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1 Introduction

This guide provides an overview of the Bioconductor package edgeR for differential expression
analyses of RNA-Seq, SAGE or “next generation” sequencing data [Robinson et al., 2010].
The guide includes a number of fully worked case studies. The package can be applied to
any technology that produces read counts for genomic features. Of particular interest are
summaries of short reads from deep sequencing technologies such as IlluminaTM, 454 or ABI
SOLiD applied to RNA-Seq, SAGE-Seq or ChIP-Seq experiments. edgeR provides statistical
routines for assessing differential expression in RNA-Seq experiments or differential marking
in ChIP-Seq experiments.

The package implements exact statistical methods for multigroup experiments developed
by Robinson and Smyth [2007, 2008]. It also implements statistical methods based on gen-
eralized linear models, suitable for multifactor experiments of any complexity, developed by
McCarthy et al. [2011]. Sometimes we refer to the former exact methods as classic edgeR,
and the latter as glm edgeR. However the two sets of methods are complementary and can of-
ten be combined in the course of a data analysis. Most of the glm functions can be identified
by the letters “glm” as part of the function name.

A particular feature of edgeR functionality, both classic and glm, are empirical Bayes
methods that permit the estimation of gene-specific biological variation, even for experiments
with minimal levels of biological replication.

edgeR can be applied to differential expression at the gene, exon, transcript or tag level.
In fact, read counts can be summarized by any genomic feature. edgeR analyses at the
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exon level are easily extended to detect differential splicing or isoform-specific differential
expression.

2 How to get help

Most questions about edgeR will hopefully be answered by the documentation or references.
Every function mentioned in this guide has its own help page. For example, a detailed
description of the arguments and output of the exactTest function can be read by typing
?exactTest or help(exactTest) at the R prompt.

The authors of the package always appreciate receiving reports of bugs in the package
functions or in the documentation. The same goes for well-considered suggestions for im-
provements. Other questions about how to use edgeR are best sent to the Bioconductor mail-
ing list bioconductor@stat.math.ethz.ch. Often other users are likely to have experienced
similar problems, and posting to the list allows everyone to gain from the answers. To sub-
scribe to the mailing list, see https://stat.ethz.ch/mailman/listinfo/bioconductor.
Please send requests for general assistance and advice to the mailing list rather than to the
individual authors. Users posting to the mailing list for the first time may find it helpful to
read the posting guide at http://www.bioconductor.org/doc/postingGuide.html.

3 Quick start

A classic edgeR analysis might look like the following. Here we assume there are four RNA-
Seq libraries in two groups, and the counts are stored in a text file, with gene symbols in a
column called Symbol.

> x <- read.delim("fileofcounts.txt",row.names="Symbol")

> group <- factor(c(1,1,2,2))

> y <- DGEList(counts=x,group=group)

> y <- estimateCommonDisp(y)

> y <- estimateTagwiseDisp(y)

> et <- exactTest(y)

> topTags(et)

A glm edgeR analysis of the same data would look similar, except that a design matrix
would be formed:

> design <- model.matrix(~group)

> y <- estimateGLMTrendedDisp(y,design)

> y <- estimateGLMTagwiseDisp(y,design)

> fit <- glmFit(y,design)

> lrt <- glmLRT(y,fit,coef=2)

> topTags(lrt)

Many variants are available on this analysis.
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4 Negative binomial models

The starting point for an RNA-Seq experiment is a set of n RNA samples, typically associated
with a variety of treatment conditions. Each sample is sequenced, short reads are mapped
to the appropriate genome, and the number of reads mapped to each genomic feature of
interest is recorded. The number of reads from sample i mapped to gene g will be denoted
ygi. The set of genewise counts for sample i makes up the expression profile or library for
that sample. The expected size of each count is the product of the library size and the
relative abundance of that gene in that sample.

Two levels of variation can be distinguished in any RNA-Seq experiment. First, the
relative abundance of each gene will vary between RNA samples, due mainly to biological
causes. Second, there is measurement error, the uncertainty with which the abundance
of each gene in each sample is estimated by the sequencing technology. If aliquots of the
same RNA sample are sequenced, then Marioni et al. [2008] claimed that the read counts
for a particular gene should vary according to a Poisson law. If sequencing variation is
Poisson, then it can be shown (Methods) that the squared coefficient of variation (CV) of
each count between biological replicate libraries is the sum of the squared CVs for technical
and biological variation respectively,

Total CV2 = Technical CV2 + Biological CV2.

Biological CV (BCV) is the coefficient of variation with which the (unknown) true abun-
dance of the gene varies between replicate RNA samples. It represents the CV that would
remain between biological replicates if sequencing depth could be increased indefinitely. The
technical CV decreases as the size of the counts increases. BCV on the other hand does
not. BCV is therefore likely to be the dominant source of uncertainty for high-count genes,
so reliable estimation of BCV is crucial for realistic assessment of differential expression in
RNA-Seq experiments. If the abundance of each gene varies between replicate RNA sam-
ples in such a way that the genewise standard deviations are proportional to the genewise
means, a commonly occurring property of measurements on physical quantities, then it is
reasonable to suppose that BCV is approximately constant across genes. We allow however
for the possibility that BCV might vary between genes and might also show a systematic
trend with respect to gene expression or expected count.

The magnitude of BCV is more important than the exact probabilistic law followed
by the true gene abundances. For mathematical convenience, we assume that the true gene
abundances follow a gamma distributional law between replicate RNA samples. This implies
that the read counts follow a negative binomial probability law.

5 Reading data

edgeR requires three pieces of information:
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1. counts: a matrix of counts where each row represents a gene (or whatever genomic
feature is being tracked) and each column is a different sample.

2. group factor or design matrix: for classic edgeR, a factor of length ncol(counts) giving
the experimental group, for glm edgeR, a design matrix indicating the assignment of
treatments to samples.

3. lib.size: vector of length ncol(counts) giving the total number of reads sequenced
for each sample. If not separately provided, will be set to colSums(counts).

We assume that the counts are stored in one of two formats. Either there is a single file
containing a table of counts with the first column containing the tag identifiers and the
remaining columns containing the tag counts for each library sequenced, or there is an
individual file for each library, each with first column for tag identifiers and second column
for counts.

If the counts for all libraries are stored in a single file, then an appropriate in-built R

function (such as read.delim or read.csv) can be used to read the table of counts into R.
See the help documentation (?DGEList or ?"DGEList-class") or the examples below for
further details.

If the counts are stored in separate files, then, given a vector containing the filenames
the edgeR function readDGE will read in the data from the individual files, collate the counts
into a table and compute the library sizes and return a DGEList object. See the help
documentation (?readDGE) or the examples below for further details.

Here is a simple example of creating a DGEList object given a count matrix:

> group <- factor(c(0,0,0,1,1,1))

> D <- DGEList(y, group=group)

6 Normalization issues for counts data

6.1 General comments

The edgeR methodology needs to work with the original digital expression counts, so these
should not be transformed in any way by users prior to analysis. edgeR automatically takes
into account the total size (total read number) of each library in all calculations of fold-
changes, concentration and statistical significance. For some datasets, no other normalization
is required for evaluating differential expression.

It bears emphasizing that RPKM values should not be used for assessing differential
expression of genes between samples in edgeR. We use the raw counts, because the methods
implemented in edgeR are based on the negative binomial distribution, a discrete distribu-
tion. To be able to perform good inference on differential expression it is very important
to model the mean-variance relationship in the data appropriately. There are good reasons
why the NB model is appropriate for the raw count data, but transforming the data using
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RPKM (or FPKM or similar) renders our distributional assumptions invalid and we cannot
guarantee that our methods will be reliable for such transformed data.

There are methods implemented in edgeR to normalize the counts for compositional
bias in sequenced libraries and for differences between libraries in sequencing depth. These
adjustments are offsets in the models used for testing DE and do not transform the counts
in any way.

The reason we do not worry about gene length bias, GC bias and so on when conducting
DE analysis of the same genes between samples is that we expect (and hope) that the biases
will affect the same gene in the same way in different samples. This being the case, then it
is OK to test for DE gene between samples because such biases in effect “cancel out” when
making the comparison between samples. This reasoning does not hold for comparing the
expression level of different genes in one sample—to do this you would probably need to
account for gene length and other biases, but this is not what edgeR is designed to do.

6.2 Calculating normalization factors

Recently, Robinson and Oshlack [2010] described a method to account for a bias introduced
by what they call RNA composition. In brief, there are occasions when comparing different
DGE libraries where a small number of genes are very highly expressed in one sample, but
not in another. Because these highly expressed genes consume a substantial proportion of the
sequencing “real estate”, the remaining genes in the library are undersampled. Similarly, this
situation may occur when the two tissues being compared have transcriptomes of different
sizes, i.e. when there are noticeably more transcripts expressed in one tissues than the other.
Robinson and Oshlack [2010] show that in comparing kidney and liver RNA, there are a
large number of genes expressed in kidney but not in liver, causing the remaining genes
to be undersampled and skewing the differential expression calls. To account for this, the
authors developed an empirical approach to estimate the bias and proposed to build that
into the library size (or, an offset in a generalized linear model), making it an effective library
size. We demonstrate this below on the Marioni et al. [2008] RNA-seq dataset.

Given a table counts or a DGEList object, one can calculate normalization factors using
the calcNormFactors() function.

> head(D)

R1L1Kidney R1L2Liver R1L3Kidney R1L4Liver

10 0 0 0 0

15 4 35 7 32

17 0 2 0 0

18 110 177 131 135

19 12685 9246 13204 9312

22 0 1 0 0

> g <- gsub("R[1-2]L[1-8]", "", colnames(D))

> d <- DGEList(counts = D, group = substr(colnames(D), 5, 30))

> d$samples
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group lib.size norm.factors

R1L1Kidney Kidney 1804977 1

R1L2Liver Liver 1691734 1

R1L3Kidney Kidney 1855190 1

R1L4Liver Liver 1696308 1

> d <- calcNormFactors(d)

> d$samples

group lib.size norm.factors

R1L1Kidney Kidney 1804977 1.209

R1L2Liver Liver 1691734 0.821

R1L3Kidney Kidney 1855190 1.225

R1L4Liver Liver 1696308 0.823

By default, calcNormFactors uses the TMM method and the sample whose 75%-ile
(of library-scale-scaled counts) is closest to the mean of 75%-iles as the reference. Alter-
natively, the reference can be specified through the refColumn argument. Also, you can
specify different levels of trimming on the log-ratios or log-concentrations, as well as a cutoff
on the log-concentrations (See the help documentation for further details, including other
specification of estimating the normalization factors).

To see the bias and normalization visually, consider a smear plot between the first (kidney)
and second (liver) sample. In the left panel of Figure 1, we show a smear plot (X-axis: log-
concentration, Y-axis: log fold-change of liver over kidney, those with 0 in either sample are
shown in the smear on the left) of the raw data (Note: the argument normalize=TRUE only
divides by the sum of counts in each sample and has nothing to do with the normalization
factors mentioned above). One should notice a shift downward in the log-ratios, presumably
caused by the genes highly expressed in liver that are taking away sequencing capacity from
the remainder of the genes in the liver RNA sample. The red line signifies the estimated
TMM (trimmed mean of M values) normalization factor, which in this case represents the
adjustment applied to the library size to account for the compositional bias. The right panel
of Figure 1 simply shows the M and A values after correction. Here, one should find that
the bulk of the M-values are centred around 0.

> par(mfrow = c(1, 2))

> maPlot(d$counts[, 1], d$counts[, 2], normalize = TRUE, pch = 19,

+ cex = 0.4, ylim = c(-8, 8))

> grid(col = "blue")

> abline(h = log2(d$samples$norm.factors[2]/d$samples$norm.factors[1]),

+ col = "red", lwd = 4)

> eff.libsize <- d$samples$lib.size * d$samples$norm.factors

> maPlot(d$counts[, 1]/eff.libsize[1], d$counts[, 2]/eff.libsize[2],

+ normalize = FALSE, pch = 19, cex = 0.4, ylim = c(-8, 8))

> grid(col = "blue")

8



Figure 1: Smear plots before (left) and after (right) composition normalization.

7 Pairwise comparisons between group (classic)

7.1 Estimating dispersions

When a negative binomial model is fitted, we need to estimate the dispersion(s) before we
carry out the analysis. edgeR uses the quantile-adjusted conditional maximum likelihood
(qCML) method to experiments with single factor.

Compared against several other estimators (e.g. maximum likelihood estimator, Quasi-
likelihood estimator etc.) using an extensive simulation study, qCML is the most reliable in
terms of bias on a wide range of conditions and specifically performs best in the situation
of many small samples with a common dispersion, the model which is applicable to Next-
Gen sequencing data. We have deliberately focused on very small samples due to the fact
that DNA sequencing costs prevent large number of replicates for SAGE and RNA-seq
experiments.

The qCML method can estimate a common dispersion for all the tags or separate disper-
sions for individual tags. As individual tags typically don’t provide enough data to estimate
the dispersion reliably, we implement an empirical Bayes strategy for squeezing the tagwise
dispersions towards the common dispersion. The amount of shrinkage is determined by the
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prior weight given to the common dispersion and the precision of the tagwise estimates. The
prior can be thought of arising from a number of prior observations, equivalent to prior.n

tags with common dispersion and the same number of libraries per tag as in the current
experiment. The prior number of tags prior.n can be set by the user. The precision of
the tagwise estimators is roughly proportion to the per-tag degrees of freedom, equal to the
number of libraries minus the number of groups or the number of GLM coefficients. We
generally recommend choosing prior.n so that the total degrees of freedom (prior.n*df) as-
sociated with the prior is about 20–30, subject to prior.n not going below 1. For example,
if there are four libraries and two groups, the tagwise degrees of freedom are 2, so we would
recommend prior.n=10. This is an empirical rule of thumb borne out of experience with a
number of datasets.

