
1http://genome.ucsc.
edu/
2http://www.
biomart.org/

Making and Utilizing TxDb Objects

Marc Carlson, Patrick Aboyoun, Hervé Pagès, Seth Falcon,
Martin Morgan

February 15, 2020

1 Introduction

The GenomicFeatures package retrieves and manages transcript-related features from
the UCSC Genome Bioinformatics1 and BioMart2 data resources. The package is
useful for ChIP-chip, ChIP-seq, and RNA-seq analyses.

suppressPackageStartupMessages(library('GenomicFeatures'))

2 TxDb Objects

The GenomicFeatures package uses TxDb objects to store transcript metadata. This
class maps the 5’ and 3’ untranslated regions (UTRs), protein coding sequences
(CDSs) and exons for a set of mRNA transcripts to their associated genome. TxDb
objects have numerous accessors functions to allow such features to be retrieved
individually or grouped together in a way that reflects the underlying biology.

All TxDb objects are backed by a SQLite database that manages genomic locations
and the relationships between pre-processed mRNA transcripts, exons, protein coding
sequences, and their related gene identifiers.

3 Retrieving Data from TxDb objects

3.1 Loading Transcript Data

There are two ways that users can load pre-existing data to generate a TxDb ob-
ject. One method is to use the loadDb method to load the object directly from an
appropriate .sqlite database file.

Here we are loading a previously created TxDb object based on UCSC known gene
data. This database only contains a small subset of the possible annotations for
human and is only included to demonstrate and test the functionality of the Ge-
nomicFeatures packageas a demonstration.

http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://www.biomart.org/
http://www.biomart.org/

Making and Utilizing TxDb Objects

samplefile <- system.file("extdata", "hg19_knownGene_sample.sqlite",

package="GenomicFeatures")

txdb <- loadDb(samplefile)

txdb

TxDb object:

Db type: TxDb

Supporting package: GenomicFeatures

Data source: UCSC

Genome: hg19

Organism: Homo sapiens

UCSC Table: knownGene

Resource URL: http://genome.ucsc.edu/

Type of Gene ID: Entrez Gene ID

Full dataset: no

miRBase build ID: NA

transcript_nrow: 178

exon_nrow: 620

cds_nrow: 523

Db created by: GenomicFeatures package from Bioconductor

Creation time: 2014-10-08 10:31:15 -0700 (Wed, 08 Oct 2014)

GenomicFeatures version at creation time: 1.17.21

RSQLite version at creation time: 0.11.4

DBSCHEMAVERSION: 1.0

In this case, the TxDb object has been returned by the loadDb method.

More commonly however, we expect that users will just load a TxDb annotation
package like this:

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene #shorthand (for convenience)

txdb

TxDb object:

Db type: TxDb

Supporting package: GenomicFeatures

Data source: UCSC

Genome: hg19

Organism: Homo sapiens

Taxonomy ID: 9606

UCSC Table: knownGene

Resource URL: http://genome.ucsc.edu/

Type of Gene ID: Entrez Gene ID

Full dataset: yes

miRBase build ID: GRCh37

transcript_nrow: 82960

2

Making and Utilizing TxDb Objects

exon_nrow: 289969

cds_nrow: 237533

Db created by: GenomicFeatures package from Bioconductor

Creation time: 2015-10-07 18:11:28 +0000 (Wed, 07 Oct 2015)

GenomicFeatures version at creation time: 1.21.30

RSQLite version at creation time: 1.0.0

DBSCHEMAVERSION: 1.1

Loading the package like this will also create a TxDb object, and by default that
object will have the same name as the package itself.

3.2 Pre-filtering data based on Chromosomes

It is possible to filter the data that is returned from a TxDb object based on it’s
chromosome. This can be a useful way to limit the things that are returned if you
are only interested in studying a handful of chromosomes.

To determine which chromosomes are currently active, use the seqlevels method.
For example:

head(seqlevels(txdb))

[1] "chr1" "chr2" "chr3" "chr4" "chr5" "chr6"

Will tell you all the chromosomes that are active for the TxDb.Hsapiens.UCSC.hg19.knownGene
TxDb object (by default it will be all of them).

