
graphBAM and MultiGraph classes.

N. Gopalakrishnan

December 8, 2014

1 graphBAM class

1.1 Introduction

The graphBAM class has been created as a more efficient replacement for the graphAM class in the
graph package. The adjacency matrix in the graphBAM class is represented as a bit array using a raw

vector. This significantly reduces the memory occupied by graphs having a large number of nodes. The
bit vector representation also provides advantages in terms of performing operations such as intersection
or union of graphs.

We first load the graph package which provides the class definition and methods for the graphBAM
class.

> library(graph)

One of the arguments df to the graphBAM constructor is a data.frame containing three columns:
”from”,”to” and ”weight”, each row in the data.frame representing an edge in the graph. The from

and to columns can be character vectors or factors, while the weight column must be a numeric
vector. The argument nodes are calculated from the unique names in the from and to columns of the
data.frame. The argument edgeMode should be a character vector, either ”directed” or ”undirected”
indicating whether the graph represented should be directed or undirected respectively.

1.2 A simple graph represented using graphBAM class

We proceed to represent a simple graph using the graphBAM class. Our example is a directed graph
representing airlines flying between different cities. In this example, cities represent the nodes of the
graph and each edge represents a flight from an originating city (from) to the destination city (to). The
weight represents the fare for flying between the from and to cities.

> df <- data.frame(from = c("SEA", "SFO", "SEA", "LAX", "SEA"),

+ to = c("SFO", "LAX", "LAX", "SEA", "DEN"),

+ weight = c( 90, 96, 124, 115, 259))

> g <- graphBAM(df, edgemode = "directed")

> g

A graphBAM graph with directed edges

Number of Nodes = 4

Number of Edges = 5

The cities (nodes) included in our graph object as well as the stored fares(weight) can be obtained
using the nodes and edgeWeights methods respectively.

> nodes(g)

1



[1] "DEN" "LAX" "SEA" "SFO"

> edgeWeights(g, index = c("SEA", "LAX"))

$SEA

DEN LAX SFO

259 124 90

$LAX

SEA

115

Additional nodes or edges can be added to our graph using the addNode and addEdge methods. For
our example, we first add a new city ”IAH” to our graph. We then add a flight connection between
”DEN” and ”IAH” having a fare of $120.

> g <- addNode("IAH", g)

> g <- addEdge(from = "DEN", to = "IAH", graph = g, weight = 120)

> g

A graphBAM graph with directed edges

Number of Nodes = 5

Number of Edges = 6

Similarly edges and nodes can be removed from the graph using the removeNode and removeEdge

methods respectively. We proceed to remove the flight connection from ”DEN” to ”IAH” and subse-
quently the node ”IAH”.

> g <- removeEdge(from ="DEN", to = "IAH", g)

> g <- removeNode(node = "IAH", g)

> g

A graphBAM graph with directed edges

Number of Nodes = 4

Number of Edges = 5

We can create a subgraph with only the cities ”DEN”, ”LAX”and ”SEA”using the subGraph method.

> g <- subGraph(snodes = c("DEN","LAX", "SEA"), g)

> g

A graphBAM graph with directed edges

Number of Nodes = 3

Number of Edges = 3

We can extract the from-to relationships for our graph using the extractFromTo method.

> extractFromTo(g)

from to weight

1 SEA DEN 259

2 SEA LAX 124

3 LAX SEA 115

2



1.3 Mice gene interaction data for brain tissue (SAGE data)

The C57BL/6J and C3H/HeJ mouse strains exhibit different cardiovascular and metabolic phenotypes
on the hyperlipidemic apolipoprotein E (Apoe) null background. The interaction data for the genes
from adipose, brain, liver and muscle tissue samples from male and female mice were studied. This
interaction data for the various genes is included in the graph package as a list of data.frames containing
information for from-gene, to-gene and the strength of interaction weight for each of the tissues
studied.

We proceed to load the data for male and female mice.

> data("esetsFemale")

> data("esetsMale")

We are interested in studying the interaction data for the genes in the brain tissue for male and
female mice and hence proceed to represent this data as directed graphs using graphBAM objects for
male and female mice.

> dfMale <- esetsMale[["brain"]]

> dfFemale <- esetsFemale[["brain"]]

> head(dfMale)

from to weight

1 10024402938 10024393150 0.835

2 10024415240 10024393156 0.667

3 10024403128 10024393162 0.312

4 10024409968 10024393162 0.482

5 10024393260 10024393163 0.997

6 10024394731 10024393165 0.714

> male <- graphBAM(dfMale, edgemode = "directed")

> female <- graphBAM(dfFemale, edgemode = "directed")

We are interested in pathways that are common to both male and female graphs for the brain
tissue and hence proceed to perform a graph intersection operation using the graphIntersect method.
Since edges can have different values of the weight attribute, we would like the result to have the sum
of the weight attribute in the male and female graphs. We pass in sum as the function for handling
weights to the edgeFun argument. The edgeFun argument should be passed a list of named functions
corresponding to the edge attributes to be handled during the intersection process.

