
Introduction to the TPP package for analyzing Thermal Proteome

Profiling experiments

Dorothee Childs
European Molecular Biology Laboratory (EMBL),

Heidelberg, Germany
dorothee.childs@embl.de

TPP version 1.0.3 (Last revision 2015-07-21)

Abstract

Detecting the binding partners of a drug is one of the biggest challenges in drug research. Thermal Proteome
Profiling (TPP) addresses this question by combining the cellular thermal shift assay concept with mass spec-
trometry based proteome-wide protein quantitation [1]. Thereby, drug-target interactions can be inferred from
changes in the thermal stability of a protein upon drug binding, or upon downstream cellular regulatory events,
in an unbiased manner.

The analysis of TPP experiments requires several data analytic and statistical modeling steps. The package
TPP facilitates this process by providing exectuable workflows that conduct all necessary steps. This vignette
explains the use of the package. For details about the statistical methods, please refer to the paper [1].

Contents

1 Introduction 2

2 TPP-TR and TPP-CCR analysis 2

3 Analyzing TPP-TR experiments 2
3.1 Overview . 2
3.2 The configuration table . 3
3.3 The data tables . 3
3.4 Starting the whole workflow by analyzeTPPTR . 4
3.5 Starting individual steps of the workflow . 5

3.5.1 Data import . 5
3.5.2 Data normalization . 6
3.5.3 Melting curve fitting . 8
3.5.4 Significance assessment of melting point shifts . 10
3.5.5 Output table . 11

3.6 Analyzing data not produced by the accompanying isobarQuant package 11
3.6.1 Specifying customized column names for data import . 11
3.6.2 Specifying customized filtering criteria for normalization . 11

4 Analyzing TPP-CCR experiments 12
4.1 Starting the whole workflow by analyzeTPPCCR . 12
4.2 Starting individual steps of the workflow . 12

4.2.1 Data import . 12
4.2.2 Data normalization . 12
4.2.3 Data transformation . 13
4.2.4 Dose response curve fitting . 13

1

2 TPP

1 Introduction

To install the package, type the following commands into the R console

source("http://bioconductor.org/biocLite.R")

biocLite("TPP")

The installed package can be loaded by

library("TPP")

2 TPP-TR and TPP-CCR analysis

The TPP package performs two analysis workflows:

1. Analysis of temperature range (TR) experiments: TPP-TR experiments combine the cellular thermal shift
assay (CETSA) approach with high-throughput mass spectrometry (MS). They provide protein abundance
measurements at increasing temperatures for different treatment conditions. The data analysis comprises
cross-experiment normalization, melting curve fitting, and the statistical evaluation of the estimated melting
points in order to detect shifts induced by drug binding.

2. Analysis of compound concentration range (CCR) experiments: TPP-CCR experiments combine the
isothermal dose-response (ITDR) approach with high-throughput MS. The CCR workflow of the package per-
forms median normalization, fits dose response curves, and determines the pEC50 values for proteins showing
dose dependent changes in thermal stability upon drug treatment.

The following sections describe both functionalities in detail.

3 Analyzing TPP-TR experiments

3.1 Overview

The function analyzeTPPTR executes the whole workflow from data import through normalization and curve fitting to
statistical analysis. Nevertheless, all of these steps can be invoked separately by the user. The corresponding functions
can be recognized by their suffix tpptr. Here, we first show how to start the whole analysis using analyzeTPPTR.
Afterwards, we demonstrate how to carry out single steps individually.

Before you can start your analysis, you need to specify information about your experiments. This information
comprises the name, condition (treatment or vehicle), replicate, as well as the isobaric labels and corresponding
temperature values for each experiment.

The package retrieves this information from a configuration table that you need to specify before starting the analysis.
This table can either be a data frame that you define in your R session, or a spreadsheet in .xlsx or .csv format. In
a similar manner, the measurements themselves can either be provided as a list of data frames, or imported directly
from files during runtime.

