.

To obtain the projection of observations on compromise, runs:
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> Tissues<-c(rep("Breast",5),rep("CNS",6),rep("Colon",7),

+ rep("Leukemia",6),rep("Melanoma",10),rep("Lung",9),

+ rep("Ovarian",7),rep("Prostate",2),rep("Renal",8))

> Colours<-c(rep(colors()[657],5),rep(colors()[637],6),

+ rep(colors()[537],7),rep(colors()[552],6),rep(colors()[57],10),

+ rep(colors()[300],9),rep(colors()[461],7),rep(colors()[450],2),

+ rep(colors()[432],8))

> CompPlot(Z1,xlabBar="",colObs=Colours,pch=15,las=1,

+ cex=2,legend=FALSE,barPlot=FALSE,cex.main=0.6,cex.lab=0.6,

+ cex.axis=0.6,las=1)

> legend("topleft",unique(Tissues),col=unique(Colours),

+ bty="n",pch=16,cex=1)

The figure 2 shows the projection of s cell lines onto the first two principal
components of Compromise-structure. Cell lines of leukemia, melanoma and
colon are clearly distinguished from the others. However, a melanoma cell line
has similar profiles to carcinomas (CNS, renal ovarian, lung). Furthermore, the
breast cancer varies widely, grouping itself some samples with colon tissues and
others with CNS.
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Figure 2: Compromise Plot. Projection of all tumoral tissues in the consensus
space.

The Sample Variability is obtained by using Bootstrap and BootPlot func-
tions. Bootstrap receives as argument an object of DiStatis Class and Boot-
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Plot performs the Sample-Variaibility-Plot (see figure ??). The Slot ”Compari-
sion.Boot”show difference between observations using the Bonferroni Correction
for all dimensions.

> B<-Bootstrap(Z1)

> BootPlot(B,Points=FALSE,cex.lab=0.7,cex.axis=0.7,

+ las=1,xlimi=c(-0.003,0.002),ylimi=c(-0.005,0.007)

+ ,legend=FALSE,col=Colours)

> legend("topleft",unique(Tissues),col=unique(Colours),

+ bty="n",pch=16,cex=1)

> Comparisions.Boot(B)

[[1]]

[[1]]$Pos

[1] "BR.BT_549" "BR.HS578T" "BR.MDA_MB_231" "CNS.SF_268"

[5] "CNS.SF_295" "CNS.SF_539" "CNS.SNB_19" "CNS.SNB_75"

[9] "CNS.U251" "LC.A549" "LC.EKVX" "LC.HOP_62"

[13] "LC.HOP_92" "LC.NCI_H226" "ME.M14" "ME.MALME_3M"

[17] "ME.SK_MEL_28" "ME.UACC_62" "OV.OVCAR_4" "OV.OVCAR_5"

[21] "OV.OVCAR_8" "OV.SK_OV_3" "RE.786_0" "RE.A498"

[25] "RE.ACHN" "RE.CAKI_1" "RE.RXF_393" "RE.SN12C"

[29] "RE.TK_10" "RE.UO_31"

[[1]]$Neg

[1] "BR.MCF7" "CO.COLO205" "CO.HCC_2998" "CO.HCT_116" "CO.HCT_15"

[6] "CO.HT29" "CO.KM12" "CO.SW_620" "LC.NCI_H460" "LC.NCI_H522"

[11] "LE.CCRF_CEM" "LE.HL_60" "LE.K_562" "LE.MOLT_4" "LE.RPMI_8226"

[16] "LE.SR"

[[2]]

[[2]]$Pos

[1] "BR.BT_549" "BR.HS578T" "BR.MDA_MB_231" "CNS.SF_268"

[5] "CNS.SF_295" "CNS.SF_539" "CNS.SNB_19" "CNS.SNB_75"

[9] "CNS.U251" "LC.A549" "LC.EKVX" "LC.HOP_62"

[13] "LC.HOP_92" "LC.NCI_H226" "ME.M14" "ME.MALME_3M"

[17] "ME.SK_MEL_28" "ME.UACC_62" "OV.OVCAR_4" "OV.OVCAR_5"

[21] "OV.OVCAR_8" "OV.SK_OV_3" "RE.786_0" "RE.A498"

[25] "RE.ACHN" "RE.CAKI_1" "RE.RXF_393" "RE.SN12C"

[29] "RE.TK_10" "RE.UO_31"

[[2]]$Neg

[1] "BR.MCF7" "CO.COLO205" "CO.HCC_2998" "CO.HCT_116" "CO.HCT_15"

[6] "CO.HT29" "CO.KM12" "CO.SW_620" "LC.NCI_H460" "LC.NCI_H522"