The qCML method calculates the likelihood conditioning on the total counts for each tag,
and uses pseudo counts after adjusted for library sizes. Given a table counts or a DGEList ob-
ject, the qCML common dispersion can be calculated using the estimateCommonDisp() func-
tion, and the qCML tagwise dispersions can be calculated using the estimateTagwiseDisp()
function.

However, the qCML method is only applicable on dataset with single factor design since it
fails to take into account the effects from multiple factors in a more complicated experiment.
Therefore, the qCML method (i.e. the estimateCommonDisp() and estimateTagwiseDisp()

function) is recommended for a study with single factor. When experiment has more than
one factor involved, we need to seek a new way of estimating dispersions.

Here is a simple example in estimating dispersions using the qCML method. Given a
DGEList object D, we estimate the dispersions using the following commands.

To estimate common dispersion:

D <- estimateCommonDisp(D)

To estimate tagwise dispersions:

D <- estimateTagwiseDisp(D)

Note that common dispersion needs to be estimated before estimating tagwise dispersions.
For more detailed examples, see the case studies in section 10 (Zhang data), section 11

(’t Hoen data), section 12 (Li data) and section 13 (Tuch data).

7.2 Testing for DE genes

For all the Next-Gen squencing data analyses we consider here, people are most interested
in finding differentially expressed genes/tags between two (or more) groups. Once negative
binomial models are fitted and dispersion estimates are obtained, we can proceed with testing
procedures for determing differential expression using the exact test.

The exact test is based on the qCML methods. Knowing the conditional distribution
for the sum of counts in a group, we can compute exact p-values by summing over all sums
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of counts that have a probability less than the probability under the null hypothesis of the
observed sum of counts. The exact test for the negative binomial distribution has strong
parallels with Fisher’s exact test.

As we dicussed in the previous section, the exact test is only applicable to experiments
with a single factor. The testing can be done by using the function exactTest(), and the
function allows both common dispersion and tagwise dispersion approaches. For example:

> et <- exactTest(D)

> topTags(et)

For more detailed examples, see the case studies in section 10 (Zhang’s data), section 11
(’t Hoen’s data) and section 12 (Li’s data).

8 General experiments (glm functionality)

8.1 Estimating dispersions

For general experiments (with multiple factors), edgeR uses the Cox-Reid profile-adjusted
likelihood (CR) method in estimating dispersions. The CR method is derived to overcome
the limitations of the qCML method as mentioned above. It takes care of multiple factors
by fitting generalized linear models (GLM) with a design matrix.

The CR method is based on the idea of approximate conditional likelihood which reduces
to residual maximum likelihood. Given a table counts or a DGEList object and the design
matrix of the experiment, generalized linear models are fitted. This allows valid estimation
of the dispersion, since all systematic sources of variation are accounted for.

The CR method can be used to calculate a common dispersion for all the tags, trended
dispersion depending on the tag abundance, or separate dispersions for individual tags. These
can be done by calling the functions estimateGLMCommonDisp(), estimateGLMTrendedDisp()
and estimateGLMTagwiseDisp(), and it is strongly recommended in multi-factor experiment
cases.

Here is a simple example in estimating dispersions using GLM method. Given a DGEList

object D and a design matrix, we estimate the dispersions using the following commands.
To estimate common dispersion:

D <- estimateGLMCommonDisp(D, design)

To estimate trended dispersions:

D <- estimateGLMTrendedDisp(D, design)

To estimate tagwise dispersions:

D <- estimateGLMTagwiseDisp(D, design)
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Note that we need to estimate either common dispersion or trended dispersions prior
to the estimation of tagwise dispersions. When estimating tagwise dispersions, the empir-
ical Bayes method is applied to squeeze tagwise dispersions towards common dispersion or
trended dispersions whichever exists. If both exist, the default is to use the trended disper-
sions.

For more detailed examples, see the case study in section 13 (Tuch’s data).

8.2 Testing for DE genes

For General experiments, once negative binomial models are fitted and dispersion estimates
are obtained, we can proceed with testing procedures for determing differential expression
using the generalized linear model (GLM) likelihood ratio test.

The GLM likelihood ratio test is based on the idea of fitting negative binomial GLMs
with the Cox-Reid dispersion estimates. By doing this, it automatically takes all known
sources of varations into account. Therefore, the GLM likelihood ratio test is recommended
for experiment with multiple factors.

The testing can be done by using the functions glmFit() and glmLRT(). Given raw
counts, a fixed value for the dispersion parameter and a design matrix, the function glmFit()

fits the negative binomial GLM for each tag and produces an object of class DGEGLM with
some new components.

Then this DGEGLM object can be passed to the function glmLRT() to carry out the likeli-
hood ratio test. User can select coefficient(s) to drop from the full design matrix. This gives
the null model against which the full model is compared with in the likelihood ratio test.
Tags can then be ranked in order of evidence for differential expression, based on the p-value
computed for each tag.

As a brief example, consider a situation in which are three treatment groups, each with
two replicates, and the researcher wants to make pairwise comparisons between them. A
linear model representing the study design can be fitted to the data with commands such as:

> group <- factor(c(1,1,2,2,3,3))

> design <- model.matrix(~group)

> fit <- glmFit(y,design,etc)

The fit has three parameters. The first is the baseline level of group 1. The second and third
are the 2 vs 1 and 3 vs 1 differences.

To compare 2 vs 1:

> lrt.2vs1 <- glmFit(y,fit,coef=2)

> topTags(lrt.2vs1)

To compare 3 vs 1:

> lrt.3vs1 <- glmFit(y,fit,coef=3)

To compare 3 vs 2:
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> lrt.3vs2 <- glmFit(y,fit,contrast=c(0,-1,1))

The contrast argument in this case requests a statistical test of the null hypothesis that
coefficient3−coefficient2 is equal to zero.

To find genes different between any of the three groups:

> lrt <- glmFit(y,fit,coef=2:3)

> topTags(lrt)

For more detailed examples, see the case study in section 13 (Tuch’s data).

9 What to do if you have no replicates

edgeR is primarily intended for use with data including biological replication. Nevertheless,
RNA-Seq and ChIP-Seq are still expensive technologies, so it sometimes happens that only
one library can be created for each treatment condition. In these cases there are no replicate
libraries from which to estimate biological variability. In this situation, the data analyst is
faced with the following choices, none of which are ideal. Note that we don’t recommend
any of these choices as a fully satisfactory alternative for biological replication. Rather, they
are the best that can be done at the analysis stage, and options 2–4 may be better than
assuming that biological variability is absent.

1. Be satisfied with a descriptive analysis, that might include an MDS plot and an analysis
of fold changes. Do not attempt a significance analysis. This may be the best advice.

2. Simply pick a reasonable dispersion value, based on your experience with similar data,
and use that. Although subjective, this is still more defensible than assuming Poisson
variation. Typical values are dispersion=0.4 for human data, dispersion=0.1 for data
on genetically identical model organisms or dispersion=0.01 for technical replicates.

3. Remove one or more explanatory factors from the linear model in order to create
some residual degrees of freedom. Ideally, this means removing the factors that are
least important but, if there is only one factor and only two groups, this may mean
removing the entire design matrix or reducing it to a single column for the intercept.
If your experiment has several explanatory factors, you could remove the factor with
smallest fold changes. If your experiment has several treatment conditions, you could
try treating the two most similar conditions as replicates. Estimate the dispersion from
this reduced model, then insert these dispersions into the data object containing the
full design matrix, then proceed to model fitting and testing with glmFit and glmLRT.
This approach will only be successful if the number of DE genes is relatively small.

In conjunction with this reduced design matrix, you could try estimateGLMCommonDisp

with method="deviance", robust=TRUE and subset=NULL. This is our current best at-
tempt at an automatic method to estimate dispersion without replicates, although it
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will only give good results when the counts are not too small and the DE genes are a
small proportion of the whole. Please understand that this is only our best attempt
to return something useable. Reliable estimation of dispersion generally requires repli-
cates.

4. If there exist a sizeable number of control transcripts that should not be DE, the the
dispersion could be estimated from them. For example, suppose that housekeeping is
an index variable identifying housekeeping genes that do not respond to the treatment
used in the experiment. First create a copy of the data object with only one treatment
group:

> d1 <- d

> d1$samples$group <- 1

Then estimate the dispersion from the housekeeping genes and all the libraries as one
group:

> d0 <- estimateCommonDisp(d1[housekeeping,])

Then insert this into the full data object and proceed:

> d$common.dispersion <- d0$common.dispersion

> et <- exactTest(d)

and so on. A reasonably large number of control transcripts is required, at least a few
dozen and ideally hundreds.
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10 Case study: SAGE Profiles of Normal and Tumour

Tissue

10.1 Introduction

This section provides a detailed analysis of data from a SAGE experiment to illustrate
the data analysis pipeline for edgeR. The data come from a very early study using SAGE
technology to analyse gene expression profiles in human cancer cells [Zhang et al., 1997].

10.2 Source of the data

At the time that Zhang et al. [1997] published their paper, no comprehensive study of gene
expression in cancer cells had been reported. Zhang et al. [1997] designed a study to address
the following issues:

1. How many genes are expressed differentially in tumour versus normal cells?

2. Are the majority of those differences cell-autonomous rather than dependent on the
tumour micro-environment?

3. Are most differences cell type-specific or tumour-specific?

They used normal and neoplastic gastro-intestinal tissue as a prototype and analysed global
profiles of gene expression in human cancer cells. The researchers derived transcripts from
human colorectal (CR) epithelium, CR cancers or pancreatic cancers. The data that we
analyse in this case study are Zhang et al. [1997]’s SAGE results for the comparison of
expression patterns between normal colon epithelium and primary colon cancer.

They report that the expression profiles revealed that most transcripts were expressed
at similar levels, but that 289 transcripts were expressed at significantly different levels (p-
value< 0.01) and that 181 of these 289 were decreased in colon tumours as compared with
normal colon tissue. Zhang et al. [1997] used Monte Carlo simulation to determine statistical
significance. In this case study we will use the edgeR package, based around the negative
binomial model, to identify genes differentially expressed in the normal and cancer samples.

10.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package, read the data into R and organise the data into
a DGEList object that the functions in the package can recognise. The library size is usually
the total sum of all of the counts for a library, and that is how library size is defined in
this analysis. The easiest way to construct an appropriate DGEList object for these data is
described below.

In this case, the tag counts for the four individual libraries are stored in four separate
plain text files, GSM728.txt, GSM729.txt, GSM755.txt and GSM756.txt. In each file, the tag
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IDs and counts for each tag are provided in a table. It is best to create a tab-delimited,
plain-text ‘Targets’ file, which, under the headings ‘files’, ‘group’ and ‘description’, gives the
filename, the group and a brief description for each sample.

The targets object is produced when the ‘Targets.txt’ file is read into the R session.
This object makes a convenient argument to the function readDGE which reads the tables of
counts into our R session, calculates the sizes of the count libraries and produces a DGEList

object for use by subsequent functions.

> library(edgeR)

> library(limma)

> targets <- read.delim(file = "Targets.txt", stringsAsFactors = FALSE)

> targets

files group description

1 GSM728.txt NC Normal colon

2 GSM729.txt NC Normal colon

3 GSM755.txt Tu Primary colonrectal tumour

4 GSM756.txt Tu Primary colonrectal tumour

> d <- readDGE(targets, skip = 5, comment.char = "!")

> d

An object of class "DGEList"

$samples

files group description lib.size norm.factors

1 GSM728.txt NC Normal colon 50179 1

2 GSM729.txt NC Normal colon 49593 1

3 GSM755.txt Tu Primary colonrectal tumour 57686 1

4 GSM756.txt Tu Primary colonrectal tumour 49064 1

$counts

1 2 3 4

CCCATCGTCC 1288 1380 1236 0

CCTCCAGCTA 719 458 148 142

CTAAGACTTC 559 558 248 199

GCCCAGGTCA 520 448 22 62

CACCTAATTG 469 472 763 421

57443 more rows ...

We will filter out very lowly expressed tags. Those which have fewer than 5 counts in
total cannot possibly achieve statisical significance for DE, so we filter out these tags.

> d <- d[rowSums(d$counts) >= 5,]

> dim(d)

[1] 5012 4

> d$samples$lib.size
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[1] 50179 49593 57686 49064

> colSums(d$counts)

1 2 3 4

34970 35764 36940 30325

> d$samples$lib.size <- colSums(d$counts)

> d <- calcNormFactors(d)

> d$samples

files group description lib.size norm.factors

1 GSM728.txt NC Normal colon 34970 0.976

2 GSM729.txt NC Normal colon 35764 0.965

3 GSM755.txt Tu Primary colonrectal tumour 36940 0.971

4 GSM756.txt Tu Primary colonrectal tumour 30325 1.094

We see that the vast majority of tags sequenced in this experiment are detected at very
low levels. This filtering step reduces the dataset from over 50,000 tags to just over 5000.
While this may seem drastic, there is simply no information for DE in the tags we have
filtered out. Nevertheless, the filtering reduces the library sizes (total counts in each library)
by about 30%.

In the output above we also show the application of TMM normalization to these data
using the function calcNormFactors. The normalization factors here are all very close to
one, which indicates that the four libraries are very similar in composition.

This DGEList is now ready to be passed to the functions that do the calculations to
determine differential expression levels for the genes. Note that when we ‘see’ the DGEList

object d, the counts for just the first five genes in the table are shown, as well as the library
sizes and groups for the samples.

10.4 Analysis using common dispersion

10.4.1 Estimating the common dispersion

The first major step in the analysis of DGE data using the NB model is to estimate the
dispersion parameter for each tag. The most straight-forward analysis of DGE data uses the
common dispersion estimate as the dispersion for all tags. For many applications this will
be adequate and it may not be necessary to estimate tagwise dispersions, i.e. estimate the
dispersion parameter separately for each tag. Using the common dispersion allows the user
to obtain DE results very quickly and in few steps, and so makes a good place to start with
any analysis of DGE data.