We demonstrate the functionality of the package using the dataset hdacTR smallExample. It contains an illustrative
subset of a larger dataset which was obtained by TPP-TR experiments on K562 cells treated with the histone
deacetylase (HDAC) inhibitor panobinostat in the treatment groups and with vehicle in the control groups. The
experiments were performed for two conditions (vehicle and treatment), with two biological replicates each. The raw
MS data were processed with the Python package isobarQuant, which provides protein fold changes relative to the
protein abundance at the lowest temperature as input for the TPP package.

First, we load the data:

data("hdacTR_smallExample")

This command loads two objects:

1. hdacTR data: a list of data frames that contain the measurements to be analyzed,

TPP 3

2. hdacTR config: a configuration table with details about each experiment.

3.2 The configuration table

hdacTR config is an example of a configuration table in data frame format. The corresponding spreadsheet file is
provided together with the package and can be used as a template for your own analysis. It is stored in the folder
example data/TR example data in your package installation path. You can locate the example data folder on
your system by typing

system.file('example_data', package = 'TPP')

[1] "/tmp/Rtmpwpuo2K/Rinst64465632547a/TPP/example_data"

Let’s take a closer look at the content of the configuration table we just loaded:

print(hdacTR_config)

Experiment Condition Replicate 126 127L 127H 128L 128H 129L 129H 130L 130H 131L

1 Vehicle_1 Vehicle 1 67 63 59 56 53 50 47 44 41 37

2 Vehicle_2 Vehicle 2 67 63 59 56 53 50 47 44 41 37

3 Panobinostat_1 Treatment 1 67 63 59 56 53 50 47 44 41 37

4 Panobinostat_2 Treatment 2 67 63 59 56 53 50 47 44 41 37

It contains the following columns:

• Experiment: name of each experiment.
• Condition: experimental conditions (Vehicle or Treatment).
• Replicate: experimental replicates.
• Label columns: each isobaric label names a column that contains the temperature the label corresponds to in

the individual experiments.

An additional Path column must be added to the table if the data should be imported from files instead of data
frames.

3.3 The data tables

hdacTR data is a list of data frames containing the measurements for each experimental condition and replicate:

summary(hdacTR_data)

Length Class Mode

Vehicle_1 13 data.frame list

Vehicle_2 13 data.frame list

Panobinostat_1 13 data.frame list

Panobinostat_2 13 data.frame list

They each contain between 508 and 509 proteins each:

data.frame(hdacTR_config[, c("Experiment", "Condition", "Replicate")],

"No.of Proteins"=sapply(hdacTR_data, nrow), row.names=NULL)

Experiment Condition Replicate No.of.Proteins

1 Vehicle_1 Vehicle 1 508

2 Vehicle_2 Vehicle 2 509

3 Panobinostat_1 Treatment 1 508

4 Panobinostat_2 Treatment 2 509

Each of the four data frames in hdacTR data stores protein measurements in a row wise manner. For illustration,
let’s look at some example rows of the first vehicle group.

hdacVehicle1 <- hdacTR_data[["Vehicle_1"]]

head(hdacVehicle1)

4 TPP

gene_name qssm qupm rel_fc_126 rel_fc_127L rel_fc_127H rel_fc_128L rel_fc_128H

3286 HDAC1 5 4 0.00510359 0.0207088 0.0512665 0.0840443 0.158568

3584 HDAC10 2 1 0.00000000 0.0180900 0.2511430 0.4034580 0.582994

3000 HDAC2 7 5 0.02006570 0.0589077 0.0718648 0.1011260 0.556456

2089 HDAC3 2 2 0.08706000 0.0891621 0.2103700 0.3226950 0.459124

1602 HDAC4 4 4 0.04371190 0.1069100 0.1630480 0.2411050 0.382980

607 HDAC6 5 4 0.00176507 0.0260307 0.0449839 0.0759111 0.202110

rel_fc_129L rel_fc_129H rel_fc_130L rel_fc_130H rel_fc_131L

3286 0.410777 0.622789 0.750158 0.866156 1

3584 0.631114 0.769128 1.013330 1.093940 1

3000 0.850373 0.842952 0.885415 0.972225 1

2089 0.651561 0.626848 0.785872 0.740518 1

1602 0.596979 0.831169 0.936279 0.955209 1

607 0.366981 0.638239 0.891903 0.932266 1

The columns can be grouped into three categories:

• a column with a protein identifier. Called gene name in the current dataset,
• the ten fold change columns all start with the prefix rel fc , followed by the isobaric labels 126 to 131L,
• other columns that contain additional information. In the given example, the columns qssm and qupm were

produced by the python package isobarQuant when analyzing the raw MS data. This metadata will be included
in the package’s output table. Additionally, it can be filtered according to pre-specified quality criteria for
construction of the normalization set. The original results of the isobarQuant package contain more columns
of this type. They are omitted here to keep the size of the example data within reasonable limits.