If you then wanted to only set Chromosome 1 to be active you could do it like this:

seqlevels(txdb) <- "chr1"

So if you ran this, then from this point on in your R session only chromosome 1 would
be consulted when you call the various retrieval methods... If you need to reset back
to the original seqlevels (i.e. to the seqlevels stored in the db), then set the seqlevels
to seqlevels0(txdb).

seqlevels(txdb) <- seqlevels0(txdb)

Exercise 1
Use seqlevels to set only chromsome 15 to be active. BTW, the rest of this vignette
will assume you have succeeded at this.

Solution:

seqlevels(txdb) <- "chr15"

seqlevels(txdb)

3

Making and Utilizing TxDb Objects

[1] "chr15"

3.3 Retrieving data using the select method

The TxDb objects inherit from AnnotationDb objects (just as the ChipDb and OrgDb
objects do). One of the implications of this relationship is that these object ought to
be used in similar ways to each other. Therefore we have written supporting columns,
keytypes, keys and select methods for TxDb objects.

These methods can be a useful way of extracting data from a TxDb object. And
they are used in the same way that they would be used to extract information about
a ChipDb or an OrgDb object. Here is a simple example of how to find the UCSC
transcript names that match with a set of gene IDs.

keys <- c("100033416", "100033417", "100033420")

columns(txdb)

[1] "CDSCHROM" "CDSEND" "CDSID" "CDSNAME" "CDSSTART"

[6] "CDSSTRAND" "EXONCHROM" "EXONEND" "EXONID" "EXONNAME"

[11] "EXONRANK" "EXONSTART" "EXONSTRAND" "GENEID" "TXCHROM"

[16] "TXEND" "TXID" "TXNAME" "TXSTART" "TXSTRAND"

[21] "TXTYPE"

keytypes(txdb)

[1] "CDSID" "CDSNAME" "EXONID" "EXONNAME" "GENEID" "TXID"

[7] "TXNAME"

select(txdb, keys = keys, columns="TXNAME", keytype="GENEID")

’select()’ returned 1:1 mapping between keys and columns

GENEID TXNAME

1 100033416 uc001yxl.4

2 100033417 uc001yxo.3

3 100033420 uc001yxr.3

Exercise 2
For the genes in the example above, find the chromosome and strand information
that will go with each of the transcript names.

Solution:

columns(txdb)

[1] "CDSCHROM" "CDSEND" "CDSID" "CDSNAME" "CDSSTART"

[6] "CDSSTRAND" "EXONCHROM" "EXONEND" "EXONID" "EXONNAME"

4

Making and Utilizing TxDb Objects

[11] "EXONRANK" "EXONSTART" "EXONSTRAND" "GENEID" "TXCHROM"

[16] "TXEND" "TXID" "TXNAME" "TXSTART" "TXSTRAND"

[21] "TXTYPE"

cols <- c("TXNAME", "TXSTRAND", "TXCHROM")

select(txdb, keys=keys, columns=cols, keytype="GENEID")

’select()’ returned 1:1 mapping between keys and columns

GENEID TXNAME TXCHROM TXSTRAND

1 100033416 uc001yxl.4 chr15 +

2 100033417 uc001yxo.3 chr15 +

3 100033420 uc001yxr.3 chr15 +

3.4 Methods for returning GRanges objects

Retrieving data with select is useful, but sometimes it is more convenient to extract
the result as GRanges objects. This is often the case when you are doing counting
or specialized overlap operations downstream. For these use cases there is another
family of methods available.

Perhaps the most common operations for a TxDb object is to retrieve the genomic
coordinates or ranges for exons, transcripts or coding sequences. The functions tran
scripts, exons, and cds return the coordinate information as a GRanges object.

As an example, all transcripts present in a TxDb object can be obtained as follows:

GR <- transcripts(txdb)

GR[1:3]

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr15 20362688-20364420 + | 53552 uc001yte.1

[2] chr15 20487997-20496811 + | 53553 uc001ytf.1

[3] chr15 20723929-20727150 + | 53554 uc001ytj.3

seqinfo: 1 sequence from hg19 genome

The transcripts function returns a GRanges class object. You can learn a lot more
about the manipulation of these objects by reading the GenomicRanges introductory
vignette. The show method for a GRanges object will display the ranges, seqnames
(a chromosome or a contig), and strand on the left side and then present related
metadata on the right side. At the bottom, the seqlengths display all the possible
seqnames along with the length of each sequence.

