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1 Introduction

Characterization of biological processes can be performed in great detail with
the increased generation of omics data on different functional levels of the cell.
Especially interpretation of time-series omics data measured in parallel with
different platforms is a complex but promising task, needing consideration of
time-independent combination of omics data and additionally time-dependent
signaling analysis. As each measurement technique shows a certain bias and
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has natural limitations in identifying full signaling responses [27], such cross-
platform analysis is an up-to-date approach in order to connect biological im-
plications on different signaling levels. Using diverse data types is expected to
provide a deeper understanding of global biological functions and the underlying
complex processes [1].
This is why computational data analysis tools for interpretation of data from
proteomics and transcriptomics measurements in parallel are needed.
pwOmics is a tool for pathway-based level-specific data comparison and analysis
of single time point or time-series omics data measured in parallel. It provides
individual analysis workflows for the different omics data sets (see Figure 1) and
in addition enables consensus analysis of omics data as shown in the workflow
overview in Figure 2.

Figure 1: pwOmics downstream and upstream analysis.

Up to this point analysis is restricted to human species. In future an expansion
of the package is possible dependent on available online open access database
information.

2 Databases

As pwOmics is a package for data integration based on prior pathway and tran-
scription knowledge data, it is necessary to define the databases to work with.
Three different kinds of databases are necessary to do all analyses steps:

1. Pathway databases:
The user can choose from Biocarta [14], Reactome [12, 3], PID [22] from
the National Cancer Institute (NCI) and KEGG [9, 8].

2. Protein-protein interaction (PPI) database:
STRING [5].

3. Transcription factor (TF) - target gene databases:
The user can choose from ChEA [11], Pazar [18, 17] and/or decide to spec-
ify an own file e.g. based on a commercial database.

The pathway database information is used to identify the pathways of the dif-
ferentially abundant proteins in the downstream analysis as well as upstream
protein regulators of TFs in the upstream analysis. The PPI database STRING
[5] was chosen to define the protein net for the consensus analysis. The TF
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Figure 2: pwOmics workflow overview.
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- target gene databases information is necessary for the TF identification in
pathways in the downstream analysis. Additionally the upstream TFs of dif-
ferentially expressed genes/transcripts are identified in the upstream analysis
based on this information.
In downstream analysis the pathway gene set information is used, whereas in
the upstream analysis also the pathway topology information is exploited.

The database information is downloaded internally via STRINGdb and Anno-
tationHub [13] package. In case the author is interested also in the metadata of
the pathway database and TF - target database it can be received by

> library(pwOmics)

> library(AnnotationHub)

> ah = AnnotationHub()

> #pathway databases

> pw = query(ah, "NIH Pathway Interaction Database")

> pw[1]

AnnotationHub with 1 record

# snapshotDate(): 2015-05-26

# names(): AH22329

# $dataprovider: NIH Pathway Interaction Database

# $species: Homo sapiens

# $rdataclass: biopax

# $title: BioCarta.owl.gz

# $description: BioCarta BioPax file from NCI Pathway Interaction Database

# $taxonomyid: 9606

# $genome: hg19

# $sourcetype: BioPax

# $sourceurl: ftp://ftp1.nci.nih.gov/pub/PID/BioPAX/BioCarta.owl.gz

# $sourcelastmodifieddate: 2009-09-09

# $sourcesize: 338343

# $tags: BioCarta, BioPax, Pathway Interaction Database

# retrieve record with 'object[["AH22329"]]'

> #TF-target databases

> chea = query(ah, "ChEA")

> chea[1]

AnnotationHub with 1 record

# snapshotDate(): 2015-05-26

# names(): AH22237

# $dataprovider: ChEA

# $species: NA

# $rdataclass: data.frame

# $title: chea-background.zip

# $description: ChEA background file, containing transcription factor data t...

# $taxonomyid: NA

# $genome: NA

# $sourcetype: Zip

# $sourceurl: http://amp.pharm.mssm.edu/result/kea/chea-background.zip
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# $sourcelastmodifieddate: 2015-03-09