3.4 Starting the whole workflow by analyzeTPPTR

The default settings of the TPP package are configured to work with the output of the python package isobarQuant,
but you can adjust it for your own data, if desired. When analyzing data from isobarQuant, all you need to provide
is:

• the configuration table,
• the experimental data, either as a list of data frames, or as tab-delimited .txt files,
• a desired output location, for example

resultPath = file.path(getwd(), 'Panobinostat_Vignette_Example')

If you want to use data from other sources than isobarQuant, see section 3.6 for instructions.

By default, plots for the fitted melting curves are produced and stored in pdf format for each protein during runtime
and we highly recommend that you do this when you analyse your data. However, producing plots for all 510 proteins
in our dataset can be time consuming and would slow down the execution of the current example. Thus, we first
disable plotting by setting the argument plotCurves=FALSE. Afterwards, we will produce plots for individual proteins
of interest. Note that, in practice, you will only be able to examine the results in an unbiased manner if you allow
the production of all plots.

We start the workflow by typing

TRresults <- analyzeTPPTR(configTable=hdacTR_config, data=hdacTR_data, nCores=2,

resultPath=resultPath, plotCurves=FALSE)

This performs the melting curve fitting procedure in parallel on a maximum of two CPUs (requirement for package
vignettes). Without specifying the nCores argument, fitting is performed by default on the maximum number of
CPUs on your device.

analyzeTPPTR produces a table that summarizes the results for each protein. It is returned as a data frame and
exported to an Excel spreadsheet at the specified output location. It contains the following information for each
experiment:

• normalized fold changes,
• melting curve parameters,
• statistical test results,

TPP 5

• quality checks on the curve parameters and p-values,
• additional columns from the original input data.

The quality of the result for each protein is determined by four filters. Currently, these criteria are checked only when
the experimental setup includes exactly two replicates:

Filter Column name in result table
1. Is the minimum slope in each of the control vs. treatment exper-
iments < −0.06?

minSlopes less than 0.06

2. Are both the melting point differences in the control vs treatment
experiments greater than the melting point difference between the
two untreated controls?

meltP diffs T vs V greater V1 vs V2

3. Is one of the p values for the two replicate experiments < 0.05
and the other one < 0.1?

min pVals less 0.05 and max pVals less 0.1

4. Do the melting point shifts in the two control vs treatment ex-
periments have the same sign (i.e. protein was either stabilized or
destabilized in both cases)?

meltP diffs have same sign

The current example revealed 7 out of 510 proteins that fulfilled all four requirements:

tr_targets <- subset(TRresults, fulfills_all_4_requirements)$Protein_ID

print(tr_targets)

[1] "BAG2" "DDB2" "HDAC10" "HDAC6" "HDAC8" "IQSEC2" "STX4"

3 of the detected proteins belong to the HDAC family. Because Panobinostat is known to act as an HDAC inhibitor,
we select them for further investigation.

hdac_targets <- grep("HDAC", tr_targets, value=TRUE)

print(hdac_targets)

[1] "HDAC10" "HDAC6" "HDAC8"

We next investigate these proteins by estimating their melting curves for the different treatment conditions. However,
we can only reproduce the same curves as before if the data is normalized by the same normalization procedure.
Although we only want to fit and plot melting curves for a few proteins, the normalization therefore needs to
incorporate all proteins in order to obtain the same normalizaton coefficients as before. The following section
explains how to invoke these and other steps of the workflow independently of each other.

3.5 Starting individual steps of the workflow

3.5.1 Data import

Currently, the TPP package stores the data in ExpressionSets, and so we convert the data that we have into the
needed format. An advantage of the ExpressionSet container is its consistent and standardized handling of metadata
for the rows and columns of the data matrix. This ability is useful for the given data, because it enables the annotation
of each fold change column by temperature values as well as the corresponding isobaric labels. Furthermore, each
protein can be annotated with several additional properties which can be used for normalization or processing of the
package output.