5

Making and Utilizing TxDb Objects

The strand function is used to obtain the strand information from the transcripts.
The sum of the Lengths of the Rle object that strand returns is equal to the length
of the GRanges object.

tx_strand <- strand(GR)

tx_strand

factor-Rle of length 3337 with 2 runs

Lengths: 1732 1605

Values : + -

Levels(3): + - *

sum(runLength(tx_strand))

[1] 3337

length(GR)

[1] 3337

In addition, the transcripts function can also be used to retrieve a subset of the
transcripts available such as those on the +-strand of chromosome 1.

GR <- transcripts(txdb, filter=list(tx_chrom = "chr15", tx_strand = "+"))

length(GR)

[1] 1732

unique(strand(GR))

[1] +

Levels: + - *

The promoters function computes a GRanges object that spans the promoter region
around the transcription start site for the transcripts in a TxDb object. The upstream
and downstream arguments define the number of bases upstream and downstream
from the transcription start site that make up the promoter region.

PR <- promoters(txdb, upstream=2000, downstream=400)

PR

GRanges object with 3337 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

uc001yte.1 chr15 20360688-20363087 + | 53552 uc001yte.1

uc001ytf.1 chr15 20485997-20488396 + | 53553 uc001ytf.1

uc001ytj.3 chr15 20721929-20724328 + | 53554 uc001ytj.3

uc021sex.1 chr15 20737312-20739711 + | 53555 uc021sex.1

uc010tzb.1 chr15 20740235-20742634 + | 53556 uc010tzb.1

...

uc021syy.1 chr15 102302656-102305055 - | 56884 uc021syy.1

6

Making and Utilizing TxDb Objects

uc002cdf.1 chr15 102462863-102465262 - | 56885 uc002cdf.1

uc002cds.2 chr15 102518897-102521296 - | 56886 uc002cds.2

uc010utv.1 chr15 102518897-102521296 - | 56887 uc010utv.1

uc010utw.1 chr15 102518897-102521296 - | 56888 uc010utw.1

seqinfo: 1 sequence from hg19 genome

The exons and cds functions can also be used in a similar fashion to retrive genomic
coordinates for exons and coding sequences.

Exercise 3
Use exons to retrieve all the exons from chromosome 15. How does the length of
this compare to the value returned by transcripts?

Solution:

EX <- exons(txdb)

EX[1:4]

GRanges object with 4 ranges and 1 metadata column:

seqnames ranges strand | exon_id

<Rle> <IRanges> <Rle> | <integer>

[1] chr15 20362688-20362858 + | 192986

[2] chr15 20362943-20363123 + | 192987

[3] chr15 20364397-20364420 + | 192988

[4] chr15 20487997-20488227 + | 192989

seqinfo: 1 sequence from hg19 genome

length(EX)

[1] 10771

length(GR)

[1] 1732

3.5 Working with Grouped Features

Often one is interested in how particular genomic features relate to each other, and
not just their location. For example, it might be of interest to group transcripts by
gene or to group exons by transcript. Such groupings are supported by the tran

scriptsBy, exonsBy, and cdsBy functions.

The following call can be used to group transcripts by genes:

7

Making and Utilizing TxDb Objects

GRList <- transcriptsBy(txdb, by = "gene")

length(GRList)

[1] 799

names(GRList)[10:13]

[1] "100033424" "100033425" "100033427" "100033428"

GRList[11:12]

GRangesList object of length 2:

$`100033425`

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr15 25324204-25325381 + | 53638 uc001yxw.4

seqinfo: 1 sequence from hg19 genome

##

$`100033427`

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr15 25326433-25326526 + | 53640 uc001yxz.3

seqinfo: 1 sequence from hg19 genome

The transcriptsBy function returns a GRangesList class object. As with GRanges
objects, you can learn more about these objects by reading the GenomicRanges in-
troductory vignette. The show method for a GRangesList object will display as a list
of GRanges objects. And, at the bottom the seqinfo will be displayed once for the
entire list.