> intrsct <- graphIntersect(male, female, edgeFun=list(weight = sum))

> intrsct

A graphBAM graph with directed edges

Number of Nodes = 2117

Number of Edges = 473

If node attributes were present in the graphBAM objects, a list of named function could be passed as
input to the graphIntersect method for handling them during the intersection process.

We proceed to remove edges from the graphBAM result we just calculated with a weight attribute
less than a numeric value of 0.8 using the removeEdgesByWeight method.

> resWt <- removeEdgesByWeight(intrsct, lessThan = 1.5)

3



Once we have narrowed down to the edges that we are interested in, we would like to change the
color attribute for these edges in our original graphBAM objects for the male and female graphs to ”red”.
Before an attribute can be added, we have to set its default value using the edgedataDefaults method.
For our example, we set the default value for the color attribute to white.

We first obtain the from - to relationship for the resWt graph using the extractFromTo method and
then make use of the edgeData method to update the ”color” edge attribute.

> ftSub <- extractFromTo(resWt)

> edgeDataDefaults(male, attr = "color") <- "white"

> edgeDataDefaults(female, attr = "color") <- "white"

> edgeData(male, from = as.character(ftSub[,"from"]),

+ to = as.character(ftSub[,"to"]), attr = "color") <- "red"

> edgeData(female, from = as.character(ftSub[,"from"]),

+ to = as.character(ftSub[,"to"]), attr = "color") <- "red"

>

2 MultiGraphs

2.1 Introduction

The MultiGraph class can be used to represent graphs that share a single node set and have have one
or more edge sets, each edge set representing a different type of interaction between the nodes. An
edgeSet object can be described as representing the relationship between a set of from-nodes and to-
nodes which can either be directed or undirected. A numeric value (weight) indicates the strength of
interaction between the connected edges.

Self loops are permitted in the MultiGraph class representation (i.e. the from-node is the same as
the to-node). The MultiGraph class supports the handling of arbitrary node and edge attributes. These
attributes are stored separately from the edge weights to facilitate efficient edge weight computation.

We shall load the graph and RBGL packages that we will be using. We will then create a MultiGraph
object and then spend some time examining some of the different functions that can be applied to
MultiGraph objects.

> library(graph)

> library(RBGL)

2.2 A simple MultiGraph example

We proceed to construct a MultiGraph object with directed edgeSets to represent the flight connections
of airlines Alaska, Delta, United and American that fly between the cities Baltimore, Denver, Houston,
Los Angeles, Seattle and San Francisco. For our example, the cities represent the nodes of the Multi-
Graph and we have one edgeSet each for the airlines. Each edgeSet represents the flight connections
from an originating city(from) to the destination city(to). The weight represents the fare for flying
between the from and to cities.

For each airline, we proceed to create a data.frame containing the originating city, the destination
city and the fare.

> ft1 <- data.frame(

+ from = c("SEA", "SFO", "SEA", "LAX", "SEA"),

+ to = c("SFO", "LAX", "LAX", "SEA", "DEN"),

+ weight = c( 90, 96, 124, 115, 259))

> ft2 <- data.frame(

+ from = c("SEA", "SFO", "SEA", "LAX", "SEA", "DEN", "SEA", "IAH", "DEN"),

4



+ to = c("SFO", "LAX", "LAX", "SEA", "DEN", "IAH", "IAH", "DEN", "BWI"),

+ weight= c(169, 65, 110, 110, 269, 256, 304, 256, 271))

> ft3 <- data.frame(

+ from = c("SEA", "SFO", "SEA", "LAX", "SEA", "DEN", "SEA", "IAH", "DEN", "BWI"),

+ to = c("SFO", "LAX", "LAX", "SEA", "DEN", "IAH", "IAH", "DEN", "BWI", "SFO"),

+ weight = c(237, 65, 156, 139, 281, 161, 282, 265, 298, 244))

> ft4 <- data.frame(

+ from = c("SEA", "SFO", "SEA", "SEA", "DEN", "SEA", "BWI"),

+ to = c("SFO", "LAX", "LAX", "DEN", "IAH", "IAH", "SFO"),

+ weight = c(237, 60, 125, 259, 265, 349, 191))

These data frames are then passed to MultiGraph class constructor as a named list, each member
of the list being a data.frame for an airline. A logical vector passed to the directed argument of
the MultiGraph constructor indicates whether the MultiGraph to be created should have directed or
undirected edge sets.