The function tpptrImport imports the data and converts it into ExpressionSets:

trData <- tpptrImport(configTable=hdacTR_config, data=hdacTR_data)

Importing data...

##

Importing TR dataset: Vehicle 1

Removing duplicate identifiers using quality column ’qupm’...

508 out of 508 rows kept for further analysis.

-> Vehicle 1 contains 508 proteins.

-> 504 out of 508 proteins (99.21%) suitable for curve fit (criterium: > 2 valid fold changes

per protein).

Importing TR dataset: Vehicle 2

6 TPP

Removing duplicate identifiers using quality column ’qupm’...

509 out of 509 rows kept for further analysis.

-> Vehicle 2 contains 509 proteins.

-> 504 out of 509 proteins (99.02%) suitable for curve fit (criterium: > 2 valid fold changes

per protein).

Importing TR dataset: Panobinostat 1

Removing duplicate identifiers using quality column ’qupm’...

508 out of 508 rows kept for further analysis.

-> Panobinostat 1 contains 508 proteins.

-> 504 out of 508 proteins (99.21%) suitable for curve fit (criterium: > 2 valid fold changes

per protein).

Importing TR dataset: Panobinostat 2

Removing duplicate identifiers using quality column ’qupm’...

509 out of 509 rows kept for further analysis.

-> Panobinostat 2 contains 509 proteins.

-> 499 out of 509 proteins (98.04%) suitable for curve fit (criterium: > 2 valid fold changes

per protein).

The resulting object trData is a list of ExpressionSets for each experimental condition and replicate. Going back to
the example data shown above (vehicle group 1), the corresponding object looks as follows:

trData[["Vehicle_1"]]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 508 features, 10 samples

element names: exprs

protocolData: none

phenoData

sampleNames: rel_fc_131L rel_fc_130H ... rel_fc_126 (10 total)

varLabels: label temperature normCoeff

varMetadata: labelDescription

featureData

featureNames: AAK1 AAMDC ... ZFYVE20 (508 total)

fvarLabels: meltPoint inflPoint ... qupm (10 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: Vehicle_1 Vehicle 1

Each ExpressionSet Si contains the fold change measurements (accessible by exprs(Si)), column annotation for
isobaric labels and temperatures (accessible by phenoData(Si)), additional measurements obtained for each protein
(accessible by featureData(Si)), and the protein names (accessible by featureNames(Si)).

3.5.2 Data normalization

Whether normalization needs to be performed and what method is best suited depends on the experiment. Currently,
the TPP package offers the normalization procedure described by Savitski (2014)[1]. It comprises the following steps:

1. In each experiment, filter proteins according to predefined quality criteria.
2. Among the remaining proteins, identify those that were quantified in all experiments (jointP).
3. In each experiment, extract the proteins belonging to jointP. Subselect those proteins that pass the predefined

fold change filters.
4. Select the biggest remaining set among all experiments (normP).
5. For each experiment, compute median fold changes over the proteins in normP and fit a sigmoidal melting

curves through the medians.
6. Use the melting curve with the best R2 value to normalize all proteins in each experiment.

The function tpptrNormalize performs all described steps. It requires a list of filtering criteria for construction
of the normalization set. We distinguish between conditions on fold changes and on additional data columns. The
function tpptrDefaultNormReqs offers an example object with default criteria for both categories:

TPP 7

print(tpptrDefaultNormReqs())

$fcRequirements

fcColumn thresholdLower thresholdUpper

1 7 0.4 0.6

2 9 0.0 0.3

3 10 0.0 0.2

##

$otherRequirements

colName thresholdLower thresholdUpper

1 qssm 4 Inf

By default, tpptrNormalize applies the filtering criteria in tpptrDefaultNormReqs. If you want to normalize a
dataset in which the column indicating measurement quality has a different name than ’qssm’, you have to change
the column name and threshold accordingly. Because our example data was produced by isobarQuant, we can use
the default settings here.