# $sourcesize: 3655103

# $tags: ChEA, Transcription Factors

# retrieve record with 'object[["AH22237"]]'

> pazar = query(ah, "Pazar")

> pazar[1]

AnnotationHub with 1 record

# snapshotDate(): 2015-05-26

# names(): AH22238

# $dataprovider: Pazar

# $species: NA

# $rdataclass: GRanges

# $title: pazar_ABS_20120522.csv

# $description: TF - Target Gene file from pazar_ABS_20120522

# $taxonomyid: NA

# $genome: NA

# $sourcetype: CSV

# $sourceurl: http://www.pazar.info/tftargets/pazar_ABS_20120522.csv

# $sourcelastmodifieddate: 2012-06-04

# $sourcesize: 120202

# $tags: Pazar, Transcription Factors

# retrieve record with 'object[["AH22238"]]'

In case you want to use TF - target gene information which is not part of the
mentioned databases but e.g. part of a commercial database, a user-specified
file can be used for the analysis. This file should be a ‘.txt’ file with first column
transcription factors and second column target gene symbols without a header,
e.g.:

REST SUPT7L
REST SUV420H1
REST SUV420H2
REST SVOP
REST SYCN
REST SYN2
REST SYP
REST SYPL2
REST SYT1
...

The STRING PPI-information is downloaded automatically while processing
and analyzing the data: The STRINGdb package [5] is used here.

3 Example dataset

The example dataset used here for demonstration purposes is the one presented
in [26], which comprises the mitogenic response of human mammary epithelial
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cells to epidermal growth factor (EGF). This dataset includes whole genome
time course microarray data measured with NimbleGen whole genome 60-mer
oligonucleotide arrays (Design Version 2003 10 27) at time points 0, 1, 4, 8,
13, 18 and 24 hr after EGF stimulation. The complementary proteomics data
was measured with LC-FTICR (Fourier-transform ion cyclotron resonance-mass
spectrometry coupled with advanced capillary liquid chromatography) at time
points 0.25, 1, 4, 8, 13, 18 and 24 hours after EGF stimulation. Preprocessing
of data was done as described in [26] resulting in lists of significant genes and
proteins for each time point as log10 expression ratios relative to the time 0 hr
controls.

4 Data pre-processing

pwOmics is a package for secondary data analysis, i.e. it needs already pre-
processed data as input for the analysis. The input required is

1. a list of all protein IDs measured,

2. a list of all gene/transcript IDs measured,

3. a list of differentially abundant proteins + log fold changes,

4. a list of differentially expressed genes/transcripts + log fold changes.

The IDs need to be gene symbols, both for protein and gene/transcript data. In
case time-series data is analyzed inputs 3. and 4. needs to be specified for each
time point. It is absolutely necessary, that all proteins and genes/transcript in
inputs 3. and 4. are part of the lists of all protein IDs and all gene/transcript
IDs, respectively.

The OmicsData object is the format used for data analysis in pwOmics package.
It contains a list of four main elements:

1. OmicsD - here the omics data set, its description and the results are stored

2. PathwayD - here the chosen pathway databases and the generated Biopax
model is stored

3. TFtargetsD - here the chosen TF-target gene databases and the combined
TF-target gene information is stored

4. Status - The status variable equals ‘1’ in case not all information needed
for the analysis is read in yet and ‘2’ after identification of the first up-
stream/downstream signaling levels. As the enrichment step is not nec-
essarily part of the analysis and dependent on the pathway database and
the TF-target gene database the identification of signaling molecules in
further levels might not be successful, the status variable is not used in
the further analysis.
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Thus pwOmics reads in the omics data set provided by the user to the first
element of the OmicsData object and further on stores all the results in this
part as well.