Estimating the common dispersion is done using the function estimateCommonDisp. In
order to do this, the function first needs to generate the ‘pseudocounts’ under the alternative
hypothesis (that there really is a difference in expression level between the groups). The
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conditional maximum likelihood method assumes that the library sizes are equal, which is
certainly not true in general for DGE data.

The pseudocounts are calculated using a quantile-to-quantile method for the negative
binomial distribution so that the library sizes for the pseudocounts are equal to the geometric
mean of the original library sizes. These pseudocounts are then used as the count data for
the common conditional negative binomial likelihood function, which is maximised over the
dispersion parameter to obtain our estimate of the common dispersion.

> d <- estimateCommonDisp(d)

> names(d)

[1] "samples" "common.dispersion" "counts"

[4] "pseudo.alt" "genes" "all.zeros"

[7] "conc" "common.lib.size"

The output of estimateCommonDisp is a DGEList object with several new elements. The
element common.dispersion, as the name suggests, provides the estimate of the common
dispersion, and pseudo.alt gives the pseudocounts calculated under the alternative hypoth-
esis. The element genes contains the information about gene/tag identifiers. The element
conc gives the estimates of the overall concentration of each tag across all of the original
samples (conc$conc.common) and the estimate of the concentration of each tag within each
group (conc$conc.group). The element common.lib.size gives the library size to which the
original libraries have been adjusted in the pseudocounts.

> d$samples$lib.size

[1] 34970 35764 36940 30325

> d$common.lib.size

[1] 34404

Under the negative binomial model, the square root of the common dispersion gives the
coefficient of variation of biological variation. Here, as seen in the code below, the coefficient
of variation of biological variation is found to be 0.44. We also note that a common dispersion
estimate of 0.2 means that there is a lot more variability in the data that can be accounted
for by the Poisson model—if a tag has just 200 counts on average in each library, then the
estimate of the tag’s variance under the NB model is over 40 times greater than it would be
under the Poisson model.

> d$common.dispersion

[1] 0.197

> sqrt(d$common.dispersion)

[1] 0.444
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10.4.2 Testing

Once we have an estimate of the common dispersion, we can proceed with testing procedures
for determining differential expression. The edgeR package uses an exact test for the negative
binomial distribution, which has strong parallels with Fisher’s exact test, to compute exact
p-values that can be used to assess differential expression. The function exactTest allows
the user to conduct the NB exact test for pairwise comparisons of groups. Here there are
only two groups, so the pair need not be specified—the function by default compares the
two groups present.

> de.com <- exactTest(d)

Comparison of groups: Tu - NC

> names(de.com)

[1] "table" "comparison" "genes"

> names(de.com$table)

[1] "logConc" "logFC" "p.value"

The object produced by exactTest contains three elements: table, comparison and genes.
The element de.com$comparison contains a vector giving the names of the two groups com-
pared. The tablede.com$table contains the elements logConc, which gives the overall con-
centration for a tag across the two groups being compared, logFC, which gives the log-fold
change difference for the counts between the groups and p.value gives the exact p-values
computed.

The results of the NB exact test can be accessed conveniently using the topTags function
applied to the object produced by exactTest. The user can specify the number, n, of tags
for which they would like to see the differential expression information, ranked by p-value
(default) or fold change. As the same test is conducted for many thousands of tags, adjusting
the p-values for multiple testing is recommended. The desired adjustment method can be
supplied by the user, with the default method being Benjamini and Hochberg’s approach for
controlling the false discovery rate (FDR) [Benjamini and Hochberg, 1995]. The table below
shows the top 10 DE genes ranked by p-value.

The output below shows that the edgeR package identifies a good deal of differential
expression between the normal colon cell group and the primary CR cancer cell group.
The top DE genes are given very small p-values, even after adjusting for multiple testing.
Furthermore, all of the top genes have a large fold change, indicating that these genes
are more likely to be biologically meaningful. A Gene Ontology analysis could be carried
out using the list of top genes and p-values provided by topTags in order to obtain more
systematic and functional information about the differentially expressed genes.

> topTags(de.com)
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Comparison of groups: Tu-NC

logConc logFC P.Value FDR

AGCTGTTCCC -28.0 44.13 7.65e-20 3.84e-16

CTTGGGTTTT -29.6 40.86 2.61e-10 6.54e-07

TACAAAATCG -30.0 40.10 2.79e-08 4.53e-05

CCCAACGCGC -12.2 -5.77 3.62e-08 4.53e-05

GCCACCCCCT -30.0 39.96 5.83e-08 5.85e-05

CCAGTCCGCC -30.1 39.76 1.97e-07 1.63e-04

GTCATCACCA -30.1 -39.73 2.28e-07 1.63e-04

CGCGTCACTA -11.7 4.73 4.84e-07 2.75e-04

TCACCGGTCA -10.5 -4.14 4.94e-07 2.75e-04

TAAATTGCAA -10.8 -4.17 6.75e-07 3.38e-04

The table below shows the raw counts for the genes that edgeR has identified as the most
differentially expressed. For these genes there seems to be very large differences between the
groups, suggesting that the DE genes identified are truly differentially expressed, and not
false positives.

> detags.com <- rownames(topTags(de.com)$table)

> d$counts[detags.com, ]

1 2 3 4

AGCTGTTCCC 0 0 119 1011

CTTGGGTTTT 0 0 21 97

TACAAAATCG 0 0 14 56

CCCAACGCGC 106 1 2 0

GCCACCCCCT 0 0 5 58

CCAGTCCGCC 0 0 6 49

GTCATCACCA 35 20 0 0

CGCGTCACTA 1 3 88 21

TCACCGGTCA 118 75 6 5

TAAATTGCAA 103 59 3 6

If we order the genes by fold change instead of p-value, as in the table below, we see
that the genes with the largest fold changes have very small concentrations. This ranking
is dominated by genes that have zero total counts in one group and is less informative than
ranking by p-value.

> topTags(de.com, sort.by = "logFC")

Comparison of groups: Tu-NC

logConc logFC P.Value FDR

AGCTGTTCCC -28.0 44.1 7.65e-20 3.84e-16

CTTGGGTTTT -29.6 40.9 2.61e-10 6.54e-07

TACAAAATCG -30.0 40.1 2.79e-08 4.53e-05

GCCACCCCCT -30.0 40.0 5.83e-08 5.85e-05

CCAGTCCGCC -30.1 39.8 1.97e-07 1.63e-04

GTCATCACCA -30.1 -39.7 2.28e-07 1.63e-04
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GTGCGCTGAG -30.4 39.3 2.23e-06 7.46e-04

GTGTGTTTGT -30.4 39.2 3.92e-06 1.03e-03

CTTGACATAC -30.4 -39.2 3.92e-06 1.03e-03

GGGGGGGGGG -30.4 39.1 4.77e-06 1.14e-03

Zhang et al. [1997] identified 289 genes as significantly differentially expressed with p-
values less than 0.01. We can look at the genes that are given an exact p-value less than
0.01 by edgeR before adjusting for multiple testing, and less than 0.05 after adjustment.

We see in the output below that 243 genes are significantly differentially expressed ac-
cording to edgeR when using the common dispersion estimate. Of those genes, 101 are
up-regulated in the cancer cells compared with the normal cells and 142 are down-regulated
in the cancer cells compared with normal cells. These proportions of up- and down-regulated
tags are very similar to those found by Zhang et al. [1997].

> sum(de.com$table$p.value < 0.01)

[1] 243

> top243 <- topTags(de.com, n = 243)

> sum(top243$table$logFC > 0)

[1] 101

> sum(top243$table$logFC < 0)

[1] 142

Furthermore, we see below that 99 tags (2% of the total number of genes after filtering)
have a p-value of less than 0.05 after adjusting for multiple testing using the Benjamini and
Hochberg [1995] method for controlling the FDR, which is strong evidence for differential
expression.

> summary(decideTestsDGE(de.com, p.value=0.05))

[,1]

-1 57

0 4913

1 42

10.4.3 Visualising DGE results

The function plotSmear can be used to generate a plot of the log-fold change against the
log-concentration for each tag (analogous to an MA-plot in the microarray context). We can
easily identify the top DE tags and highlight them on the plot. The code for producing the
default fold-change plot is shown below, and the result of this code is shown in Figure 2.
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> detags243 <- rownames(top243$table)

> png(file="edgeR_case_study_Zhang_smearplot.png", height=600, width=600)

> plotSmear(d, de.tags = detags243, main = "FC plot using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue")

> dev.off()

null device

1

Figure 2 shows the default fold change-plot for these data—the ‘smear plot’. Plotting
DGE data poses some challenges, as when the total counts in one group are zero, the log-
fold change is technically infinite, and the log-concentration is negative infinity. With the
algorithm used by topTags, we see very high log-fold changes and very small values for log-
concentration for such tags, but plotting these values directly causes problems with the scale
of the graph. To get around this problem, edgeR produces a ‘smear’ of points at the left-most
edge of the plot for tags which have zero counts in one of the groups. Although this is still
slightly artificial, it has the advantage that the expression level of all tags can be visualised
and interpreted simultaneously.

The ‘lines’ of points we see at smaller log-concentration values arise from the discrete
nature of the count data. When the sum all of the counts in one of the groups is one, we
see the lines of points furthest away from the main body of points, and other lines of points
correspond to when the total sum of counts in one of the groups is 2, 3, 4 and so on.

In Figure 2, the 264 tags identified as differentially expressed (i.e. those identified as
significant (p-value less than 0.01) by edgeR using the common dispersion) are outlined in
red.

10.5 Analysing the data using moderated tagwise dispersions

10.5.1 Moderating the tagwise dispersion

An extension to simply using the common dispersion for each tag is to estimate the dispersion
separately for each tag, while ‘squeezing’ these estimates towards the common dispersion
estimate. The goal of this moderation of the dispersion estimates is to improve inference
by sharing information between tags. This type of analysis can be carried out in few steps
using the edgeR package.

To run the moderated analysis, we need to determine how much moderation is necessary.
As discussed above, we currently prefer to choose a sensible value for the smoothing param-
eter a priori, although we do have an algorithm developed by Robinson and Smyth [2007]
for estimating the smoothing parameter as an approximate eBayes rule.

In our experience analysing RNA-Seq data we have found that a good rule of thumb for
choosing a value for prior.n is to choose a certain number of prior degrees of freedom (a
value between 20 and 30 works well) and then divide this number by the degrees of freedom
(number of samples minus the number of variables being fit in the model; in the case of a
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Figure 2: Plot of the log-fold change against the log-concentration for each tag. The 243
most differentially expressed tags as identified by edgeR using the common dispersion are
outlined in red.

simple multiple-group comparison this is simply the number of samples minus the number of
groups). The function getPriorN automatically calculates the appropriate value for prior.n

for a given experimental design.
In this experiment we only have four libraries, a small sample size, so we should not be too

confident about the accuracy of the tagwise dispersions. Here, we have just two samples in
each group, and thus two degrees of freedom for estimating the dispersion parameter. Thus,
setting the prior.n to be 10 (20 divided by two) should be appropriate. This means that
the common likelihood receives the weight of ten individual tags. Therefore, there will be a
reasonable degree of ‘squeezing’ towards the common dispersion estimate, but still enough
scope to allow flexibility when estimating the individual dispersion for each gene. By default,
estimateTagwiseDisp uses the prior.n value from getPriorN, which here recommends the
value of 10 for prior.n..

The function estimateTagwiseDisp produces a DGEList object that contains all of the
elements present in the object produced by estimateCommonDisp, as well as the value for
prior.n used (d$prior.n) and the tagwise dispersion estimates (d$tagwise.dispersion), as
we see below. Here we set grid.length=500 for greater precision in the tagwise dispersion
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estimates.

> d <- estimateTagwiseDisp(d, prop.used=0.5, grid.length=500)

> names(d)

[1] "samples" "common.dispersion" "counts"

[4] "pseudo.alt" "genes" "all.zeros"

[7] "conc" "common.lib.size" "prior.n"

[10] "tagwise.dispersion"

> head(d$tagwise.dispersion)

[1] 0.764 0.167 0.156 0.203 0.170 0.178

It is interesting to consider the distribution of the tagwise dispersion estimates. As we
can see from the output below, the tagwise dispersion estimates range from a minimum of
0.08 to a maximum of 0.76. The range of dispersions is therefore large, but the tags in the
middle two quartiles of the tagwise dispersion estimates have dispersion estimates close to
the common dispersion estimate.

> summary(d$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.079 0.159 0.181 0.200 0.221 0.764

> d$common.dispersion

[1] 0.197

> png(file="edgeR_case_study_Zhang_tgwdisp_vs_abundance.png",

+ height=600, width=600)

> plot(log2(1e06*d$conc$conc.common), d$tagwise.dispersion,

+ xlab="Counts per million (log2 scale)", ylab="Tagwise dispersion")

> abline(h=d$common.dispersion, col="firebrick", lwd=3)

> dev.off()

null device

1

Figure 3 shows a plot of the tagwise dispersion estimates against counts per million
(i.e. tag abundance). We see that there are more tags at the lower-abundance end of the
spectrum and that these tags tend to be more variable in terms of tagwise dispersion esti-
mates (many tags have dispersion estimates much higher or lower than the common disper-
sion). For higher abundance levels, tagwise estimates tend to be quite close to the common
estimate, apart from those handful of tags which are markedly more variable than the others.
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Figure 3: Plot of the tagwise dispersion estimates against the counts per million (on the log2
scale) for each tag. The red line shows the common dispersion estimate.