We normalize the imported data as follows:

normResults <- tpptrNormalize(data=trData)

Creating normalization set:

1. Filtering by non fold change columns:

Filtering by annotation columns qssm in treatment group: Vehicle 1

Column qssm between 4 and Inf-> 312 out of 508 proteins passed

312 out of 508 proteins passed in total.

##

Filtering by annotation columns qssm in treatment group: Vehicle 2

Column qssm between 4 and Inf-> 362 out of 509 proteins passed

362 out of 509 proteins passed in total.

##

Filtering by annotation columns qssm in treatment group: Panobinostat 1

Column qssm between 4 and Inf-> 333 out of 508 proteins passed

333 out of 508 proteins passed in total.

##

Filtering by annotation columns qssm in treatment group: Panobinostat 2

Column qssm between 4 and Inf-> 364 out of 509 proteins passed

364 out of 509 proteins passed in total.

##

2. Find jointP:

Detecting intersect between treatment groups (jointP).

-> JointP contains 261 proteins.

##

3. Filtering fold changes:

Filtering fold changes in treatment group: Vehicle 1

Column 7 between 0.4 and 0.6 -> 30 out of 261 proteins passed

Column 9 between 0 and 0.3 -> 223 out of 261 proteins passed

Column 10 between 0 and 0.2 -> 233 out of 261 proteins passed

22 out of 261 proteins passed in total.

##

Filtering fold changes in treatment group: Vehicle 2

Column 7 between 0.4 and 0.6 -> 21 out of 261 proteins passed

Column 9 between 0 and 0.3 -> 215 out of 261 proteins passed

Column 10 between 0 and 0.2 -> 227 out of 261 proteins passed

14 out of 261 proteins passed in total.

##

Filtering fold changes in treatment group: Panobinostat 1

Column 7 between 0.4 and 0.6 -> 34 out of 261 proteins passed

Column 9 between 0 and 0.3 -> 217 out of 261 proteins passed

Column 10 between 0 and 0.2 -> 224 out of 261 proteins passed

8 TPP

21 out of 261 proteins passed in total.

##

Filtering fold changes in treatment group: Panobinostat 2

Column 7 between 0.4 and 0.6 -> 15 out of 261 proteins passed

Column 9 between 0 and 0.3 -> 221 out of 261 proteins passed

Column 10 between 0 and 0.2 -> 225 out of 261 proteins passed

10 out of 261 proteins passed in total.

##

Experiment with most remaining proteins after filtering: Vehicle 1

-> NormP contains 22 proteins.

Computing normalization coefficients:

1. Computing fold change medians for proteins in normP.

2. Fitting melting curves to medians.

-> Experiment with best model fit: Vehicle 1 (R2: 0.9919)

3. Computing normalization coefficients

Creating QC plots to illustrate median curve fits.

Normalizing all proteins in all experiments.

Normalization successfully completed!

trDataNormalized <- normResults[["normData"]]

3.5.3 Melting curve fitting

Next we fit and plot melting curves for the detected HDAC targets. We first select the corresponding rows from the
imported data:

trDataHDAC <- lapply(trDataNormalized, function(d) d[featureNames(d) %in% hdac_targets,])

We fit melting curves for these proteins using the function tpptrCurveFit:

trDataHDAC <- tpptrCurveFit(data=trDataHDAC, resultPath=resultPath, nCores=1)

Fitting melting curves to 3 proteins.

Fitting melting curves for protein: HDAC10

Fitting melting curves for protein: HDAC6

Fitting melting curves for protein: HDAC8

Runtime (1 CPUs used): 1.17 secs

##

Melting curves fitted sucessfully!

12 out of 12 models with sufficient data points converged (100 %).