> esets <- list(Alaska = ft1, United = ft2, Delta = ft3, American = ft4)

> mg <- MultiGraph(esets, directed = TRUE)

> mg

MultiGraph with 6 nodes and 4 edge sets

edge_set directed edge_count

Alaska TRUE 5

United TRUE 9

Delta TRUE 10

American TRUE 7

The nodes (cities) of the MultiGraph object can be obtained by using the nodes method.

> nodes(mg)

[1] "BWI" "DEN" "IAH" "LAX" "SEA" "SFO"

To find the fares for all the flights that originate from SEA for the Delta airline, we can use the
mgEdgeData method.

> mgEdgeData(mg, "Delta", from = "SEA", attr = "weight")

$`SEA|DEN`

[1] 281

$`SEA|IAH`

[1] 282

$`SEA|LAX`

[1] 156

$`SEA|SFO`

[1] 237

We proceed to add some node attributes to the MultiGraph using the nodeData method. Before
node attributes can be added, we have to set a default value for each node attribute using the node-

DataDefuault method. For our example, we would like to set a default value of square for the node
attribute shape.

We would like to set the node attribute ”shape” for Seattle to the value "triangle" and that for
the cities that connect with Seattle to the value "circle".

5



> nodeDataDefaults(mg, attr="shape") <- "square"

> nodeData(mg, n = c("SEA", "DEN", "IAH", "LAX", "SFO"), attr = "shape") <-

+ c("triangle", "circle", "circle", "circle", "circle")

The node attribute shape for cities we have not specifically assigned a value (such as BWI) gets
assigned the default value of ”square”.

> nodeData(mg, attr = "shape")

$BWI

[1] "square"

$DEN

[1] "circle"

$IAH

[1] "circle"

$LAX

[1] "circle"

$SEA

[1] "triangle"

$SFO

[1] "circle"

We then update the edge attribute color for the Delta airline flights that connect with Seattle to
”green”. For the remaining Delta flights that connect to other destination in the MultiGraph, we would
like to assign a default color of ”red”.

Before edge attributes can be added to the MultiGraph, their default values must be set using
the mgEdgeDataDefaults method. Subsequently, the megEdgeData<- method can be used to update
specific edge attributes.

> mgEdgeDataDefaults(mg, "Delta", attr = "color") <- "red"

> mgEdgeData(mg, "Delta", from = c("SEA", "SEA", "SEA", "SEA"),

+ to = c("DEN", "IAH", "LAX", "SFO"), attr = "color") <- "green"

> mgEdgeData(mg, "Delta", attr = "color")

$`DEN|BWI`

[1] "red"

$`IAH|DEN`

[1] "red"

$`SEA|DEN`

[1] "green"

$`DEN|IAH`

[1] "red"

$`SEA|IAH`

6



[1] "green"

$`SEA|LAX`

[1] "green"

$`SFO|LAX`

[1] "red"

$`LAX|SEA`

[1] "red"

$`BWI|SFO`

[1] "red"

$`SEA|SFO`

[1] "green"

We are only interested in studying the fares for the airlines Alaska, United and Delta and hence
would like to create a smaller MultiGraph object containing edge sets for only these airlines. This can
be achieved using the subsetEdgeSets method.

> g <- subsetEdgeSets(mg, edgeSets = c("Alaska", "United", "Delta"))

We proceed to find out the lowest fares for Alaska, United and Delta along the routes common to
them. To do this, we make use of the edgeSetIntersect0 method which computes the intersection of
all the edgesets in a MultiGraph. While computing the intersection of edge sets, we are interesting in
retaining the lowest fares in cases where different airlines flying along a route have different fares. To do
this, we pass in a named list containing the weight function that calculates the minimum of the fares
as the input to the edgeSetIntersect0 method. (The user has the option of specifying any function
for appropriate handling of edge attributes ).

> edgeFun <- list( weight = min)

> gInt <- edgeSetIntersect0(g, edgeFun = edgeFun)

> gInt

MultiGraph with 6 nodes and 1 edge sets

edge_set directed edge_count

Alaska_United_Delta TRUE 5

The edge set by the edgeSetIntersect0 operation is named by concatenating the names of the
edgeSets passed as input to the function.

> mgEdgeData(gInt, "Alaska_United_Delta", attr= "weight")

$`SEA|DEN`

[1] 259

$`SEA|LAX`

[1] 110

$`SFO|LAX`

[1] 65

7



$`LAX|SEA`

[1] 110

$`SEA|SFO`

[1] 90

2.3 MultiGraph representation of mice gene interaction data. (SAGE)

The C57BL/6J and C3H/HeJ mouse strains exhibit different cardiovascular and metabolic phenotypes
on the hyperlipidemic apolipoprotein E (Apoe) null background. The interaction data for the genes
from adipose, brain, liver and muscle tissue samples from male and female mice were studied. This
interaction data for the various genes is included in the graph package as a list of data.frames containing
information for from-gene, to-gene and the strength of interaction weight for each of the tissues
studied.