For each of these three functions, there is a limited set of options that can be passed
into the by argument to allow grouping. For the transcriptsBy function, you can
group by gene, exon or cds, whereas for the exonsBy and cdsBy functions can only
be grouped by transcript (tx) or gene.

So as a further example, to extract all the exons for each transcript you can call:

GRList <- exonsBy(txdb, by = "tx")

length(GRList)

[1] 3337

names(GRList)[10:13]

[1] "53561" "53562" "53563" "53564"

8

Making and Utilizing TxDb Objects

GRList[[12]]

GRanges object with 1 range and 3 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank

<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr15 22043463-22043502 + | 193028 <NA> 1

seqinfo: 1 sequence from hg19 genome

As you can see, the GRangesList objects returned from each function contain loca-
tions and identifiers grouped into a list like object according to the type of feature
specified in the by argument. The object returned can then be used by functions like
findOverlaps to contextualize alignments from high-throughput sequencing.

The identifiers used to label the GRanges objects depend upon the data source used
to create the TxDb object. So the list identifiers will not always be Entrez Gene IDs,
as they were in the first example. Furthermore, some data sources do not provide a
unique identifier for all features. In this situation, the group label will be a synthetic
ID created by GenomicFeatures to keep the relations between features consistent in
the database this was the case in the 2nd example. Even though the results will
sometimes have to come back to you as synthetic IDs, you can still always retrieve
the original IDs.

Exercise 4
Starting with the tx_ids that are the names of the GRList object we just made, use
select to retrieve that matching transcript names. Remember that the list used a
by argument = "tx", so the list is grouped by transcript IDs.

Solution:

GRList <- exonsBy(txdb, by = "tx")

tx_ids <- names(GRList)

head(select(txdb, keys=tx_ids, columns="TXNAME", keytype="TXID"))

’select()’ returned 1:1 mapping between keys and columns

TXID TXNAME

1 53552 uc001yte.1

2 53553 uc001ytf.1

3 53554 uc001ytj.3

4 53555 uc021sex.1

5 53556 uc010tzb.1

6 53557 uc021sey.1

Finally, the order of the results in a GRangesList object can vary with the way in
which things were grouped. In most cases the grouped elements of the GRangesList
object will be listed in the order that they occurred along the chromosome. However,

9

Making and Utilizing TxDb Objects

when exons or CDS are grouped by transcript, they will instead be grouped according
to their position along the transcript itself. This is important because alternative
splicing can mean that the order along the transcript can be different from that
along the chromosome.

3.6 Predefined grouping functions

The intronsByTranscript, fiveUTRsByTranscript and threeUTRsByTranscript are
convenience functions that provide behavior equivalent to the grouping functions,
but in prespecified form. These functions return a GRangesList object grouped by
transcript for introns, 5’ UTR’s, and 3’ UTR’s, respectively. Below are examples of
how you can call these methods.

length(intronsByTranscript(txdb))

[1] 3337

length(fiveUTRsByTranscript(txdb))

[1] 1825

length(threeUTRsByTranscript(txdb))

[1] 1803

3.7 Getting the actual sequence data

The GenomicFeatures package also provides provides functions for converting from
ranges to actual sequence (when paired with an appropriate BSgenome package).

library(BSgenome.Hsapiens.UCSC.hg19)

Loading required package: BSgenome

Loading required package: Biostrings

Loading required package: XVector

##

Attaching package: ’Biostrings’

The following object is masked from ’package:base’:

##

strsplit

Loading required package: rtracklayer

tx_seqs1 <- extractTranscriptSeqs(Hsapiens, TxDb.Hsapiens.UCSC.hg19.knownGene,

use.names=TRUE)

10

Making and Utilizing TxDb Objects

And, once these sequences have been extracted, you can translate them into proteins
with translate:

suppressWarnings(translate(tx_seqs1))

A AAStringSet instance of length 3337

width seq names

[1] 125 EDQDDEARVQYEGFRPGMYV...TPQHMHCGAAFWA*FSDSCH uc001yte.1

[2] 288 RIAS*GRAEFSSAQTSEIQR...SVFYSVYFNYGNNCFFTVTD uc001ytf.1

[3] 588 RSGQRLPEQPEAEGGDPGKQ...DLLENETHLYLCSIKICFSS uc001ytj.3

[4] 10 HHLNCRPQTG uc021sex.1

[5] 9 STVTLPHSQ uc010tzb.1

...