The melting curve parameters are now stored within the featureData of the ExpressionSets. For example, the
melting curves estimated for the Vehicle group have the following parameters:

pData(featureData(trDataHDAC[["Vehicle_1"]]))[,1:5]

meltPoint inflPoint slope plateau R_sq

HDAC10 53.45376 52.42318 -0.06759108 0.00000000 0.9467492

HDAC6 48.75631 48.24751 -0.10942668 0.02084157 0.9960670

HDAC8 46.48942 45.84351 -0.09146307 0.00000000 0.9962177

The melting curve plots were stored in subdirectory Melting Curves in resultPath. You can browse this directory
and inspect the melting curves and their parameters. In the following, you can see the plots that were placed in this
directory for the 3 detected targets:

TPP 9

0.0

0.5

1.0

1.5

40 50 60
Temperature [°C]

F
ra

ct
io

n
no

n−
de

na
tu

re
d

Panobinostat_1

Vehicle_1

Panobinostat_2

Vehicle_2

HDAC10

53.45

51.83

58.98

59.75

−0.068

−0.052

−0.069

−0.071

0

0

0

0

0.95

0.93

0.95

0.96

meltPoint slope plateau R2

Vehicle_1

Vehicle_2

Panobinostat_1

Panobinostat_2

0.0

0.5

1.0

1.5

40 50 60
Temperature [°C]

F
ra

ct
io

n
no

n−
de

na
tu

re
d

Panobinostat_1

Vehicle_1

Panobinostat_2

Vehicle_2

HDAC6

48.76

49.46

52.45

52.85

−0.11

−0.1

−0.083

−0.1

0.02

0.05

0

0.01

1

1

0.99

1

meltPoint slope plateau R2

Vehicle_1

Vehicle_2

Panobinostat_1

Panobinostat_2

10 TPP

0.0

0.5

1.0

1.5

40 50 60
Temperature [°C]

F
ra

ct
io

n
no

n−
de

na
tu

re
d

Panobinostat_1

Vehicle_1

Panobinostat_2

Vehicle_2

HDAC8

46.49

47.25

48.87

49.92

−0.091

−0.15

−0.13

−0.15

0

0.03

0.01

0.04

1

1

1

1

meltPoint slope plateau R2

Vehicle_1

Vehicle_2

Panobinostat_1

Panobinostat_2

3.5.4 Significance assessment of melting point shifts

Similar to the normalization explained earlier, significance assessment of melting point shifts has to be performed
on the whole dataset due to the binning procedure used for p-value computation. For the given dataset, we have
already analyzed all curve parameters by the function analyzeTPPTR. Here we show how you can start this procedure
independently of the other steps. This can be useful when you only need to re-compute the p-values (for example
with a different binning parameter) without the runtime intense curve fitting before.

Melting curve parameter analysis is performed by the function tpptrResultTable. It requires a list of Expression-
Sets with melting curve parameters stored in the featureData. To avoid runtime intensive repetitions of the curve
fitting procedure, analyzeTPPTR saved these objects as an intermediate result after curve fitting in the subdirectory
/dataObj. We can access them by the command:

load(file.path(resultPath, "dataObj", "fittedData.RData"), verbose=TRUE)

Loading objects:

trDataFitted

This loaded the object trDataFitted, which is a list of ExpressionSets in which the melting curve parameters have
already been stored in the featureData by tpptrCurveFit.

Now we start the curve parameter evaluation, trying a new bin width of 200 instead of the default value 300:

bNew <- 200

TRresultsBNew <- tpptrResultTable(data=trDataFitted, binWidth=bNew)

Creating results table.

Results table created successfully!

We can then compare the outcome to the results that we previously obtained with a bin width of 300:

tr_targetsBNew <- subset(TRresultsBNew, fulfills_all_4_requirements==TRUE)$Protein_ID

onlyB300 <- setdiff(tr_targets, tr_targetsBNew)

onlyBNew <- setdiff(tr_targetsBNew, tr_targets)

print(onlyB300)

TPP 11

[1] "DDB2"

print(onlyBNew)

[1] "CDK16"

3.5.5 Output table

Finally, we export the new results to an Excel spreadsheet:

tppExport(tab=TRresultsBNew, file=file.path(resultPath, paste("targets_binWidth",bNew,".xlsx",sep="")))

Writing results to file: /tmp/Rtmpwpuo2K/Rbuild64465a5b65e2/TPP/vignettes/Panobinostat Vignette Example/targets binWidth200.xlsx

File created successfully!