10.5.2 Testing

By default, exactTest uses the tagwise dispersions when available. Here we carry out the
testing using the tagwise dispersion estimates calculated using a prior.n value of ten.

> de.tgw <- exactTest(d)

Comparison of groups: Tu - NC

The output below shows that when using tagwise dispersions, the edgeR package still
identifies a lot of differential expression between the normal colon cell group and the primary
CR cancer cell group. This arises because the moderated tagwise dispersions can be much
smaller or larger than the common dispersion, and tags with smaller dispersions will have
smaller p-values than the same tags with p-values computed using a common dispersion (vice
versa for tags with larger dispersions). As with the analysis using the common dispersion,
all of the top tags have a large fold change, indicating that these changes in expression are
likely to be biologically meaningful. We note that the ranking is different, however, and not
all of the top ten tags according to using the common dispersion are found to be among the
top ten tags using tagwise dispersions.
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> topTags(de.tgw)

Comparison of groups: Tu-NC

logConc logFC P.Value FDR

AGCTGTTCCC -28.0 44.13 2.91e-13 1.46e-09

CTTGGGTTTT -29.6 40.86 1.22e-08 3.06e-05

TCACCGGTCA -10.5 -4.14 1.05e-07 1.75e-04

GTCATCACCA -30.1 -39.73 1.48e-07 1.86e-04

TACAAAATCG -30.0 40.10 2.56e-07 2.57e-04

TAAATTGCAA -10.8 -4.17 3.14e-07 2.62e-04

TAATTTTTGC -13.1 5.84 7.72e-07 5.53e-04

ATTTCAAGAT -13.2 -5.81 1.00e-06 6.17e-04

GTGCGCTGAG -30.4 39.31 1.11e-06 6.17e-04

CTTGACATAC -30.4 -39.20 1.87e-06 9.37e-04

The table below shows the raw counts for the tags that edgeR has identified as the
most differentially expressed using tagwise dispersions. For these genes there seems to be
very large differences between the groups, suggesting that the DE genes identified are truly
differentially expressed, and not false positives.

We note that in general, when using tagwise dispersions, the counts are more consistent
within groups, as using tagwise dispersions instead of the common dispersion penalises tags
which are highly variable within groups. The smaller the value selected for prior.n, the more
highly variable tags will be penalised, as there is less ‘squeezing’ of the tagwise dispersions
towards the common value. This effect is seen clearly in the table below (compare this with
the corresponding table for the analysis using the common dispersion).

> detags.tgw <- rownames(topTags(de.tgw)$table)

> d$counts[detags.tgw, ]

1 2 3 4

AGCTGTTCCC 0 0 119 1011

CTTGGGTTTT 0 0 21 97

TCACCGGTCA 118 75 6 5

GTCATCACCA 35 20 0 0

TACAAAATCG 0 0 14 56

TAAATTGCAA 103 59 3 6

TAATTTTTGC 0 1 37 21

ATTTCAAGAT 35 21 0 1

GTGCGCTGAG 0 0 18 23

CTTGACATAC 18 20 0 0

Of course, we can sort the top table differently, as we did earlier.
We see in the output below that 227 genes are significantly differentially expressed (using

Zhang et al. [1997]’s cut off of p-values less than 0.01) according to edgeR when using the
tagwise dispersion estimates (eight fewer than when using the common dispersion). Of those
tags, 89 are up-regulated in the cancer cells compared with the normal cells and 138 are
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down-regulated in the cancer cells compared with normal cells. These proportions of up-
and down-regulated tags are similar to those found using the common dispersion, but there
is a slightly higher proportion of down-regulated tags in those identified as DE using tagwise
dispersions.

> sum(de.tgw$table$p.value < 0.01)

[1] 227

> toptgw <- topTags(de.tgw, n = sum(de.tgw$table$p.value < 0.01))

> sum(toptgw$table$logFC > 0)

[1] 89

> sum(toptgw$table$logFC < 0)

[1] 138

Furthermore, we see below that 80 tags (1.6% of the total number) have a p-value of
less than 0.05 after adjusting for multiple testing using the Benjamini and Hochberg [1995]
method for controlling the FDR, which is strong evidence for differential expression.

> summary(decideTestsDGE(de.tgw, p.value=0.05))

[,1]

-1 49

0 4932

1 31

10.5.3 Visualising DGE results

Shown below is the code for producing the default fold-change plot using plotSmear with
the DE tags as determined using tagwise dispersions highlighted, and the result of this code
is shown in Figure 4.

> detags.tgw <- rownames(topTags(de.tgw, n = sum(

+ de.tgw$table$p.value < 0.01) )$table)

> png(file="edgeR_case_study_Zhang_tgw_smearplot.png", height=600, width=600)

> plotSmear(d, de.tags=detags.tgw, main=

+ "FC plot using tagwise dispersions")

> abline(h = c(-2, 2), col = "dodgerblue")

> dev.off()

null device

1

In Figure 4, the 227 tags identified as differentially expressed (i.e. those identified as
significant (p-value less than 0.01) by edgeR using the tagwise dispersions) are highlighted
in red. We see that the pattern of differential expression using tagwise dispersions that we
see in Figure 4 is very similar to that obtained using the common dispersion that we saw in
Figure 2.
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Figure 4: Plot of the log-fold change against the log-concentration for each tag. The 225
most differentially expressed tags as identified by edgeR are outlined in red.

10.6 Setup

This analysis of Zhang et al. [1997]’s SAGE data was conducted on:

> sessionInfo()

R Under development (unstable) (2011-09-19 r57030)

Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252

[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[5] LC_TIME=English_Australia.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] limma_3.9.22 edgeR_2.3.57

loaded via a namespace (and not attached):

[1] tools_2.14.0
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11 Case Study: deep-sequenced short tags

11.1 Introduction

This section provides a detailed analysis of data from an experiment seeking to compare
deep-sequenced tag-based expression profiling to the microarray platforms that had been
previously used to conduct such studies [’t Hoen et al., 2008].

11.2 Source of the data

’t Hoen et al. [2008] address both biological and technical questions in their study. The
biological question addressed was the identification of transcripts differentially expressed in
the hippocampus between wild-type mice and transgenic mice overexpressing a splice variant
of the δC-doublecortin-like kinase-1 (Dclk1 ) gene. The splice variant, DCLK-short, makes
the kinase constitutively active and causes subtle behavioural phenotypes.

On the technical side, the researchers compare the robustness, resolution and inter-
lab portability of Solexa/Illumina’s DGE tag profiling approach and five microarray plat-
forms [’t Hoen et al., 2008]. The tag-based gene expression technology in this experiment
could be thought of as a hybrid between SAGE and RNA-seq—like SAGE it uses short
sequence tags (∼ 17bp) to identify transcripts, but it uses the deep sequencing capabilities
of Solexa/Illumina 1G Genome Analyzer to greatly increase the number of tags that can be
sequenced. For our purposes we will concentrate solely on the DGE data generated in the
experiment.

The RNA samples came from wild-type male C57/BL6j mice and transgenic mice over-
expressing DCLK-short with a C57/BL6j background. Tissue samples were collected from
four individuals in each of the two groups by dissecting out both hippocampi from each
mouse. Total RNA was isolated and extracted from the hippocampus cells and sequence
tags were prepared using Illumina’s Digital Gene Expression Tag Profiling Kit according to
the manufacturer’s protocol.

Sequencing was done using Solexa/Illumina’s Whole Genome Sequencer. RNA from
each biological sample was supplied to an individual lane in one Illumina 1G flowcell. The
instrument conducted 18 cycles of base incorporation, then image analysis and basecalling
were performed using the Illumina Pipeline. Sorting and counting the unique tags followed,
and the raw data (tag sequences and counts) are what we will analyze here. ’t Hoen et al.
[2008] went on to annotate the tags by mapping them back to the genome. In general, the
mapping of tags is an important and highly non-trivial part of a DGE experiment, but we
shall not deal with this task in this case study.

The researchers obtained ∼ 2.4 million sequence tags per sample, with tag abundance
spanning four orders of magnitude. They found the results to be highly reproducible, even
across laboratories. Using a dedicated Bayesian model, they found 3179 transcripts to be
differentially expressed with a FDR of 8.5%. This is a much higher figure than was found for
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the microarrays. ’t Hoen et al. [2008] conclude that deep-sequencing offers a major advance
in robustness, comparability and richness of expression profiling data.

11.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package, read the data into R and organise the data
into an object that the functions in the package can recognise. In this case, the tag counts
for the eight individual libraries are stored in eight separate plain text files, GSM272105.txt,
GSM272106.txt, GSM272318.txt, GSM272319.txt, GSM272320.txt, GSM272321.txt, GSM272322.txt
and GSM272323.txt.

In each file, the tag IDs and counts for each tag are provided in a table. It is best to
create a tab-delimited, plain-text ‘Targets’ file, which, under the headings ‘files’, ‘group’ and
‘description’, gives the filename, the group and a brief description for each sample.

The targets object is produced when the ‘Targets.txt’ file is read into the R session.
This object makes a convenient argument to the function readDGE which reads the tables of
counts into our R session, calculates the sizes of the count libraries and produces a DGEList

object for use by subsequent functions. The skip and comment.char arguments to readDGE

are passed to in-built R functions for reading in data, such as read.table.

> library(edgeR)

> library(limma)

> targets <- read.delim(file = "targets.txt", stringsAsFactors = FALSE)

> targets

files group description

1 GSM272105.txt DCLK transgenic (Dclk1) mouse hippocampus

2 GSM272106.txt WT wild-type mouse hippocampus

3 GSM272318.txt DCLK transgenic (Dclk1) mouse hippocampus

4 GSM272319.txt WT wild-type mouse hippocampus

5 GSM272320.txt DCLK transgenic (Dclk1) mouse hippocampus

6 GSM272321.txt WT wild-type mouse hippocampus

7 GSM272322.txt DCLK transgenic (Dclk1) mouse hippocampus

8 GSM272323.txt WT wild-type mouse hippocampus

> d <- readDGE(targets, skip = 5, comment.char = "!")

> d

An object of class "DGEList"

$samples

files group description lib.size

1 GSM272105.txt DCLK transgenic (Dclk1) mouse hippocampus 2685418

2 GSM272106.txt WT wild-type mouse hippocampus 3517977

3 GSM272318.txt DCLK transgenic (Dclk1) mouse hippocampus 3202246

4 GSM272319.txt WT wild-type mouse hippocampus 3558260

5 GSM272320.txt DCLK transgenic (Dclk1) mouse hippocampus 2460753

6 GSM272321.txt WT wild-type mouse hippocampus 294909
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7 GSM272322.txt DCLK transgenic (Dclk1) mouse hippocampus 651172

8 GSM272323.txt WT wild-type mouse hippocampus 3142280

norm.factors

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

$counts

1 2 3 4 5 6 7 8

CATCGCCAGCGGGCACC 1 0 0 0 0 0 0 0

AAGGTCGACTCTGAAGT 1 1 0 0 0 0 0 0

CCTTCCTGGCTCTATGG 1 0 0 0 0 0 0 0

TCTGCTGAGCGTCTGTT 1 0 0 0 0 0 0 0

CCCCAGAGCGAATCAGG 1 1 2 1 1 0 2 1

844311 more rows ...

> colnames(d) <- c("DCLK1","WT1","DCLK2","WT2","DCLK3","WT3","DCLK4","WT4")

This DGEList is now ready to be passed to the functions that do the calculations to
determine differential expression levels for the genes. Note that when we ‘see’ the DGEList

object d, the counts for just the first five genes in the table are shown, as well as the
samples element, which is a data frame constructed from the ‘Targets.txt’ file and provides
the filenames, groups, descriptions and library sizes for the samples.

However, for this dataset, there were over 800 000 unique tags sequenced, most of which
have a very small number of counts in total across all libraries. Since it is not possible to
achieve statistical significance with fewer than six counts in total for a tag, we filter out
tags which have fewer than one count per million in five or more libraries. This reduces
our chances of finding spurious DE (that is, DE driven by large counts in only a handful of
libraries) and also helps to speed up the calculations we need to perform. The cpm function
makes it easy to compute counts per million. The subsetting capability of DGEList objects
makes such filtering very easy to carry out.

> cpm.d <- cpm(d)

> d <- d[rowSums(cpm.d > 1) >= 4, ]

> dim(d)

[1] 44882 8

Now the dataset is ready to be analysed for differential expression, with just over 44000
tags remaining with sufficient expression for meaningful DE analysis.
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11.4 Producing an MDS plot

Before proceeding with the computations for differential expression, it is possible to pro-
duce a plot showing the sample relations based on multidimensional scaling. The function
plotMDS.dge produces an MDS plot for the samples when provided with the DGEList object
and other usual graphical parameters as arguments, as shown below.

> pdf(file="edgeR_case_study_tHoen_MDSplot.pdf", height=6, width=6)

> plotMDS(d, main="MDS Plot for ’t Hoen Data", xlim=c(-2,1))

> dev.off()

null device

1

This function is a variation on the usual multdimensional scaling (or principle coordinate)
plot, in that a distance measure particularly appropriate for the digital gene expression
(DGE) context is used. The distance between each pair of samples (columns) is the square
root of the common dispersion for the top n (default is n = 500) genes which best distinguish
that pair of samples. These top n genes are selected according to the tagwise dispersion of
all the samples. The resulting plot for the ‘t Hoen data is shown in 5.

11.5 Analysis using common dispersion

11.5.1 Estimating the common dispersion

As discussed for the SAGE data, the first major step in the analysis of DGE data using the
NB model is to estimate the dispersion parameter for each tag. Like in the earlier case study,
we begin by estimating the common dispersion using the function estimateCommonDisp.