This is why the user has to provide the omics data set in a special format: A
list needs to be generated with a protein list named ‘P’ as first element and a
gene/transcript list named ‘G’ as second element. These lists contain as first el-
ement a data frame with all (unique) protein IDs and gene/transcript IDs in the
first column, respectively, and as second element a list with data frames for each
time point of measurement. The data frames have two columns with the first one
containing the differentially abundant/expressed proteins or genes/transcripts
as gene symbols and the second column containing the corresponding log fold
changes, e.g.:

> data(OmicsExampleData)

> OmicsExampleData

Generated as in the following example:

OmicsExampleData = list(P = list(allPIDs,

list(PIDstp0.25, PIDstp1, PIDstp4, PIDstp8,

PIDstp13, PIDstp18, PIDstp24)),

G = list(allGIDs,

list(GIDstp1, GIDstp4, GIDstp8, GIDstp13,

GIDstp18, GIDstp24)))

> head(OmicsExampleData$P[[2]][[1]])

GeneSymbol X15min

1 MRPS17 0.6976049

2 RPS12 -1.0297977

3 SLC3A2 -1.2623327

4 RPL8 0.8304820

5 ACTB -2.4914461

6 ALDOA 0.8637013

In case the user only wants to analyze omics data from a single time point just
one data frame has to be specified.
The time points do not have to be the same for protein and gene/transcript
data and need to be specified when reading in the omics data set separately via
the ‘tp prots’ and ‘tp genes’ parameters of the ‘readOmics’ function.

> data_omics = readOmics(tp_prots = c(0.25, 1, 4, 8, 13, 18, 24),

+ tp_genes = c(1, 4, 8, 13, 18, 24),

+ OmicsExampleData,

+ PWdatabase = c("biocarta", "kegg", "nci",

+ "reactome"),

+ TFtargetdatabase = c("chea", "pazar"))

If data from a single timepoint measurement should be analyzed the user simply
assigns the experiment number ‘1’ for these parameters:
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#for single time point data set:

omics = list(P = list(allPIDs, list(PIDs_1)),

G = list(allGIDs, list(GIDs_1)))

data_omics = readOmics(tp_prots = c(1),

tp_genes = c(1),

OmicsExampleData,

PWdatabase = c("biocarta", "kegg", "nci",

"reactome"),

TFtargetdatabase = c("chea", "pazar"))

Additionally the selected databases have to be specified.

The stored information can be easily accessed via the following functions:

> getOmicsTimepoints(data_omics)

> head(getOmicsallProteinIDs(data_omics))

> head(getOmicsallGeneIDs(data_omics))

> head(getOmicsDataset(data_omics, writeData = FALSE)[[1]])

5 Individual analysis

As shown in Figure 1 the analysis is based on an individual analysis of the
proteomic and the genomic/transcriptomic data. The downstream analysis and
upstream analysis are described in the following subsections.
Prior to that the database information has to be read in. In a first step the TF-
target information can be made accessible to the OmicsData object by:

data_omics = readTFdata(data_omics)

Via the ‘TF target path’ parameter the path of the user-specified file can be
given. This information can be used additionally to the selected database con-
tent.
Secondly, the ‘readPWdata’ function takes the OmicsData object with the
provided information about the omics data set and the path of the prepared
‘.RData’ files from the pathway databases (see section 2) and automatically
generates the corresponding genelists of the pathway data if ‘loadgenelists =
FALSE’. In this step the automatic definition of internal differing IDs for differ-
ent pathway databases is necessary, which are stored in a new biopax model in
the OmicsData object.

data_omicsPW = readPWdata(data_omics,

loadgenelists = FALSE)

As the process of generating genelists with these IDs can take some time -
especially for rather big databases such as Reactome [12, 3] - the genelists for
the different databases are automatically stored in the working directory and
can be reused in another analysis when the corresponding path containing these
files is given to the ‘readPWdata’ function as loadgenelists parameter.

data_omics = readPWdata(data_omics,

loadgenelists = "Genelist_reactome.RData")
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Automatically the information of the selected databases and/or the correspond-
ing user-specified file are merged. The file format (if this option is used) should
be exactly as specified in section 2.