3.6 Analyzing data not produced by the accompanying isobarQuant package

3.6.1 Specifying customized column names for data import

By default, analyzeTPPTR looks for a protein ID column named gene name, and a quality control column named
qupm to assist in the decision between proteins with the same identifier. If these columns have different names in
your own dataset, you have to define the new names using the arguments idVar and qualColName. Similarly, the
argument fcStr has to be set to the new prefix of the fold change columns.

3.6.2 Specifying customized filtering criteria for normalization

You can set the filtering criteria for normalization set construction by modifying the supplied default settings. Re-
member to adjust the fold change column numbers in case you have more/ less than ten fold changes per experiment.

trNewReqs <- tpptrDefaultNormReqs()

print(trNewReqs)

$fcRequirements

fcColumn thresholdLower thresholdUpper

1 7 0.4 0.6

2 9 0.0 0.3

3 10 0.0 0.2

##

$otherRequirements

colName thresholdLower thresholdUpper

1 qssm 4 Inf

trNewReqs$otherRequirements[1,"colName"] <- "mycolName"

trNewReqs$fcRequirements[,"fcColumn"] <- c(6,8,9)

print(trNewReqs)

$fcRequirements

fcColumn thresholdLower thresholdUpper

1 6 0.4 0.6

2 8 0.0 0.3

3 9 0.0 0.2

##

$otherRequirements

colName thresholdLower thresholdUpper

1 mycolName 4 Inf

12 TPP

4 Analyzing TPP-CCR experiments

First, we load the data:

data("hdacCCR_smallExample")

This command loads two objects: the configuration tables for two replicates (hdacCCR config repl1/2) and two
data frames that contain the measurements of both TPP-CCR experiments to be analyzed (hdacCCR data repl1/2).

4.1 Starting the whole workflow by analyzeTPPCCR

We start the workflow for replicate 1 by typing

CCRresults <- analyzeTPPCCR(configTable=hdacCCR_config_repl1, data=hdacCCR_data_repl1,

resultPath=resultPath, plotCurves=FALSE)

The following proteins passed the criteria of displaying a clear response to the treatment, and enabling curve fitting
with R2 > 0.8:

ccr_targets <- subset(CCRresults, passed_filter)$Protein_ID

print(ccr_targets)

[1] "ALKBH1" "CHMP5" "ECH1" "HDAC1" "HDAC10" "HDAC2" "HDAC6" "HSPB11" "TTC38"

[10] "ZNF384"

4 of the selected proteins belong to the HDAC family. Because Panobinostat is known to act as an HDAC inhibitor,
we select them for further investigation.

hdac_targets <- grep("HDAC", ccr_targets, value=TRUE)

print(hdac_targets)

[1] "HDAC1" "HDAC10" "HDAC2" "HDAC6"

The following section explains how to invoke the individual steps of the workflow separately.

4.2 Starting individual steps of the workflow

4.2.1 Data import

The function tppccrImport imports the data and converts it into an ExpressionSet:

ccrData <- tppccrImport(configTable=hdacCCR_config_repl1, data=hdacCCR_data_repl1)

Importing data...

##

Importing CCR dataset: Panobinostat 1

Removing duplicate identifiers using quality column ’qupm’...

507 out of 507 rows kept for further analysis.

-> Panobinostat 1 contains 507 proteins.

-> 494 out of 507 proteins (97.44%) suitable for curve fit (criterium: > 2 valid fold changes

per protein).

Removing proteins with zero values in column qssm:

494 out of 507 proteins remaining after filtering.

4.2.2 Data normalization

Currently, the TPP package offers normalization by fold change medians for TPP-CCR experiments. We normalize
the imported data by

TPP 13

ccrDataNormalized <- tppccrNormalize(data=ccrData)

Normalizing data ...

done.

4.2.3 Data transformation

We next have to specify the type of response for each protein, and transform the data accordingly:

ccrDataTransformed <- tppccrTransform(data=ccrDataNormalized)

Transforming data ...

done.

4.2.4 Dose response curve fitting

Next we fit and plot dose response curves for the detected HDAC targets. We first select the corresponding rows
from the imported data:

ccrDataHDAC <- ccrDataTransformed[match(hdac_targets, featureNames(ccrDataTransformed)),]

We fit dose response curves for these proteins using the function tppccrCurveFit:

ccrResultsHDAC <- tppccrCurveFit(data=ccrDataHDAC, resultPath=resultPath)

Calculating pEC50s ...