> system.time( d <- estimateCommonDisp(d) )

user system elapsed

17.21 1.56 18.89

> names(d)

[1] "samples" "common.dispersion" "counts"

[4] "pseudo.alt" "genes" "all.zeros"

[7] "conc" "common.lib.size"

Here the coefficient of variation of biological variation (square root of the common dis-
persion) is found to be 0.39. We also note that a common dispersion estimate of 0.15 means
that there is a lot more variability in the data that can be accounted for by the Poisson
model—if a tag has just 200 counts in total (average of 25 counts per sample), then the
estimate of the tag’s variance under the NB model is over 10 times greater than it would be
under the Poisson model.
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Figure 5: Multidimensional scaling (MDS) plot for the ‘t Hoen data, showing the relations
between the samples in two dimensions. Dimension 1 separates the DCLK and WT samples
quite nicely.

> d$common.dispersion

[1] 0.151

> sqrt(d$common.dispersion)

[1] 0.389

11.5.2 Testing

Once we have an estimate of the common dispersion, we can proceed with testing procedures
for determining differential expression. As for the SAGE data, there are only two groups here,
so the pair need not be specified in the call to exactTest. However, using the pair argument
allows the user to determine how the comparison is made. Setting pair=c(‘‘WT’’,’’DCLK’’)

as below means that the comparison done is DCLK −WT .

> system.time( de.common <- exactTest(d, pair=c("WT","DCLK")) )
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Comparison of groups: DCLK - WT

user system elapsed

11.41 0.22 11.66

The results of the NB exact test can be accessed conveniently using the topTags function
applied to the object produced by exactTest. The table below shows the top 10 DE genes
ranked by p-value.

The table in the output from topTags shows that the edgeR package identifies a good deal
of differential expression between the wild-type and the DCLK-transgenic groups. The top
DE tags are given very small p-values, even after adjusting for multiple testing. Furthermore,
all of the top tags have a large fold change, indicating that these tags are likely to be
biologically meaningful. As suggested in the SAGE case study, a Gene Ontology analysis
could be carried out using the list of top tags and p-values provided by topTags in order to
obtain more systematic and functional information about the differentially expressed genes.

> topTags(de.common)

Comparison of groups: DCLK-WT

logConc logFC P.Value FDR

CCGTCTTCTGCTTGTCG -10.6 -5.57 2.02e-30 9.06e-26

CCGTCTTCTGCTTGTAA -14.4 -5.42 3.36e-27 7.41e-23

TCTGTACGCAGTCAGGC -18.5 9.73 4.95e-27 7.41e-23

CCGTCTTCTGCTTGTCA -15.5 -5.46 6.53e-25 7.33e-21

CCGTCTTCTGCTTGTAG -15.6 -4.75 7.57e-21 6.80e-17

CATAAGTCACAGAGTCG -32.8 34.51 2.27e-15 1.69e-11

TCTGTATGTTCTCGTAT -16.1 -4.11 4.44e-15 2.85e-11

CCGTCTTCTGCTTGAAA -12.0 -3.36 2.65e-14 1.49e-10

ATACTGACATTTCGTAT -16.8 -4.16 3.86e-14 1.93e-10

AAAAGAAATCACAGTTG -33.0 34.11 1.14e-13 5.12e-10

The table below shows the raw counts for the tags that edgeR has identified as the most
differentially expressed. For these tags there seem to be very large differences between the
groups, suggesting that the DE genes identified are truly differentially expressed, and not
false positives. We do see, however, that when a common dispersion value is used, tags
which have just one large count (counts per million shown below) in one sample can appear
as highly DE. If we wish to give less significance to such tags then we can use tagwise
dispersion estimates as described below.

> detags.com <- rownames(topTags(de.common)$table)

> cpm.d[detags.com, order(d$samples$group)]

DCLK1 DCLK2 DCLK3 DCLK4 WT1 WT2 WT3 WT4

CCGTCTTCTGCTTGTCG 39.472 83.69 244.23 7.68 422.1 118.035 17483.4 77.01

CCGTCTTCTGCTTGTAA 4.469 6.56 12.60 1.54 24.7 7.869 1193.6 4.46

TCTGTACGCAGTCAGGC 59.581 31.54 178.81 50.68 0.0 0.281 0.0 0.00

CCGTCTTCTGCTTGTCA 0.745 2.50 7.72 1.54 11.9 4.778 620.5 5.41
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CCGTCTTCTGCTTGTAG 3.351 3.44 6.91 0.00 17.3 5.621 451.0 2.86

CATAAGTCACAGAGTCG 24.950 24.05 23.57 10.75 0.0 0.000 0.0 0.00

TCTGTATGTTCTCGTAT 2.979 3.75 2.84 4.61 26.7 120.002 20.3 56.33

CCGTCTTCTGCTTGAAA 100.171 76.20 53.24 70.64 28.7 16.019 3095.9 13.68

ATACTGACATTTCGTAT 1.862 1.56 3.25 1.54 32.1 64.076 13.6 33.10

AAAAGAAATCACAGTTG 11.544 28.11 17.07 4.61 0.0 0.000 0.0 0.00

If we order the tags by fold change instead of p-value, as in the table below, we see
that the genes with the largest fold changes have very small concentrations, and in general
the p-values are not as small as when ranked by p-value (not surprisingly). This ranking is
dominated by genes that have zero total counts in one group and is less informative than
ranking by p-value.

> topTags(de.common, sort.by = "logFC")

Comparison of groups: DCLK-WT

logConc logFC P.Value FDR

CATAAGTCACAGAGTCG -32.8 34.5 2.27e-15 1.69e-11

AAAAGAAATCACAGTTG -33.0 34.1 1.14e-13 5.12e-10

CAAACTAGAAGACAGAA -33.3 33.4 1.47e-10 2.27e-07

TCTCTAAAGCGTCCTTG -33.6 32.8 3.58e-08 2.68e-05

GAAGGAGTCTTCGTATG -34.0 -32.1 4.37e-06 1.32e-03

TTAATATCTTTCGTATG -34.0 -32.0 9.21e-06 2.19e-03

AATAAATATCTTTTTCT -34.2 -31.6 7.22e-06 1.88e-03

GTGCTGGAGGAGACAAG -34.3 31.5 1.48e-04 1.27e-02

CATACAGTGCCAGTCGT -34.3 31.5 3.44e-04 2.06e-02

AGTCGTATGCCGTCTTC -34.5 31.1 8.22e-04 3.41e-02

Using their dedicated Bayesian model, ’t Hoen et al. [2008] found 3179 transcripts to
be differentially expressed with a FDR of 8.5%. We can compare ’t Hoen et al. [2008]’s
results with the results from edgeR by applying the topTags function to help look at the tags
that have a FDR of less than 0.085 after adjusting for multiple testing using Benjamini and
Hochberg [1995]’s method for controlling the FDR.

We see in the output below that 2286 tags (5.1% of the total number analysed) are sig-
nificantly differentially expressed according to edgeR using the common dispersion estimate.
Of those tags, 753 (33% of the DE tags) are up-regulated in the wild-type compared with
the transgenic samples and 1533 (67%) are down-regulated in the wild-type compared with
transgenic mice.

> summary(decideTestsDGE(de.common, p.value=0.085))

[,1]

-1 753

0 42596

1 1533
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11.5.3 Visualising DGE results

The code for producing the default fold-change plot, with the top 500 most DE tags high-
lighted in red, is shown below, and the result of this code is shown in Figure 6. In Figure 6,
we see that the 500 tags identified as most differentially expressed have large fold changes—
almost all of the 500 tags in red fall outside the blue lines at log FC = −2 and log FC = 2.
This means that most of these tags show at least a 4-fold change in expression level between
the samples. This plot suggests strongly that the tags identified by edgeR as differentially
expressed are truly differentially expressed, and, given the large changes in expression level,
are likely to be biologically meaningful.

> detags500.com <- rownames(topTags(de.common, n = 500)$table)

> png(file="edgeR_case_study_tHoen_smearplot.png", height=600, width=600)

> plotSmear(de.common, de.tags = detags500.com, main = "FC plot using common dispersion", cex=0.6)

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> dev.off()

null device

1

11.6 Analysis using moderated tagwise dispersions

11.6.1 Moderating the tagwise dispersion

As discussed in the previous case studies, an extension to simply using the common dispersion
for each tag is to estimate the dispersion separately for each tag, while ‘squeezing’ these
estimates towards the common dispersion estimate. The goal of this moderation of the
dispersion estimates is to improve inference by sharing information between tags. This type
of analysis can be carried out in few steps using the edgeR package.

To run the moderated analysis, we need to determine how much moderation is necessary.
As discussed above, we currently prefer to choose a sensible value for the smoothing param-
eter a priori, although we do have an algorithm developed by Robinson and Smyth [2007]
for estimating the smoothing parameter as an approximate eBayes rule.

In our experience analysing RNA-Seq data we have found that a good rule of thumb for
choosing a value for prior.n is to choose a certain number of prior degrees of freedom (a
value between 20 and 30 works well) and then divide this number by the degrees of freedom
(number of samples minus the number of variables being fit in the model; in the case of a
simple multiple-group comparison this is simply the number of samples minus the number of
groups). The function getPriorN automatically calculates the appropriate value for prior.n

for a given experimental design.
As we only have eight libraries, a small sample size, we should not be too confident about

the accuracy of the tagwise dispersions. In this experiment we have eight samples and two
groups, which means we have six degrees of freedom for estimating the dispersion parameter.
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Figure 6: Plot of the log-fold change against the log-concentration for each tag. The 500
most differentially expressed tags as identified by edgeR using the common dispersion are
outlined in red.

Thus, setting the prior.n to be 3.33 (20 divided by six) should be appropriate. This means
that the common likelihood receives the weight of 3.33 individual tags. Therefore, there
will be a reasonable degree of ‘squeezing’ towards the common dispersion estimate, but still
enough scope to allow flexibility when estimating the individual dispersion for each gene.
By default, estimateTagwiseDisp uses the prior.n value from getPriorN.

The function estimateTagwiseDisp produces a DGEList object that contains all of the
elements present in the object produced by estimateCommonDisp, as well as the value for
prior.n used (d$prior.n) and the tagwise dispersion estimates (d$tagwise.dispersion), as
we see below. Here we set grid.length=500 for greater precision in the tagwise dispersion
estimates.

> system.time( d <- estimateTagwiseDisp(d, prop.used=0.5,

+ grid.length=500) )

user system elapsed

64.70 1.19 66.16

> names(d)
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[1] "samples" "common.dispersion" "counts"

[4] "pseudo.alt" "genes" "all.zeros"

[7] "conc" "common.lib.size" "prior.n"

[10] "tagwise.dispersion"

> d$prior.n

[1] 3.33

> head(d$tagwise.dispersion)

[1] 0.153 0.200 0.122 0.239 0.127 0.170

It is interesting to consider the distribution of the tagwise dispersion estimates. As we can
see from the output below, the tagwise dispersion estimates range from a minimum of 0.08
to a maximum of 1.05, and the common dispersion estimate lies in between the median and
mean values for the tagwise dispersion estimates. Figure 7 shows the relationship between
the estimated tagwise dispersions and tag abundance (log-concentration) for this dataset.

> summary(d$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.081 0.133 0.170 0.180 0.209 1.050

> d$common.dispersion

[1] 0.151

> png(file="edgeR_case_study_tHoen_tgw_disp_vs_logconc.png", height=600, width=600)

> plot(log(d$conc$conc.common), d$tagwise.dispersion, panel.first=grid(),

+ ylab="tagwise dispersion", xlab="logConc")

> abline(h=d$common.dispersion, col="dodgerblue", lwd=3)

> dev.off()

null device

1

11.6.2 Testing

Once we have an estimate of the common dispersion and/or estimates of the tagwise disper-
sions, we can proceed with testing procedures for determining differential expression using
exactTest. Here we carry out the testing using the tagwise dispersion estimates calculated
using a prior.n value of ten. By default, exactTest uses the tagwise dispersions when
available.

> de.tagwise <- exactTest(d, pair=c("WT","DCLK"))
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Figure 7: Plot of the tagwise dispersions against tag abundance (log-concentration).

Comparison of groups: DCLK - WT

Just as we saw earlier, the object produced by exactTest contains two elements. The
first is a data frame (table) that contains the elements logConc, logFC and p.value and the
second is a vector (comparison) that lists the names of the groups being compared.

The output below shows that when using tagwise dispersions, the edgeR package still iden-
tifies a lot of differential expression between the wild-type group and the DCLK-transgenic
group. The top DE tags are given very small p-values, even after adjusting for multiple
testing. However, We see immediately that the p-values for the top tags are many orders of
magnitude greater than those for the top tags identified using the common dispersion.

As with the analysis using the common dispersion, all of the top tags have a large fold
change, indicating that these changes in expression are likely to be biologically meaningful,
although interestingly we see more tags (7 out of 10) that are down-regulated in the wild-type
group compared with the DCLK group, which contrasts with using the common dispersion.
We note that the ranking of the tags is different, too, and only three of the top ten tags
according to using the common dispersion are found to be among the top ten tags using
tagwise dispersions.

> topTags(de.tagwise)
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Comparison of groups: DCLK-WT

logConc logFC P.Value FDR

TCTGTACGCAGTCAGGC -18.5 9.73 7.18e-23 3.22e-18

CATAAGTCACAGAGTCG -32.8 34.52 7.36e-17 1.65e-12

GCTAATAAATGGCAGAT -14.9 3.28 2.61e-15 3.91e-11

ATACTGACATTTCGTAT -16.8 -4.16 2.35e-14 2.34e-10

CCAAGAATCTGGTCGTA -17.5 3.93 2.61e-14 2.34e-10

TTCCTGAAAATGTGAAG -17.1 3.64 1.50e-13 1.04e-09

CTGCTAAGCAGAAGCAA -17.0 3.42 1.62e-13 1.04e-09

TCTGTATGTTCTCGTAT -16.1 -4.10 3.38e-13 1.90e-09

CCTATTTTTCTCTCGTA -14.6 3.19 4.88e-13 2.43e-09

TATTTTGTTTTGTCGTA -17.0 -3.88 5.58e-13 2.51e-09

The tables below shows the raw counts for the genes that edgeR has identified as the most
differentially expressed, using the common dispersion and tagwise dispersions. For these tags,
using both methods, there seem to be very large differences between the groups, suggesting
that the DE genes identified are truly differentially expressed, and not false positives.