5.1 Downstream analysis

The downstream analysis is starting with the provided proteomic data (either
single time point data or time-series data). The first step is the identification of
the pathways in which the differentially abundant proteins play a role. pwOmics
performs this searching step on the basis of the provided proteomic data set and
the selected pathway database(s).
After reading in these information the user can follow the workflow for down-
stream analysis and identify the pathways in which the differentially abundant
proteins are present:

data_omics = identifyPWs(data_omics)

In a next step pathway enrichment can be conducted. The user can specify
the multiple testing correction method as well as the significance level for this
step. In case of few identified pathways this might result in too few pathways
for further analysis. In this case the enrichment step should be skipped.

data_omics = enrichPWs(data_omics, "BH", alpha = 0.05)

Following the workflow the next step is the identification of the transcription
factors in these (enriched) pathways, which is done with the information pro-
vided by the chosen TF-target gene database. The user can choose if only the
enriched pathways or all pathways should be considered for further analysis:

data_omics = identifyPWTFTGs(data_omics, only_enriched = FALSE)

For use of this function the working directory should contain the previously
generated genelists.

The results of the downstream analysis can be easily accessed by the following
functions:

getDS_PWs(data_omics)

getDS_TFs(data_omics)

getDS_TGs(data_omics)

#Access biopax model generated newly on basis of selected

#pathway databases:

getBiopaxModel(data_omics)

5.2 Upstream analysis

The upstream analysis is starting with the provided gene/transcript data (either
single time point data or time-series data). It first of all identifies the upstream
TFs of the differentially expressed genes/transcripts. This step is done with the
provided/selected information of TF-target gene pairs.
Given this information, the identification of upstream TFs can be done:
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data_omics = identifyTFs(data_omics)

Similarly as in the downstream analysis also in the upstream analysis an optional
enrichment step can be conducted, but here on the TF level.

data_omics = enrichTFs(data_omics, "BH", alpha = 0.05)

Upstream of the (enriched) TFs the regulator proteins can be identified with
the following function:

data_omics = identifyRsofTFs(data_omics, only_enriched = FALSE,

noTFs_inPW = 1, order_neighbors = 10)

Again, the user can specify if only the enriched TFs or all TFs should be con-
sidered for further analysis. The identification of upstream regulators is done in
the following way:

1. Identification of the pathways the previously identified TFs are part of.

2. Selection of pathways according to the user-specified parameter ‘noTFs inPW’:
Only those pathways are considered in further analysis with at least this
number of TFs in the pathway. Minimum number of TFs in the pathway
is 2.

3. Upstream regulators are identified for these TFs. This is done by finding
first for each TF the pathway neighborhood according to the user-specified
parameter ‘order neighbors’. This parameter specifies the order of the
identified pathway neighborhood. Then the intersection of all identified
neighborhoods for all TFs in a pathway is determined. The resulting path-
way node set is defined here as the set of regulator proteins.

In case the pathways under consideration do not have pathway components
in the downloaded biopax model, this will be indicated with a warning. This
warning can be ignored by the user in regard to the following analysis steps.
The results of the upstream analysis can be accessed with the following func-
tions:

getUS_TFs(data_omics)

getUS_PWs(data_omics)

getUS_regulators(data_omics)

6 Consensus analysis

The consensus analysis combines the results from upstream and downstream
analysis by constituting in particular the comparative analysis of the results
of the two different data sets. The intersection analysis simply compares the
results of the separate upstream and downstream analysis. The static consensus
analysis enables setting up static consensus graphs for each time point measured
in parallel. Finally, the dynamic consensus analysis provides the user with one
final dynamic consensus graph obtained from the data changes over time based
on dynamic bayesian network inference. The dynamic consensus analysis is self-
evidently only conductable with time-series data sets measured for proteome
and genome/transcriptome data in parallel.
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6.1 Intersection analysis