[11] "LE.CCRF_CEM" "LE.HL_60" "LE.K_562" "LE.MOLT_4" "LE.RPMI_8226"

[16] "LE.SR"

>

On figure 3 can be seen than then melanoma tissues have high internal
variability. Moreover, from slot(B,”Comparisions.Boot”), we can see that Colon,
Leukemia, BR.MCF and LCNCIH522 tissues separates from others.
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Figure 3: Sample-Variability Plot

For performs gene selection, responsibles of the tissues projections, and ex-
plore gene expression profiles, we can use the SelectVar function, that receives
an main argument of DiStatis class. This function allows to build the biplot for
continuous response, using an external procedure to obtained the regresors in
the linear model (see section 4). Furthermore, allows select genes using measures
of goodness of fit of the Models Biplot: adjusted R2, P-value with bonferroni
correction, AIC or BIC. The percentage of selected variables is an user input
(See figure 4).

> M1<-SelectVar(Z1,Crit="R2-Adj",perc=0.95)

> layout(matrix(c(1,1,1,1,1,1,2,2),c(1,1,1,1,1,1,2,2),byrow=TRUE))

> Biplot(M1,labelObs = FALSE,labelVars=FALSE,

+ colObs=Colours,Type="SQRT",las=1,cex.axis=0.8,

+ cex.lab=0.8,xlimi=c(-3,3),ylimi=c(-3,3))

> plot(0,type='n',axes=FALSE,ann=FALSE)
> legend("topright",unique(Tissues),col=unique(Colours),

+ bty="n",pch=15,cex=1)

Besides,f Groups argument in this function is TRUE, the variables will be
clustered using Euclidean distance and Ward algorithm (see figure 5).

Finally, to see relationships between gene clusters and tissues, may be used
the GroupProj function, that receives an main argument of SelectVar class. This
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Figure 4: Biplot. Projection of gene-selected on Compromise

function use the cluster package (Maechler et al., 2015) which is automatically
called in our package.

> A1<-GroupProj(M1,method="ward",metric="euclidean",NGroups=4)

> head(SortList(A1)[[1]])

(+1 over-exp) (-1 under-exp)

BR.MCF7 -1

BR.MDA_MB_231 -1

BR.HS578T 1

BR.BT_549 -1

BR.T47D -1

CNS.SF_268 1

>

The list shows that genes of cluster 1 are over-expressed in melanoma and
CSN tissues and under-expressed in colon and leukemia (black in figure 5).
The gene on cluster 2 are over-expressed in Breast, CSN, Lung, Renal, Ovarion
and Colon and under-expressed in melanoma and leukemia (red in figure 5).
The cluster 3 is related to under-expression in colon and leukemia tissues and
over-expression on CSN and melanoma, mainly (green in in figure 5) .
Finally, the cluster 4 is associated to high expression in Colon and leukemia
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Figure 5: Biplot. Projection of gene-selected on Compromise

tissues and breast: BR.MCF7 and BR.T47D. The list of all cluster gene is
obtained:

> A1<-GroupProj(M1,method="ward",metric="euclidean",NGroups=4)

> Groups(A1)

[[1]]

[1] "ACP5" "C10orf90" "C6orf218" "CA14" "DUSP4" "GPNMB"

[7] "KAT2B" "PLP1" "S100A1" "S100B" "SOX10"

[[2]]

[1] "ANXA3" "CA12" "ECHDC2" "F3" "FERMT1" "KRT8P23" "OCLN"

[8] "PTGES" "TBC1D2"

[[3]]

[1] "ARAP3" "BACE1" "BACE2" "C3orf59" "C9orf30" "FAM57A"

[7] "FKBP10" "GPC6" "LEPREL1" "LHFP" "LOC344978" "MLF1"

[13] "PDLIM2" "PPIC" "PRKD1" "PTPN21" "PVR" "RAB32"

[19] "SC65" "SMAD3" "SPEG" "SYNM" "VAMP3" "WWC2"

[[4]]

[1] "ATP1A3" "C19orf39" "C1orf131" "CPNE7" "ETV3" "FGD3"

[7] "GMFG" "GNPTAB" "HELZ" "HERC1" "HSPBAP1" "TOR2A"
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[13] "ZFP36"
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Session Info

> sessionInfo()

R version 3.6.1 (2019-07-05)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: OS X El Capitan 10.11.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] kimod_1.14.0

loaded via a namespace (and not attached):

[1] compiler_3.6.1 parallel_3.6.1 tools_3.6.1

[4] Biobase_2.46.0 BiocGenerics_0.32.0 cluster_2.1.0
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