Fitting dose response curve for protein: HDAC1

Fitting dose response curve for protein: HDAC10

Fitting dose response curve for protein: HDAC2

Fitting dose response curve for protein: HDAC6

Runtime: 1.15 secs

##

done.

This function produces a table that contains the dose response curve parameters and additional information about
each protein:

print(ccrResultsHDAC[,c(1, 12:15)])

Protein_ID pEC50 slope R_sq passed_filter

1 HDAC1 7.47 1.61 0.963 TRUE

2 HDAC10 8.25 1.00 0.859 TRUE

3 HDAC2 7.87 1.88 0.968 TRUE

4 HDAC6 6.37 2.03 0.954 TRUE

The dose response curve plots were stored in subdirectory DoseResponse Curves in resultPath. You can browse
this directory and inspect the fits and melting curve parameters. In the following, you can see the plot that were
placed in this directory for the 4 detected targets:

14 TPP

−0.5

0.0

0.5

1.0

1.5

−10 −9 −8 −7 −6 −5
cpd. conc. (log M)

no
rm

al
iz

ed
 a

pp
ar

en
t s

ta
bi

lit
y

(r
el

at
iv

e
to

 h
ig

he
st

 li
ga

nd
 c

on
ce

nt
ra

tio
n)

HDAC1

7.5 1.6 0.96

pEC50 slope R2

Panobinostat_1

−0.5

0.0

0.5

1.0

1.5

−10 −9 −8 −7 −6 −5
cpd. conc. (log M)

no
rm

al
iz

ed
 a

pp
ar

en
t s

ta
bi

lit
y

(r
el

at
iv

e
to

 h
ig

he
st

 li
ga

nd
 c

on
ce

nt
ra

tio
n)

HDAC10

8.2 1 0.86

pEC50 slope R2

Panobinostat_1

TPP 15

−0.5

0.0

0.5

1.0

1.5

−10 −9 −8 −7 −6 −5
cpd. conc. (log M)

no
rm

al
iz

ed
 a

pp
ar

en
t s

ta
bi

lit
y

(r
el

at
iv

e
to

 h
ig

he
st

 li
ga

nd
 c

on
ce

nt
ra

tio
n)

HDAC2

7.9 1.9 0.97

pEC50 slope R2

Panobinostat_1

−0.5

0.0

0.5

1.0

1.5

−10 −9 −8 −7 −6 −5
cpd. conc. (log M)

no
rm

al
iz

ed
 a

pp
ar

en
t s

ta
bi

lit
y

(r
el

at
iv

e
to

 h
ig

he
st

 li
ga

nd
 c

on
ce

nt
ra

tio
n)

HDAC6

6.4 2 0.95

pEC50 slope R2

Panobinostat_1

References

[1] Mikhail M Savitski, Friedrich BM Reinhard, Holger Franken, Thilo Werner, Maria Fälth Savitski, Dirk Eberhard,
Daniel Martinez Molina, Rozbeh Jafari, Rebecca Bakszt Dovega, Susan Klaeger, et al. Tracking cancer drugs in
living cells by thermal profiling of the proteome. Science, 346(6205):1255784, 2014.

	1 Introduction
	2 TPP-TR and TPP-CCR analysis
	3 Analyzing TPP-TR experiments
	3.1 Overview
	3.2 The configuration table
	3.3 The data tables
	3.4 Starting the whole workflow by analyzeTPPTR
	3.5 Starting individual steps of the workflow
	3.5.1 Data import
	3.5.2 Data normalization
	3.5.3 Melting curve fitting
	3.5.4 Significance assessment of melting point shifts
	3.5.5 Output table

	3.6 Analyzing data not produced by the accompanying isobarQuant package
	3.6.1 Specifying customized column names for data import
	3.6.2 Specifying customized filtering criteria for normalization

	4 Analyzing TPP-CCR experiments
	4.1 Starting the whole workflow by analyzeTPPCCR
	4.2 Starting individual steps of the workflow
	4.2.1 Data import
	4.2.2 Data normalization
	4.2.3 Data transformation
	4.2.4 Dose response curve fitting