The intersection analysis of pwOmics is a simple comparative analysis of the
results of upstream and downstream analysis. Thus, it enables a comparison of
single time point data and time-series data, the latter also for non-corresponding
time points in the different data sets. The comparison is possible on the three
different functional levels considered in this package: On the proteome level, the
transcription factor level and gene/transcript level.

getProteinIntersection(data_omics,

tp_prot = 4,

tp_genes = 4)

getTFIntersection(data_omics,

tp_prot = 4,

tp_genes = 1)

getGenesIntersection(data_omics,

tp_prot = 4,

tp_genes = 13)

These functions not only enable a comparison of the same timepoints on the
distinct levels, but for time-series data sets also for non-matching time points:
With the time resolution of measuring omics data in most cases being pre-
defined by expected signaling changes and financial limitations the potential in
the interpretation of the results is strongly confined to the experimental design
decisions. Thus, measured signaling changes, which naturally consist of a su-
perposition of diverse time-scales of transcriptional and translational processes
and comprehend diverse frequency patterns [28], are dependent on the sampling.
This means for some of the signaling axes it might be the case, that

� changes are not detected at all as their rate is too high,

� hopefully most are represented in the data and

� some might be so slow that their change is not considered significant and
thus are excluded from analysis.

As the corresponding signaling changes are not expected to be seen at the same
time point in proteome data and gene/transcript data it is necessary to enable
also the comparison of non-corresponding time points.
The possibility to compare such time points naturally cannot account for the
changes not captured during measurement, however, it gives the possibility to
consider also the time needed for regulatory control mechanisms in the interpre-
tation of the measurement results - even if this shows considerable variations as
well.
In case the user wants to compare the corresponding time points on the three
levels simultaneously he can do so by using the following function:

gettpIntersection(data_omics)

6.2 Static consensus analysis

The static consensus analysis goes one step ahead and integrates the results
gained from the comparative analysis of the corresponding time points to a
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consensus net for each time point. The change of this consensus net over time
gives a first insight into the changes seen statically at the different time points.
However, the static consensus nets do not yet include information gathered over
time - as it is the case in the dynamic consensus analysis (see section 6.3). This
is why the static consensus analysis is also applicable for single time point mea-
surements.

The static consensus analysis is conducted by generation of a Steiner tree [10]
on basis of matching proteins and TFs identified in downstream and upstream
analysis for each corresponding time point. The underlying graph used is the
protein-protein-interaction (PPI) graph from the STRING database reduced to
the connected nodes. The matching proteins and TFs are considered as ter-
minal nodes and are connected via a shortest path-based approximation of the
Steiner tree algorithm [25, 21] across the reduced PPI-STRING-graph. Sub-
sequently knowledge of TF-target gene pairs from the chosen database is used
to expand the graph with matching genes/transcripts from both upstream and
downstream analysis. In case the consensus graph contains corresponding pro-
teins and genes/transcripts, feedback loops are added automically.

consensusGraphs = staticConsensusNet(data_omics)

6.3 Dynamic consensus analysis

Unlike the static consensus analysis, the dynamic consensus analysis takes into
consideration also the signaling changes over time by applying dynamic bayesian
network inference. The packages used for the dynamic consensus analysis are
longitudinal [16, 19] to adjust the format of the data and the actual network
inference part is done via the ebdbNet [20] package. This package includes an
iterative empirical Bayesian procedure with a Kalman filter estimating the pos-
terior distributions of the network parameters. The defined prior structure of
the network is used for a straightforward estimation of hyperparameters via an
expectation maximization (EM)-like algorithm and the dimension of the hidden
states are determined via the singular value decomposition (SVD) of a block-
Hangel matrix.

The nodes included into the network inference step are nodes which are part of
the static consensus graphs from corresponding time points of the two different
measurement types, i.e.