Particularly noteworthy, however, is how much more consistent the counts within groups
are for the top tags identified using tagwise dispersions compared with those identified using
the common dispersion. This is to be expected, as allowing tagwise dispersions penalises
highly variable tags, so those that have greater variability within groups (especially one or
two libraries with extremely high counts) will appear far lower in the ranking using tagwise
dispersions than they would using the common dispersion. This difference in the rankings
provided by the two approaches to the dispersion parameter could yield valuable information.
The counts per million are shown for the top 10 DE tags according to the tagwise and common
dispersion approaches. The tagwise dispersion estimates are shown for the to tags according
to the tagwise approach. We see that when we use the tagwise dispersions the DE tags have
more consistent expression levels within groups.

> detags.tgw <- rownames(topTags(de.tagwise)$table)

> detags.com <- rownames(topTags(de.common)$table)

> tgw.disp <- d$tagwise.dispersion

> names(tgw.disp) <- rownames(d)

> cbind(cpm.d[detags.tgw, order(d$samples$group)], tgw.disp[detags.tgw] )

DCLK1 DCLK2 DCLK3 DCLK4 WT1 WT2 WT3 WT4

TCTGTACGCAGTCAGGC 59.58 31.54 178.81 50.68 0.000 0.281 0.00 0.00 0.198

CATAAGTCACAGAGTCG 24.95 24.05 23.57 10.75 0.000 0.000 0.00 0.00 0.127

GCTAATAAATGGCAGAT 144.11 100.24 53.64 109.03 12.791 8.993 3.39 12.09 0.122

ATACTGACATTTCGTAT 1.86 1.56 3.25 1.54 32.121 64.076 13.56 33.10 0.148

CCAAGAATCTGGTCGTA 26.07 20.61 19.10 19.96 0.853 1.405 0.00 2.23 0.112

TTCCTGAAAATGTGAAG 27.56 21.86 34.95 15.36 1.706 2.529 0.00 2.23 0.122

CTGCTAAGCAGAAGCAA 28.30 27.48 21.13 23.04 1.990 1.967 0.00 3.50 0.110

TCTGTATGTTCTCGTAT 2.98 3.75 2.84 4.61 26.720 120.002 20.35 56.33 0.181

CCTATTTTTCTCTCGTA 83.79 144.59 191.81 50.68 15.634 15.457 3.39 11.77 0.148

TATTTTGTTTTGTCGTA 3.72 1.56 1.22 0.00 25.014 48.057 13.56 21.32 0.153
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> cpm.d[detags.com, order(d$samples$group)]

DCLK1 DCLK2 DCLK3 DCLK4 WT1 WT2 WT3 WT4

CCGTCTTCTGCTTGTCG 39.472 83.69 244.23 7.68 422.1 118.035 17483.4 77.01

CCGTCTTCTGCTTGTAA 4.469 6.56 12.60 1.54 24.7 7.869 1193.6 4.46

TCTGTACGCAGTCAGGC 59.581 31.54 178.81 50.68 0.0 0.281 0.0 0.00

CCGTCTTCTGCTTGTCA 0.745 2.50 7.72 1.54 11.9 4.778 620.5 5.41

CCGTCTTCTGCTTGTAG 3.351 3.44 6.91 0.00 17.3 5.621 451.0 2.86

CATAAGTCACAGAGTCG 24.950 24.05 23.57 10.75 0.0 0.000 0.0 0.00

TCTGTATGTTCTCGTAT 2.979 3.75 2.84 4.61 26.7 120.002 20.3 56.33

CCGTCTTCTGCTTGAAA 100.171 76.20 53.24 70.64 28.7 16.019 3095.9 13.68

ATACTGACATTTCGTAT 1.862 1.56 3.25 1.54 32.1 64.076 13.6 33.10

AAAAGAAATCACAGTTG 11.544 28.11 17.07 4.61 0.0 0.000 0.0 0.00

> topTags(de.common)

Comparison of groups: DCLK-WT

logConc logFC P.Value FDR

CCGTCTTCTGCTTGTCG -10.6 -5.57 2.02e-30 9.06e-26

CCGTCTTCTGCTTGTAA -14.4 -5.42 3.36e-27 7.41e-23

TCTGTACGCAGTCAGGC -18.5 9.73 4.95e-27 7.41e-23

CCGTCTTCTGCTTGTCA -15.5 -5.46 6.53e-25 7.33e-21

CCGTCTTCTGCTTGTAG -15.6 -4.75 7.57e-21 6.80e-17

CATAAGTCACAGAGTCG -32.8 34.51 2.27e-15 1.69e-11

TCTGTATGTTCTCGTAT -16.1 -4.11 4.44e-15 2.85e-11

CCGTCTTCTGCTTGAAA -12.0 -3.36 2.65e-14 1.49e-10

ATACTGACATTTCGTAT -16.8 -4.16 3.86e-14 1.93e-10

AAAAGAAATCACAGTTG -33.0 34.11 1.14e-13 5.12e-10

We might also be interested in comparing the top-ranking genes as identified by edgeR us-
ing the common dispersion and tagwise dispersions. The output below shows, firstly, that
there are four tags that appear in the top ten most DE tags using both common and tagwise
dispersions. Secondly, we see that of the top 1000 most DE tags as identified using tagwise
dispersions, 77% of these tags are also in the list of the 1000 most DE tags as identified
using the common dispersion. This shows that although we do get quite different results
depending on which method we use, there is still a great deal of agreement as to which tags
are DE.

> sum(rownames(topTags(de.tagwise)$table) %in%

+ rownames(topTags(de.common)$table))

[1] 4

> sum(rownames(topTags(de.tagwise, n = 1000)$table) %in%

+ rownames(topTags(de.common, n = 1000)$table))/1000 * 100

[1] 76.5
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Using their dedicated Bayesian model, ’t Hoen et al. [2008] found 3179 transcripts to be
differentially expressed with a FDR of 8.5%. The output below shows that using Benjamini
and Hochberg [1995]’s approach for controlling the FDR at 8.5%, edgeR identifies 2286 tags
as DE using common dispersion and 2209 tags as DE using tagwise dispersions. This means
that we determine 5.1% and 4.9% of tags to be DE using common and tagwise dispersions,
respectively. The decideTestsDGE function provides a useful way to summarize DE results
after testing, as shown below.

> summary(decideTestsDGE(de.common, p.value=0.085))

[,1]

-1 753

0 42596

1 1533

> mean(p.adjust(de.common$table$p.value,

+ method = "BH") < 0.085) * 100

[1] 5.09

> summary(decideTestsDGE(de.tagwise, p.value=0.085))

[,1]

-1 722

0 42673

1 1487

> mean(p.adjust(de.tagwise$table$p.value,

+ method = "BH") < 0.085) * 100

[1] 4.92

> summary(decideTestsDGE(de.tagwise, p=0.085))

[,1]

-1 722

0 42673

1 1487

Of the 2209 tags identified as DE using tagwise dispersions, 722 (33%) are up-regulated
in wild-type and 1487 (67%) are up-regulated in the transgenic mice. The proportions of up-
and down-regulated genes identified using the two approaches to modeling the dispersion
are similar, but using the common dispersion identifies slightly more tags down-regulated in
wild-type mice as DE.

42



11.6.3 Visualising DGE results

As discussed earlier, the function plotSmear can be used to generate a plot of the log-fold
change against the log-concentration for each tag (analogous to an MA-plot in the microarray
context). We identify the top 500 most DE tags using both common dispersion and tagwise
dispersions so we can highlight them on the plots and compare what we see. The code
for producing the fold-change plots is shown below, and the result of this code is shown in
Figure 8.

> detags500.com <- rownames(topTags(de.common, n = 500)$table)

> detags500.tgw <- rownames(topTags(de.tagwise, n = 500)$table)

> png(file="edgeR_case_study_tHoen_comparative_smearplots.png", height=800, width=600)

> par(mfcol = c(2, 1))

> plotSmear(de.common, de.tags = detags500.com, main = "Using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> plotSmear(de.tagwise, de.tags = detags500.tgw, main = "Using tagwise dispersions")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> dev.off()

null device

1

In Figure 8, the top 500 most differentially expressed tags (those identified as significant
by edgeR using the common dispersion (top) and tagwise dispersions (bottom)) are high-
lighted in red. Looking at Figure 8, we see that, generally speaking, the pattern of differential
expression looks similar using the two different methods, and the tags identified as DE have
convincingly large fold changes.

11.7 Setup

This analysis of ’t Hoen et al. [2008]’s tag-based DGE data was conducted on:

> sessionInfo()

R Under development (unstable) (2011-09-19 r57030)

Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252

[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[5] LC_TIME=English_Australia.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] limma_3.9.22 edgeR_2.3.57
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loaded via a namespace (and not attached):

[1] tools_2.14.0
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Figure 8: Plots of the log-fold change against the log-concentration for each tag, using
the common dispersion (upper), and tagwise dispersions (lower). Tags with positive fold-
change here are up-regulated in wild-type compared with transgenic mice. The 500 most
differentially expressed tags according to each method are highlighted in red on both plots.
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12 Case Study: RNA-seq of Hormone-Treated LNCaP

Cells

12.1 Introduction

This case study considers a two-group RNA-seq dataset with relatively low biological vari-
ability. It provides a detailed analysis of data from a study by Li et al. [2008] designed to
address a range of practical issues in RNA-seq experiments:

1. How many annotated genes are detected in a single cell type?

2. What is the number of tags that is necessary for the analysis of differentially regulated
genes under different experimental conditions?

3. To what extent can different mRNA isoforms be detected?

4. How can one quantify alternative splicing by using a single or combination of existing
technologies?

Li et al. [2008] attempt to address all of these issues on an androgen-sensitive prostate
cancer cell model. We are interested primarily in the second question, and the challenge of
identifying differentially regulated genes under different experimental conditions. We will
demonstrate the use of the edgeR package for analyzing RNA-seq data for differential gene
expression.

12.2 Source of the data

Li et al. [2008] sequenced poly(A)+ RNA from mock-treated or androgen sensitive LNCaP
cells (a cell line of human cells commonly used in the field of oncology) on the Illumina
1G Genome Analyzer. The researchers used a double-random priming approach that was
capable of generating strand-specific information, although this is not of relevance to our
analysis here. The raw RNA-seq data provided by Li et al. consists of 7 ‘lanes’ of 35bp
reads. 1 Approximately 10 million sequence tags were generated from both control and
hormone-treated cells (treated with DHT), and Li et al. [2008]’s analysis suggests that this
tag density is sufficient for quantitative analysis of gene expression.

The 10 million sequenced tags arise from four libraries from control cells and three li-
braries for hormone-treated cells, giving a total of seven libraries to analyse. From Li et al.
[2008] and its companion paper [Li et al., 2006] it is unclear as to whether the treatments
are independent or not. The following analysis shows how a quantitative analysis of gene
expression, focusing on identifying differentially expressed genes, can be conducted for these
seven libraries using edgeR.

1The Illumina instrument requires samples to be placed in a ‘flow cell’ which contains eight ‘lanes’—each
lane has a sample of cDNA and generates a library of sequence counts for that sample.

46



12.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package and read the data into R. In this case, the tag
counts for the libraries are stored in a single table in a plain text file pnas expression.txt, in
which the rows of the table represent tags and the columns represent the different libraries.

To turn the raw RNA-seq data into a table of counts, reads were mapped to the NCBI36
build of the human genome using bowtie, allowing up to two mismatches. Reads which did
not map uniquely were discarded. The number of mapped reads that overlapped ENSEMBL
gene annotations (version 53) was then counted. In counting reads associated with genes,
reads which mapped to non-coding gene regions, such as introns, were included in the count.

Unlike in the other datasets we have look at, counts here are aggregated at the gene, not
at the tag, level.

The files object provides the name of the data file, and makes a convenient argument
to the function read.delim which reads the table of counts into our R session. We assume
that the user can navigate to the directory containing the data file (using, for example, the
setwd command in R).

> library(edgeR)

> library(limma)

> raw.data <- read.delim("pnas_expression.txt")

> names(raw.data)

[1] "ensembl_ID" "lane1" "lane2" "lane3" "lane4"

[6] "lane5" "lane6" "lane8" "len"

The raw data is stored in a table with columns representing the gene names, the counts
for the seven libraries and a column giving the length of each gene. The gene length is
not currently used by edgeR, but this information could be used in future versions of the
package. In the code below, we assign the counts matrix to an object d with the appropriate
rownames, define the groups to which the samples belong, and then pass these arguments
to DGEList, which calculates the library sizes and constructs a DGEList containing all of the
data we require for the analysis.

We filter out lowly expressed tags and those which are only expressed in a small number
of samples. We keep only those tags that have at least one count per million in at least three
samples. The counts per million can be computed easily using the cpm function in edgeR.

TMM normalization is applied to this dataset to account for compositional difference
between the libraries. As we would hope to see, the normalization factors are very similar
within groups and do not differ too greatly between the Control and DHT samples.