[3333] 10 QVPMRVQVGQ uc021syy.1

[3334] 306 MVTEFIFLGLSDSQELQTFL...MKTAIRRLRKWDAHSSVKF* uc002cdf.1

[3335] 550 LAVSLFFDLFFLFMCICCLL...PRRLHPAQLEILY*KHTVGF uc002cds.2

[3336] 496 LAVSLFFDLFFLFMCICCLL...ETFASCTARDPLLKAHCWFL uc010utv.1

[3337] 531 LAVSLFFDLFFLFMCICCLL...PRRLHPAQLEILY*KHTVGF uc010utw.1

Exercise 5
But of course this is not a meaningful translation, because the call to extractTran

scriptSeqs will have extracted all the transcribed regions of the genome regardless
of whether or not they are translated. Look at the manual page for extractTran

scriptSeqs and see how you can use cdsBy to only translate only the coding regions.

Solution:

cds_seqs <- extractTranscriptSeqs(Hsapiens,

cdsBy(txdb, by="tx", use.names=TRUE))

translate(cds_seqs)

A AAStringSet instance of length 1875

width seq names

[1] 102 MYVRVEIENVPCEFVQNIDP...QRLLKYTPQHMHCGAAFWA* uc001yte.1

[2] 435 MEWKLEQSMREQALLKAQLT...GSNCCVPFFCWAWPPRRRR* uc010tzc.1

[3] 317 MKIANNTVVTEFILLGLTQS...MKRLLSRHVVCQVDFIIRN* uc001yuc.1

[4] 314 METANYTKVTEFVLTGLSQT...EVKAAMRKLVTKYILCKEK* uc010tzu.2

[5] 317 MKIANNTVVTEFILLGLTQS...MKRLLSRHVVCQVDFIIRN* uc010tzv.2

...

[1871] 186 MAGGVLPLRGLRALCRVLLF...LGRSEFKDICQQNVFLQVY* uc010ush.1

[1872] 258 MYNSKLWEASGHWQHYSENM...VNFLKKDLWLTLTWITVVH* uc002bxl.3

[1873] 803 MAAEALAAEAVASRLERQEE...IDKLKNLRKTRTLNAEEAF* uc002bxm.3

[1874] 306 MVTEFIFLGLSDSQELQTFL...MKTAIRRLRKWDAHSSVKF* uc002cdf.1

[1875] 134 MSESINFSHNLGQLLSPPRC...GETQESVESRVLPGPRHRH* uc010utv.1

11

Making and Utilizing TxDb Objects

4 Creating New TxDb Objects or Packages

The GenomicFeatures package provides functions to create TxDb objects based on
data downloaded from UCSC Genome Bioinformatics or BioMart. The following
subsections demonstrate the use of these functions. There is also support for creating
TxDb objects from custom data sources using makeTxDb; see the help page for this
function for details.

4.1 Using makeTxDbFromUCSC

The function makeTxDbFromUCSC downloads UCSC Genome Bioinformatics transcript
tables (e.g. "knownGene", "refGene", "ensGene") for a genome build (e.g. "mm9",
"hg19"). Use the supportedUCSCtables utility function to get the list of tables known
to work with makeTxDbFromUCSC.