1. proteins identified in upstream and downstream analysis at the same time
points,

2. Steiner nodes identified via static consensus analysis,

3. TFs identified in upstream and downstream analysis at the same time
points and

4. genes/transcripts identified in upstream and downstream analysis at the
same time points.
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To apply dynamic network inference a reasonable number of measurements
needs to be available. As in most cases of parallel protein and gene/transcript
measurements only very few corresponding time steps are available it is neces-
sary to artificially introduce additional time steps. This is done by generating
smoothing splines applied on the log fold changes provided by the user under the
simplifying assumption of a gradual change of signaling between the different
time points.

This assumption, however, has to be applied consciously and carefully, as there
might be higher frequency signaling components superimposed (see for a com-
prehensive analysis of temporal dynamics of gene expression [28]). In theory a
signal has to be sampled 2 times its maximal frequency in order to be able to
reconstruct it exactly from time discrete measurements (Nyquist-Shannon sam-
pling theorem [24, 15]). This means only exact interpretation of those signaling
axes are possible that have a frequency which is smaller than half of the sam-
pling frequency. However, under certain preconditions on signal structure and
the sampling operator reconstruction of the original signal can be done with a
lower sampling rate [2]. This is an interesting starting point for a more compre-
hensive dynamic analysis of the expected signals and the sampling needed for
an extensive data mining of omics data sets measured in parallel, but exceeds
the scope of this package.

The number of time points generated additionally via smoothing splines is based
on simulation results of ebdbNet analysis for median area under the curve (AUC)
values of receiver operating characteristic (ROC) curves: In their results it was
shown that a plateau at around 50 to 75 time points was reached. Thus in
pwOmics 50 time points are predicted with smoothing splines in order to ap-
ply dynamic bayesian network inference on omics data sets measured in parallel.

After generation of these time points a block-Hankel matrix of autocovariances
is constructed based on the time series abundance/expression data. For this the
user needs to provide the laghankel parameter, specifying the maximum relevant
time lag to be used in constructing the block-Hankel matrix. With a singular
value decomposition (see function ‘hankel’ of ebdbNet package) the number of
hidden states can be determined. Here, the user can specify the cutoffhankel
parameter to choose the cutoff to determine the desired percent of total variance
explained by the singular values. Additional parameters on convergence criteria
and iterations performed can be specified. For further details the user is referred
to [20].

library(ebdbNet)

library(longitudinal)

dynInferredNet = dynamicConsensusNet(data_omics,

laghankel = 3,

cutoffhankel = 0.9)

7 Time profile clustering

An additional analysis option is clustering of co-regulation patterns over time.
It provides information about the signaling molecules with common dynamic
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behaviour and thus allows to draw conclusions in terms of signaling chronol-
ogy. Time profile clustering is performed as soft clustering based on the Mfuzz
package [6]. The advantage of this clustering method is that a protein, TF or
gene/transcript can be assigned to several clusters, thus reducing the sensitivity
to noise and the information loss hard clustering exhibits. It is implemented as
fuzzy c-means algorithm [7] and iteratively optimizes the objective function to
minimize the variation of objects within the clusters. The user needs to provide
a ‘min.std’ threshold parameter if proteins or genes/transcripts with a low stan-
dard deviation should be excluded. In addition the maximum number of cluster
centers which should be tested in the ‘minimum distance between cluster cen-
troid test’ has to by given. This number is used as initial number to determine
the data-specific maximal cluster number based on the number of distinct data
points. For more details see [6] and [23].

library(Mfuzz)

fuzzyClusters = clusterTimeProfiles(dynConsensusNet,

min.std = 0,

ncenters = 12)

8 Visualization

To complement the results from the different comparisons and analyses (ac-
cessible via the ‘get...’ functions) the pwOmics package provides visualization
functions for the different analyses. The consensus graphs of the static analysis
for one or more corresponding time points can be plotted with the following
function (see Figure 3):

plotConsensusGraph(consensusGraphs, data_omics)
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Figure 3: pwOmics static consensus graphs.