> d <- raw.data[, 2:8]

> rownames(d) <- raw.data[, 1]

> group <- c(rep("Control", 4), rep("DHT", 3))

> d <- DGEList(counts = d, group = group)

> dim(d)

47



[1] 37435 7

> cpm.d <- cpm(d)

> d <- d[ rowSums(cpm.d > 1) >=3, ]

> d <- calcNormFactors(d)

> d

An object of class "DGEList"

$samples

group lib.size norm.factors

lane1 Control 978576 1.030

lane2 Control 1156844 1.037

lane3 Control 1442169 1.036

lane4 Control 1485604 1.038

lane5 DHT 1823460 0.954

lane6 DHT 1834335 0.953

lane8 DHT 681743 0.958

$counts

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000124208 478 619 628 744 483 716 240

ENSG00000182463 27 20 27 26 48 55 24

ENSG00000124201 180 218 293 275 373 301 88

ENSG00000124207 76 80 85 97 80 81 37

ENSG00000125835 132 200 200 228 280 204 52

16489 more rows ...

$all.zeros

ENSG00000124208 ENSG00000182463 ENSG00000124201 ENSG00000124207 ENSG00000125835

FALSE FALSE FALSE FALSE FALSE

16489 more elements ...

This DGEList is now ready to be passed to the functions that do the calculations to
determine differential expression levels for the genes.

12.4 Producing an MDS plot

Before proceeding with the computations for differential expression, it is possible to produce
a plot showing the sample relations based on multidimensional scaling, as demonstrated
for the Tag-seq data above. We can produce a multidimensional-scaling (MDS) plot for
the Li Data using the command below. An MDS plot can be used to explore similarities
or dissimilarities between samples in a visual way. Currently, the limma package must be
loaded in order to use the plotMDS function.

> pdf(file="edgeR_case_study_Li_MDSplot.pdf", height=6, width=6)

> plotMDS(d, main="MDS Plot for Li Data", xlim=c(-1,1), labels=c(

+ "Control1","Control2","Control3","Control4","DHT1","DHT2","DHT3"))

> dev.off()
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null device

1

The resulting plot for the Li data is shown in 9. In this plot, Dimension 1 clearly
separates the Control from the DHT-treated samples. This shows that the replicates are
reasonably similar to each other and that we can expect to find lots of DE genes. Having
now investigated some of the relationships between the samples we can proceed to the DE
analysis of the data.
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Figure 9: Multidimensional scaling (MDS) plot for the Li data, showing the degree of simi-
larity between the samples in two dimensions. We see that Dimension 1 strongly separates
the Control from the DHT-treated samples. There are no outliers on this plot.

12.5 Analysis using common dispersion

12.5.1 Estimating the common dispersion

As discussed for the SAGE data, the first major step in the analysis of DGE data using the
NB model is to estimate the dispersion parameter for each tag. Like in the earlier case study,
we begin by estimating the common dispersion using the function estimateCommonDisp, and
analysing the data using the common dispersion.
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> d <- estimateCommonDisp(d)

> names(d)

[1] "samples" "common.dispersion" "counts"

[4] "pseudo.alt" "genes" "all.zeros"

[7] "conc" "common.lib.size"

The output of estimateCommonDisp is a DGEList object with several new elements. The
element common.dispersion, as the name suggests, provides the estimate of the common
dispersion. The pseudocounts calculated under the alternative hypothesis are given by
pseudo.alt. The element conc gives the estimates of the overall concentration of each tag
across all of the original samples (conc$conc.common) and the estimate of the concentration
of each tag within each group (conc$conc.group). The element common.lib.size gives the
library size to which the original libraries have been adjusted in the pseudocounts.

Here the coefficient of variation of biological variation (square root of the common dis-
persion) is found to be 0.141. We also note that although a common dispersion estimate of
0.02 may seem ‘small’, if a tag has just an average of just 200 counts per sample, then the
estimate of the tag’s variance is 5 times greater than it would be under the Poisson model.

> d$common.dispersion

[1] 0.02

> sqrt(d$common.dispersion)

[1] 0.141

12.5.2 Testing

Once we have an estimate of the common dispersion, we can proceed with testing procedures
for determining differential expression. As for the SAGE data, there are only two groups
here, so the pair need not be specified in the call to exactTest.

> de.com <- exactTest(d)

Comparison of groups: DHT - Control

> names(de.com)

[1] "table" "comparison" "genes"

The results of the NB exact test can be accessed conveniently using the topTags function
applied to the object produced by exactTest. The table below shows the top 10 DE genes
ranked by p-value. The output of topTags displays the log-concentration (measure of overall
gene expression), log-fold change (change in expression between groups being compared,
computed from the concentration of the gene in each group), the p-value from the exact test
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and the p-value after adjusting for multiple testing (default is to return the false discovery
rate). The argument n can be altered to show a different number of “top” genes.

The table in the output from topTags shows that the edgeR package identifies a great
deal of differential expression, and gives the top genes extremely small p-values, even after
adjusting for multiple testing. Furthermore, all of the top genes have a very large fold change
(indicating that these tags are likely to be biologically meaningful), and all are up-regulated
in the DHT-treatment group compared to the control group.

Of course, for many applications the ranking for differential expression is more important
than the p-value, and topTags provides such a ranking. As suggested in the SAGE case
study, a Gene Ontology analysis could be carried out using the list of top gene and p-values
provided by topTags in order to obtain more systematic and functional information about
the differentially expressed genes.

> topTags(de.com)

Comparison of groups: DHT-Control

logConc logFC P.Value FDR

ENSG00000151503 -11.9 5.82 1.17e-192 1.93e-188

ENSG00000096060 -11.3 5.01 1.84e-162 1.52e-158

ENSG00000127954 -15.6 8.24 4.86e-153 2.67e-149

ENSG00000166451 -12.3 4.69 1.62e-134 6.68e-131

ENSG00000131016 -14.4 5.31 8.24e-110 2.72e-106

ENSG00000113594 -12.8 4.12 6.46e-102 1.78e-98

ENSG00000116285 -13.6 4.21 6.27e-93 1.48e-89

ENSG00000123983 -12.1 3.66 1.75e-92 3.61e-89

ENSG00000166086 -15.2 5.51 3.83e-90 7.01e-87

ENSG00000162772 -10.8 3.32 3.77e-88 6.22e-85

The table below shows the raw counts for the genes that edgeR has identified as the most
differentially expressed. For these genes there seems to be very large differences between the
groups, suggesting that the DE genes identified are truly differentially expressed.

> detags.com <- rownames(topTags(de.com)$table)

> cpm.d[detags.com, ]

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000151503 35.8 30.25 33.98 39.71 1814 1875 1795

ENSG00000096060 66.4 68.29 72.81 76.06 2180 2032 2128

ENSG00000127954 0.0 0.00 2.08 2.02 333 328 323

ENSG00000166451 41.9 44.95 39.52 38.37 960 902 1068

ENSG00000131016 9.2 4.32 12.48 4.04 309 206 312

ENSG00000113594 37.8 31.12 39.52 28.94 513 523 613

ENSG00000116285 18.4 24.20 15.95 21.54 354 343 320

ENSG00000123983 63.4 65.70 65.18 72.70 743 686 921

ENSG00000166086 9.2 1.73 2.08 4.04 162 162 177

ENSG00000162772 175.8 176.34 173.35 204.63 1630 1782 1631
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If we order the genes by fold change instead of p-value, we see that the genes with the
largest fold changes have very small concentrations. This ranking is dominated by genes
that have zero total counts in one group and is less informative than ranking by p-value.

> topTags(de.com, n = 10, sort.by = "logFC")

Comparison of groups: DHT-Control

logConc logFC P.Value FDR

ENSG00000091972 -31.8 -36.5 1.30e-54 5.79e-52

ENSG00000164120 -32.2 35.5 6.24e-45 2.06e-42

ENSG00000100373 -33.0 -34.1 1.09e-16 5.86e-15

ENSG00000118513 -33.0 -34.0 4.80e-15 2.21e-13

ENSG00000081237 -33.2 -33.7 2.07e-12 6.70e-11

ENSG00000196660 -33.2 -33.5 1.91e-11 5.53e-10

ENSG00000117245 -33.3 -33.5 2.99e-11 8.38e-10

ENSG00000019549 -33.4 33.3 4.73e-13 1.66e-11

ENSG00000059804 -33.4 33.2 2.04e-12 6.63e-11

ENSG00000018625 -33.4 33.2 4.26e-12 1.33e-10

We can see how many genes are identified as differentially expressed between the control
group (untreated LNCaP cells) and the DHT-treated LNCaP cells, for a given threshold for
the exact p-value or for the adjusted p-value.

As the output below shows, edgeR detects a huge number of differentially expressed genes
in this dataset. Over 3000 genes are given an adjusted p-value less than 0.01.

> summary(decideTestsDGE(de.com, p.value=0.01))

[,1]

-1 1593

0 13177

1 1724

The output below shows that 4776 genes are given an adjusted p-value of less than 0.05.
This means that if we set out to control the FDR for differential expression at 5%, then
edgeR identifies 30% of all the genes in the dataset as differentially expressed.

> summary(decideTestsDGE(de.com, p.value=0.05))

[,1]

-1 2365

0 11718

1 2411

Of the genes identified as DE above, 2411 (50.5% of the DE genes) are up-regulated in
DHT-treated compared with control cells, and 2365 (49.5%) are up-regulated in the control
cells compared with DHT-treated cells. It is interesting to note that although we detect a
handful more genes as DE that are up-regulated in the control group, all of the top ten genes
were up-regulated in the DHT-treated group.
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12.5.3 Visualising DGE results

The code for producing the default fold-change plot, with the top 500 most DE tags high-
lighted in red, is shown below, and the result of this code is shown in Figure 10. In Figure 10,
we see that the 500 tags identified as most differentially expressed have large fold changes—
almost all of the 500 tags in red fall outside the blue lines at log FC = −2 and log FC = 2.
This means that most of these tags show at least a 4-fold change in expression level between
the samples. This plot suggests strongly that the tags identified by edgeR as differentially
expressed are truly differentially expressed, and, given the large changes in expression level,
are likely to be biologically meaningful.

> detags500.com <- rownames(topTags(de.com, n = 500)$table)

> png(file="edgeR_case_study_Li_smearplot.png", height=600, width=600)

> plotSmear(de.com, de.tags = detags500.com, main = "FC plot using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> dev.off()

null device

1

12.6 Analysis using moderated tagwise dispersions

12.6.1 Moderating the tagwise dispersion

As discussed in the previous case studies, an extension to simply using the common dispersion
for each tag is to estimate the dispersion separately for each tag, while ‘squeezing’ these
estimates towards the common dispersion estimate. The goal of this moderation of the
dispersion estimates is to improve inference by sharing information between tags. This type
of analysis can be carried out in few steps using the edgeR package.

To run the moderated analysis, we need to determine how much moderation is necessary.
As discussed above, we currently prefer to choose a sensible value for the smoothing param-
eter a priori, although we do have an algorithm developed by Robinson and Smyth [2007]
for estimating the smoothing parameter as an approximate eBayes rule.

In our experience analysing RNA-Seq data we have found that a good rule of thumb for
choosing a value for prior.n is to choose a certain number of prior degrees of freedom (a
value between 20 and 30 works well) and then divide this number by the degrees of freedom
(number of samples minus the number of variables being fit in the model; in the case of a
simple multiple-group comparison this is simply the number of samples minus the number of
groups). The function getPriorN automatically calculates the appropriate value for prior.n

for a given experimental design.
As we only have seven libraries, a small sample size, we should not be too confident about

the accuracy of the tagwise dispersions. In this experiment we have seven samples and two
groups, which means we have five degrees of freedom for estimating the dispersion parameter.
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Figure 10: Plot of the log-fold change against the log-concentration for each tag. The 500
most differentially expressed tags as identified by edgeR using the common dispersion are
outlined in red.

Thus, setting the prior.n to be four (20 divided by five) should be appropriate. This means
that the common likelihood receives the weight of four individual tags. Therefore, there
will be a reasonable degree of ‘squeezing’ towards the common dispersion estimate, but still
enough scope to allow flexibility when estimating the individual dispersion for each gene.
By default, estimateTagwiseDisp uses the prior.n value from getPriorN.

The function estimateTagwiseDisp produces a DGEList object that contains all of the
elements present in the object produced by estimateCommonDisp, as well as the value for
prior.n used (d$prior.n) and the tagwise dispersion estimates (d$tagwise.dispersion), as
we see below. Here we set grid.length=500 for greater precision in the tagwise dispersion
estimates.

> getPriorN(d)

[1] 4

> system.time(

+ d <- estimateTagwiseDisp(d, prop.used=0.5, grid.length = 500)

+ )
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user system elapsed

16.71 0.37 17.30

> names(d)

[1] "samples" "common.dispersion" "counts"

[4] "pseudo.alt" "genes" "all.zeros"

[7] "conc" "common.lib.size" "prior.n"

[10] "tagwise.dispersion"

> d$prior.n

[1] 4

> head(d$tagwise.dispersion)

[1] 0.0152 0.0235 0.0152 0.0132 0.0215 0.0173

It is interesting to consider the distribution of the tagwise dispersion estimates. As we
can see from the output below, the tagwise dispersion estimates range from a minimum of
0.007 to a maximum of 0.789, and most of the tagwise dispersion estimates are greater than
the common dispersion estimate. Here we have also allowed for a mean-dependent trend
on the tagwise dispersion values, which can be inspected in Figure 11. As is quite typical
for RNA-Seq data, here we see that the tagwise dispersion estimates decrease as the tag
abundance (log-concentration) increases.

> summary(d$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.007 0.019 0.034 0.056 0.074 0.789

> d$common.dispersion

[1] 0.02

> png(file="Li_tgw-disp_vs_logconc.png", height=600, width=600)

> plot(log2(d$conc$conc.common), d$tagwise.dispersion, panel.first=grid())

> abline(h=d$common.dispersion, col="dodgerblue", lwd=3)

> dev.off()

null device

1
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Figure 11: Plot of the tagwise dispersion estimates against abundance (overall expression,
here expressed as log-concentration).