supportedUCSCtables(genome="mm9")

tablename track subtrack

1 knownGene UCSC Genes <NA>

2 knownGeneOld8 Old UCSC Genes <NA>

3 knownGeneOld7 Old UCSC Genes <NA>

4 knownGeneOld6 Old UCSC Genes <NA>

5 knownGeneOld4 Old UCSC Genes <NA>

6 knownGeneOld3 Old UCSC Genes <NA>

7 ccdsGene CCDS <NA>

8 refGene RefSeq Genes <NA>

9 xenoRefGene Other RefSeq <NA>

10 vegaGene Vega Genes Vega Protein Genes

11 vegaPseudoGene Vega Genes Vega Pseudogenes

12 ensGene Ensembl Genes <NA>

13 acembly AceView Genes <NA>

14 nscanPasaGene N-SCAN N-SCAN PASA-EST

15 nscanGene N-SCAN N-SCAN

16 sgpGene SGP Genes <NA>

17 geneid Geneid Genes <NA>

18 genscan Genscan Genes <NA>

19 exoniphy Exoniphy <NA>

mm9KG_txdb <- makeTxDbFromUCSC(genome="mm9", tablename="knownGene")

The function makeTxDbFromUCSC also takes an important argument called circ_seqs

to label which chromosomes are circular. The argument is a character vector of strings
that correspond to the circular chromosomes (as labeled by the source). To discover
what the source calls their chromosomes, use the getChromInfoFromUCSC function to
list them. By default, there is a supplied character vector that will attempt to label

12

Making and Utilizing TxDb Objects

all the mitochondrial chromosomes as circular by matching to them. This is the DE

FAULT_CIRC_SEQS vector. It contains strings that usually correspond to mitochondrial
chromosomes. Once the database has been generated with the circular chromosomes
tagged in this way, all subsequent analysis of these chromosomes will be able to
consider their circularity for analysis. So it is important for the user to make sure
that they pass in the correct strings to the circ_seqs argument to ensure that the
correct sequences are tagged as circular by the database.

head(getChromInfoFromUCSC("hg19"))

Download and preprocess the ’chrominfo’ data frame ... OK

chrom length

1 chr1 249250621

2 chr2 243199373

3 chr3 198022430

4 chr4 191154276

5 chr5 180915260

6 chr6 171115067

4.2 Using makeTxDbFromBiomart

Retrieve data from BioMart by specifying the mart and the data set to the makeTxDbFrom
Biomart function (not all BioMart data sets are currently supported):

mmusculusEnsembl <- makeTxDbFromBiomart(dataset="mmusculus_gene_ensembl")

As with the makeTxDbFromUCSC function, the makeTxDbFromBiomart function also has
a circ_seqs argument that will default to using the contents of the DEFAULT_CIRC_SEQS
vector. And just like those UCSC sources, there is also a helper function called
getChromInfoFromBiomart that can show what the different chromosomes are called
for a given source.

Using the makeTxDbFromBiomart makeTxDbFromUCSC functions can take a while and
may also require some bandwidth as these methods have to download and then
assemble a database from their respective sources. It is not expected that most
users will want to do this step every time. Instead, we suggest that you save your
annotation objects and label them with an appropriate time stamp so as to facilitate
reproducible research.

4.3 Using makeTxDbFromEnsembl

The makeTxDbFromEnsembl function creates a TxDb object for a given organism by
importing the genomic locations of its transcripts, exons, CDS, and genes from an
Ensembl database.

13

Making and Utilizing TxDb Objects

See ?makeTxDbFromEnsembl for more information.

4.4 Using makeTxDbFromGFF

You can also extract transcript information from either GFF3 or GTF files by us-
ing the makeTxDbFromGFF function. Usage is similar to makeTxDbFromBiomart and
makeTxDbFromUCSC.

4.5 Saving and Loading a TxDb Object

Once a TxDb object has been created, it can be saved to avoid the time and band-
width costs of recreating it and to make it possible to reproduce results with identical
genomic feature data at a later date. Since TxDb objects are backed by a SQLite
database, the save format is a SQLite database file (which could be accessed from
programs other than R if desired). Note that it is not possible to serialize a TxDb
object using R’s save function.

saveDb(mm9KG_txdb, file="fileName.sqlite")

And as was mentioned earlier, a saved TxDb object can be initialized from a .sqlite
file by simply using loadDb.

mm9KG_txdb <- loadDb("fileName.sqlite")

4.6 Using makeTxDbPackageFromUCSC and makeTxDbPackageFromBiomart

It is often much more convenient to just make an annotation package out of your
annotations. If you are finding that this is the case, then you should consider the con-
venience functions: makeTxDbPackageFromUCSC and makeTxDbPackageFromBiomart.
These functions are similar to makeTxDbFromUCSC and makeTxDbFromBiomart except
that they will take the extra step of actually wrapping the database up into an an-
notation package for you. This package can then be installed and used as of the
standard TxDb packages found on in the Bioconductor repository.