The dynamic consensus analysis result can be visualized as follows (see Figure 4):

plotdynConsensusNet(dynInferredNet, sig.level = 0.65)
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Here, the parameter ‘sig.level’ is the significance level used as cutoff for plotting
edges in the network and has to be specified in the range between 0 and 1.
Furthermore the user can indicate if unconnected nodes should be removed and
provide additional igraph [4] layout parameters.

Dynamic consensus net

MAPK14
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IL8

EGR1

consensus proteins
consensus genes

Figure 4: pwOmics dynamic consensus graph.

However, as the user can access the networks easily tkplot from the igraph R
package is a nice interactive graph drawing alternative. In addition plot param-
eters can be easily changed as the result networks are of class ‘igraph’.
In order to plot the results from time profile clustering (see Figure 5) the fol-
lowing function can be used:

plotTimeProfileClusters(fuzzyClusters)

The different colours represent the different clusters. The legend is only shown if
the number of genes and proteins is not too large. Otherwise the user can easily
access this information by having a look to the output of the ‘clusterTimePro-
files’ function which provides information about cluster centers, the number of
data points in each cluster of the closest hard clustering, cluster indices, and
additional parameters explained in detail in the ‘mfuzz’ documentation. In the
legend the attachments ‘ g’ and ‘ p’, respectively, indicate, if the node originally
derives from protein or gene/transcript measurements.
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Figure 5: pwOmics time profile clusters.

9 Session Information

� R Under development (unstable) (2015-03-11 r67980), Platform: x86 64-
unknown-linux-gnu (64-bit), Running under: Ubuntu precise (12.04.5 LTS)

� Locale: LC CTYPE=en US.UTF-8, LC NUMERIC=C,
LC TIME=en US.UTF-8, LC COLLATE=en US.UTF-8,
LC MONETARY=en US.UTF-8, LC MESSAGES=en US.UTF-8,
LC PAPER=en US.UTF-8, LC NAME=C, LC ADDRESS=C,
LC TELEPHONE=C, LC MEASUREMENT=en US.UTF-8,
LC IDENTIFICATION=C

� Attached base packages: tcltk, parallel, stats, graphics, grDevices, utils,
datasets, methods, base

� Other attached packages: ebdbNet 1.2.3, Mfuzz 2.27.1, DynDoc 1.45.0,
widgetTools 1.45.0, e1071 1.6-4, Biobase 2.27.3, BiocGenerics 0.13.11, lon-
gitudinal 1.1.11, corpcor 1.6.7, igraph 0.7.1, pwOmics 0.99.2

� Loaded via namespace (and not attached): Rcpp 0.11.5, XVector 0.7.4,
BiocInstaller 1.17.7, GenomeInfoDb 1.3.19, plyr 1.8.1,
AnnotationHub 1.99.82, tkWidgets 1.45.0, class 7.3-12, bitops 1.0-6,
biomaRt 2.23.5, digest 0.6.8, RSQLite 1.0.0, shiny 0.11.1, DBI 0.3.1,
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rBiopaxParser 2.5.0, stringr 0.6.2, httr 0.6.1, S4Vectors 0.5.23,
gtools 3.4.2, caTools 1.17.1, IRanges 2.1.44, stats4 3.2.0,
data.table 1.9.4, R6 2.0.1, AnnotationDbi 1.29.24, XML 3.98-1.1,
RJSONIO 1.3-0, gdata 2.13.3, reshape2 1.4.1, STRINGdb 1.7.0,
gplots 2.16.0, htmltools 0.2.6, GenomicRanges 1.19.54, mime 0.3,
interactiveDisplayBase 1.5.6, xtable 1.7-4, httpuv 1.3.2,
KernSmooth 2.23-14, RCurl 1.95-4.5, chron 2.3-45
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