We proceed to load the data for male and female mice.

> data("esetsFemale")

> data("esetsMale")

> names(esetsFemale)

[1] "adipose" "brain" "liver" "muscle"

> head(esetsFemale$brain)

from to weight

1 10024404688 10024393150 0.853

2 10024406215 10024393156 0.513

3 10024411796 10024393163 1.000

4 10024415608 10024393167 0.727

5 10024399302 10024393196 0.342

6 10024399912 10024393196 0.555

The esetsFemale and esetsMale objects are a named list of data frames corresponding to the
data obtained from adipose, brain, liver and muscle tissues for the male and female mice that were
studied. Each data frame has a from, to and a weight column corresponding to the from and to genes
that were studied and weight representing the strength of interaction of the corresponding genes.

We proceed to create MultiGraph objects for the male and female data sets by making use of the
MultiGraph constructor, which directly accepts a named list of data frames as the input and returns a
MultiGraph with edgeSets corresponding to the names of the data frames.

> female <- MultiGraph(edgeSets = esetsFemale, directed = TRUE)

> male <- MultiGraph(edgeSets = esetsMale, directed = TRUE )

> male

MultiGraph with 7081 nodes and 4 edge sets

edge_set directed edge_count

adipose TRUE 1601

brain TRUE 2749

liver TRUE 3690

muscle TRUE 3000

> female

8



MultiGraph with 7072 nodes and 4 edge sets

edge_set directed edge_count

adipose TRUE 2108

brain TRUE 2789

liver TRUE 3584

muscle TRUE 2777

We then select a particular gene of interest in this network and proceed to identify its neighboring
genes connected to this gene in terms of the maximum sum of weights along the path that connects the
genes for the brain edge set.

We are interested in the gene ”10024416717”and the sum of the weights along the path that connects
this genes to the other genes for the brain tissue. Since the algorithms in the RBGL package that we
will use to find the edges that are connected to the gene ”10024416717” do not work directly with
MultiGraph objects, we proceed to create graphBAM objects from the male and female edge sets for the
brain tissue.

MultiGraph objects can be converted to a named list of graphBAM objects using the graphBAM

method.

> maleBrain <- extractGraphBAM(male, "brain")[["brain"]]

> maleBrain

A graphBAM graph with directed edges

Number of Nodes = 7081

Number of Edges = 2749

> femaleBrain <- extractGraphBAM(female, "brain")[["brain"]]

We then identify the genes connected to gene ”10024416717” as well as the sum of the weights along
the path that connect the identified genes using the function bellman.ford.sp function from the RBGL
package.

> maleWt <- bellman.ford.sp(maleBrain, start = c("10024416717"))$distance

> maleWt <- maleWt[maleWt != Inf & maleWt != 0]

> maleWt

10024409301 10024409745

0.636 1.389

> femaleWt <- bellman.ford.sp(femaleBrain, start = c("10024416717"))$distance

> femaleWt <- femaleWt[femaleWt != Inf & femaleWt != 0]

> femaleWt

10024393904 10024409503

0.789 0.866

For the subset of genes we identified, we proceed to add node attributes to our original MultiGraph
objects for the male and female data. The node ”10024416717” and all its connected nodes are assigned
a color attribute ”red” while the rest of the nodes are assigned a color color attribute of ”gray”.

> nodeDataDefaults(male, attr = "color") <- "gray"

> nodeData(male , n = c("10024416717", names(maleWt)), attr = "color" ) <- c("red")

> nodeDataDefaults(female, attr = "color") <- "gray"

> nodeData(female , n = c("10024416717", names(femaleWt)), attr = "color" ) <- c("red")

9



Our MultiGraph objects now contain the required node attributes for the subset of genes that we
have narrowed our selection to.

For the MultiGraph objects for male and female, we are also interested in the genes that are common
to both MultiGraphs. This can be calculated using the graphIntersect method.

> resInt <- graphIntersect(male, female)

> resInt

MultiGraph with 5699 nodes and 4 edge sets

edge_set directed edge_count

adipose TRUE 88

brain TRUE 473

liver TRUE 455

muscle TRUE 370

The operations we have dealt with so far only deal with manipulation of MultiGraph objects. Ad-
ditional functions will need to be implemented for the visualization of the MultiGraph objects.

10


	graphBAM class
	Introduction
	 A simple graph represented using graphBAM class
	Mice gene interaction data for brain tissue (SAGE data)

	MultiGraphs
	Introduction
	 A simple MultiGraph example
	MultiGraph representation of mice gene interaction data. (SAGE)