5 Session Information

R version 3.6.2 (2019-12-12)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: OS X El Capitan 10.11.6

##

Matrix products: default

14

Making and Utilizing TxDb Objects

BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

##

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

##

other attached packages:

[1] BSgenome.Hsapiens.UCSC.hg19_1.4.0

[2] BSgenome_1.54.0

[3] rtracklayer_1.46.0

[4] Biostrings_2.54.0

[5] XVector_0.26.0

[6] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2

[7] GenomicFeatures_1.38.2

[8] AnnotationDbi_1.48.0

[9] Biobase_2.46.0

[10] GenomicRanges_1.38.0

[11] GenomeInfoDb_1.22.0

[12] IRanges_2.20.2

[13] S4Vectors_0.24.3

[14] BiocGenerics_0.32.0

##

loaded via a namespace (and not attached):

[1] Rcpp_1.0.3 lattice_0.20-38

[3] prettyunits_1.1.1 Rsamtools_2.2.2

[5] assertthat_0.2.1 digest_0.6.24

[7] BiocFileCache_1.10.2 R6_2.4.1

[9] RSQLite_2.2.0 evaluate_0.14

[11] httr_1.4.1 highr_0.8

[13] pillar_1.4.3 zlibbioc_1.32.0

[15] rlang_0.4.4 progress_1.2.2

[17] curl_4.3 blob_1.2.1

[19] Matrix_1.2-18 rmarkdown_2.1

[21] BiocParallel_1.20.1 stringr_1.4.0

[23] RCurl_1.98-1.1 bit_1.1-15.2

[25] biomaRt_2.42.0 DelayedArray_0.12.2

[27] compiler_3.6.2 xfun_0.12

[29] pkgconfig_2.0.3 askpass_1.1

[31] htmltools_0.4.0 openssl_1.4.1

[33] tidyselect_1.0.0 SummarizedExperiment_1.16.1

[35] tibble_2.1.3 GenomeInfoDbData_1.2.2

15

Making and Utilizing TxDb Objects

[37] matrixStats_0.55.0 XML_3.99-0.3

[39] crayon_1.3.4 dplyr_0.8.4

[41] dbplyr_1.4.2 GenomicAlignments_1.22.1

[43] bitops_1.0-6 rappdirs_0.3.1

[45] grid_3.6.2 DBI_1.1.0

[47] magrittr_1.5 stringi_1.4.5

[49] vctrs_0.2.2 BiocStyle_2.14.4

[51] tools_3.6.2 bit64_0.9-7

[53] glue_1.3.1 purrr_0.3.3

[55] hms_0.5.3 yaml_2.2.1

[57] BiocManager_1.30.10 memoise_1.1.0

[59] knitr_1.28

16

	1 Introduction
	2 TxDb Objects
	3 Retrieving Data from TxDb objects
	3.1 Loading Transcript Data
	3.2 Pre-filtering data based on Chromosomes
	3.3 Retrieving data using the select method
	3.4 Methods for returning GRanges objects
	3.5 Working with Grouped Features
	3.6 Predefined grouping functions
	3.7 Getting the actual sequence data

	4 Creating New TxDb Objects or Packages
	4.1 Using [functioncolor]makeTxDbFromUCSC
	4.2 Using [functioncolor]makeTxDbFromBiomart
	4.3 Using [functioncolor]makeTxDbFromEnsembl
	4.4 Using [functioncolor]makeTxDbFromGFF
	4.5 Saving and Loading a TxDb Object
	4.6 Using [functioncolor]makeTxDbPackageFromUCSC and [functioncolor]makeTxDbPackageFromBiomart

	5 Session Information