12.6.2 Testing

Once we have an estimate of the common dispersion and/or estimates of the tagwise disper-
sions, we can proceed with testing procedures for determining differential expression using
exactTest. Here we carry out the testing using the tagwise dispersion estimates calculated
using a prior.n value of ten. By default, exactTest will use the tagwise dispersion estimates
if they are found in the object d.

> de.tgw <- exactTest(d)

Comparison of groups: DHT - Control

The output below shows that when using tagwise dispersions, the edgeR package still
identifies a huge amount of differential expression between the control group and the DHT-
treated group. The top DE tags are given even smaller p-values than using the common
dispersion—many, many orders of magnitude smaller.

As with the analysis using the common dispersion, all of the top genes have large fold
changes, indicating that these changes in expression are likely to be biologically meaningful.
Again, all of the top genes are up-regulated in the DHT-treated group compared with the
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control group. We note that the ranking of the tags is similar, with seven of the top ten genes
using the common dispersion to be found among the top ten genes using tagwise dispersions.

> topTags(de.tgw)

Comparison of groups: DHT-Control

logConc logFC P.Value FDR

ENSG00000096060 -11.32 5.01 2.87e-319 4.73e-315

ENSG00000151503 -11.94 5.82 4.14e-312 3.42e-308

ENSG00000166451 -12.28 4.69 1.54e-213 8.46e-210

ENSG00000127954 -15.62 8.23 9.33e-208 3.85e-204

ENSG00000162772 -10.81 3.32 4.63e-182 1.53e-178

ENSG00000116133 -11.73 3.25 3.14e-148 8.64e-145

ENSG00000113594 -12.83 4.12 1.08e-138 2.55e-135

ENSG00000116285 -13.56 4.21 3.07e-135 6.33e-132

ENSG00000123983 -12.09 3.66 1.48e-129 2.71e-126

ENSG00000115648 -8.82 2.60 1.03e-125 1.69e-122

Of course, we can also rank the top tags using the fold change instead of the p-value, as
described above.

The tables below shows the quantile-adjusted counts (i.e. counts for equalised library
sizes) for the genes that edgeR has identified as the most differentially expressed, using the
common dispersion and tagwise dispersions. For these tags, using both methods, there seem
to be very large differences between the groups, suggesting that the DE genes identified are
truly differentially expressed, and not false positives.

We saw for ’t Hoen et al. [2008]’s data how much more consistent the counts within groups
are for the top tags identified using tagwise dispersions compared with those identified using
the common dispersion. This effect is not nearly as pronounced here, as the differences
between groups for the top ten tags are so profound (these are after all not true biological
replicate samples), but we do note that there is a great deal of consistency in the counts per
million within groups for these top tags.

> detags.tgw <- rownames(topTags(de.tgw)$table)

> detags.com <- rownames(topTags(de.com)$table)

> cpm.d[detags.tgw, ]

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000096060 66.4 68.3 72.81 76.06 2180 2032 2128

ENSG00000151503 35.8 30.3 33.98 39.71 1814 1875 1795

ENSG00000166451 41.9 44.9 39.52 38.37 960 902 1068

ENSG00000127954 0.0 0.0 2.08 2.02 333 328 323

ENSG00000162772 175.8 176.3 173.35 204.63 1630 1782 1631

ENSG00000116133 99.1 92.5 106.78 96.26 895 878 814

ENSG00000113594 37.8 31.1 39.52 28.94 513 523 613

ENSG00000116285 18.4 24.2 15.95 21.54 354 343 320

ENSG00000123983 63.4 65.7 65.18 72.70 743 686 921

ENSG00000115648 960.6 937.0 913.21 905.36 5336 5420 4799
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> cpm.d[detags.com, ]

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000151503 35.8 30.25 33.98 39.71 1814 1875 1795

ENSG00000096060 66.4 68.29 72.81 76.06 2180 2032 2128

ENSG00000127954 0.0 0.00 2.08 2.02 333 328 323

ENSG00000166451 41.9 44.95 39.52 38.37 960 902 1068

ENSG00000131016 9.2 4.32 12.48 4.04 309 206 312

ENSG00000113594 37.8 31.12 39.52 28.94 513 523 613

ENSG00000116285 18.4 24.20 15.95 21.54 354 343 320

ENSG00000123983 63.4 65.70 65.18 72.70 743 686 921

ENSG00000166086 9.2 1.73 2.08 4.04 162 162 177

ENSG00000162772 175.8 176.34 173.35 204.63 1630 1782 1631

We might also be interested in comparing the top-ranking genes as identified by edgeR us-
ing the common dispersion and tagwise dispersions. We see in the output below that of the
top 1000 most DE tags as identified using tagwise dispersions, 85% of these tags are also
in the list of the 1000 most DE tags as identified using the common dispersion. This shows
that for this dataset there is a great deal of agreement between the common and tagwise
dispersion approaches as to which tags are DE.

> sum(rownames(topTags(de.tgw, n = 1000)$table) %in% rownames(topTags(de.com,

+ n = 1000)$table))/1000 * 100

[1] 85

Using the common dispersion we found that 4776 genes (30% of the total number) are
given an adjusted p-value of less than 0.05. In the output below, we see that using tagwise
dispersions we obtain slightly fewer DE genes, namely 4448, or 27% of all of the genes in the
(filtered) dataset.

> summary(decideTestsDGE(de.tgw, p.value=0.05))

[,1]

-1 2118

0 12046

1 2330

Of the 4448 tags identified as DE using tagwise dispersions, 2330 (52%) are up-regulated
in DHT-treated cells and 2118 (48%) are up-regulated in the control cells. The proportions of
up- and down-regulated genes identified using the two approaches to modeling the dispersion
are practically equal.
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12.6.3 Visualising DGE results

As discussed earlier, the function plotSmear can be used to generate a plot of the log-fold
change against the log-concentration for each tag. We identify the top 500 most DE tags
using both common dispersion and tagwise dispersions so we can highlight them on the plots
and compare what we see. The code for producing the fold-change plots (in the one frame
for purposes of comparison) is shown below, and the result of this code is shown in Figure 12.

> detags500.com <- rownames(topTags(de.com, n = 500)$table)

> detags500.tgw <- rownames(topTags(de.tgw, n = 500)$table)

> png(file="edgeR_case_study_Li_comparative_smearplots.png", height=800, width=600)

> par(mfcol = c(2, 1))

> plotSmear(d, de.tags = detags500.com, main = "Using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> plotSmear(d, de.tags = detags500.tgw, main = "Using tagwise dispersions")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> dev.off()

null device

1

In Figure 12, the top 500 most differentially expressed genes (those identified as signif-
icant by edgeR using the common dispersion (top) and tagwise dispersions (bottom)) are
highlighted in red. Looking at Figure 12, we see that, generally speaking, the pattern of
differential expression looks similar using the two different methods, and the genes identified
as DE have convincingly large fold changes.

We can also look at how well we are modeling the variance in the data by looking at a
mean-variance plot. Figure 13 shows the mean-variance plot produced by the plot below.

> png(file="edgeR_case_study_Li-meanvarplot.png", height=600, width=600)

> mv <- plotMeanVar(d, show.raw.vars=TRUE, show.tagwise.vars=TRUE,

+ dispersion.method="qcml", NBline=TRUE)

> dev.off()

null device

1

12.7 Setup

The analysis of this section was conducted with:

> sessionInfo()

R Under development (unstable) (2011-09-19 r57030)

Platform: i386-pc-mingw32/i386 (32-bit)

59



locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252

[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[5] LC_TIME=English_Australia.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] limma_3.9.22 edgeR_2.3.63

loaded via a namespace (and not attached):

[1] tools_2.14.0
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Figure 12: Plots of the log-fold change against the log-concentration for each tag, using
the common dispersion (top), and tagwise dispersions (bottom). Tags with positive fold-
change here are up-regulated in DHT-treated cells compared with control cells. The 500
most differentially expressed tags according to each method are highlighted in red on both
plots.
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Figure 13: Mean-variance plot showing the raw tagwise variances (grey dots) against tag
abundance. The red crosses show the average of raw variance for tags grouped into 100 bins
based on overall abundance (averaging is done on the square-root scale to avoid upward bias
when these are displayed on the log scale). The light blue dots show the estimated variance
for each gene, computed from the tagwise dispersion values. The solid blue line shows the
estimated variance using the common dispersion. Overall, the tagwise dispersion estimates
look to do a good job of capturing the mean-variance relationship for these data. The black
line shows the Poisson variance (variance equals mean). Even for these samples, which are
not true biological replicates, the Poisson variance model is inadequate.
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13 Case study: Oral carcinomas vs matched normal

tissue

13.1 Introduction

This section provides a detailed analysis of data from a paired design RNA-seq experiment,
featuring oral squamous cell carcinomas and matched normal tissue from three patients [Tuch
et al., 2010]. For a paired design, as we discussed before, we have to apply the Cox-Reid
(CR) method in estimating dispersions and the GLM method in detecting DE tags.

13.2 Source of the data

The dataset is obtained from the NCBI’s Gene Expression Omnibus (GEO) (http://www.
ncbi.nlm.nih.gov/geo/). It was produced using the Applied Biosystems (AB) SOLiD
System 3.0, and is described in Tuch et al. [2010]. The raw reads had been mapped by Tuch
et al. [2010] to the UCSC hg18 reference genome. The raw counts, summarised at the level
of refSeq transcripts were made available as a supplementary table in their paper. In order
to analyse these data in R it is necessary to manipulate the data a little further.

The table that Tuch et al. [2010] provide contains approximately 15000 refSeq transcripts.
Many transcripts can map to the same gene, which is not ideal for our analysis in edgeR. It
may upset the modeling of the mean-variance relationship for these data if we have several
entries for each gene. To get around this problem we have used only the transcipt with the
greatest number of exons for each gene, the idea being that this will provide a reasonable
summary of the overall expression level for the gene. If the counts were summarised at the
exon level, then there are other methods that could be used to find genes with differential
isoform expression (or splice variants) from the data.

13.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package, read the data into R and organise the data into
a DGEList object that the functions in the package can recognise. The library size is usually
the total sum of all of the counts for a library, and that is how library size is defined in this
analysis. One way to construct an appropriate DGEList object for these data is described
below. In this case, the tag counts for the six individual libraries are stored in one table,
which is a trimmed version (some irrelevant columns dropped) of the supplementary table
from Tuch et al. [2010].

It is usually straight-forward to produce a DGEList object from a table of counts, but the
task is complicated here because we have many transcripts mapping to the same gene and
also the gene symbols provided in the table do not all match exactly to official gene symbols.
The commands below show how to ensure that all genes have the official gene symbol (using
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alias2SymbolTable from the limma package) and that we use only the transcript with the
greatest number of exons to represent each gene.

Furthermore, not all of the refSeq IDs provided match the refSeq IDs currently in use—a
result of the original study being undertaken several years ago. To avoid potential problems
in downstream analysis (particularly in GO or gene set analysis) we retain in our dataset
only those transcripts that match to refSeq IDs in the current Entrez database, which is
provided by the org.HS.eg.db package from Bioconductor.

The output below shows the commands for manipulating the dataset to produce a neat
DGEList object for use by subsequent functions for the DE analysis. We also compute the
TMM normalization factors for these libraries in the third last command below.

> library(edgeR)

> library(limma)

> rawdata <- read.csv(file="tuch_counts.csv", stringsAsFactors=FALSE)

> head(rawdata)

X X.1 X.2 X8N X8T X33N X33T X51N X51T

1 counts counts counts counts counts counts

2 idRefSeq nameOfGene numberOfExons sum sum sum sum sum sum

3 NM_182502 TMPRSS11B 10 2592 3 7805 321 3372 9

4 NM_003280 TNNC1 6 1684 0 1787 7 4894 559

5 NM_152381 XIRP2 10 9915 15 10396 48 23309 7181

6 NM_022438 MAL 3 2496 2 3585 239 1596 7

> library(org.Hs.eg.db)

> rawtable <- rawdata[-c(1,2),]

> refseqid <- as.character(rawtable[,1])

> head(refseqid)

[1] "NM_182502" "NM_003280" "NM_152381" "NM_022438" "NM_001100112"

[6] "NM_017534"

> idfound <- refseqid %in% mappedRkeys(org.Hs.egREFSEQ)

> table(idfound)

idfound

FALSE TRUE

313 15355

> rawtable <- rawtable[idfound,]

> genes <- rawtable[,2]

> genes.sym <- alias2SymbolTable(genes, species = "Hs")

> genes <- genes.sym[!is.na(genes.sym)]

> head(genes)

[1] "TMPRSS11B" "TNNC1" "XIRP2" "MAL" "MYH2" "MYH2"

> length(genes)
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[1] 15317

> nexons <- as.numeric(rawtable[!is.na(genes.sym),3])

> head(nexons)

[1] 10 6 10 3 40 40

> length(nexons)

[1] 15317

> counts <- matrix(as.numeric(unlist(rawtable[!is.na(genes.sym),

+ -c(1,2,3)])), nrow=sum(!is.na(genes.sym)), ncol=6)

> rownames(counts) <- rawtable[!is.na(genes.sym),1]

> colnames(counts) <- c("N8","T8","N33","T33","N51","T51")

> head(counts)

N8 T8 N33 T33 N51 T51

NM_182502 2592 3 7805 321 3372 9

NM_003280 1684 0 1787 7 4894 559

NM_152381 9915 15 10396 48 23309 7181

NM_022438 2496 2 3585 239 1596 7

NM_001100112 4389 7 7944 16 9262 1818

NM_017534 4402 7 7943 16 9244 1815

> dim(counts)

[1] 15317 6

> o <- order(nexons, decreasing=TRUE)

> counts.ord <- counts[o,]

> genes.ord <- genes[o]

> keep <- !duplicated(genes.ord)

> sum(keep)

[1] 10464

> counts.uniq <- counts.ord[keep,]

> genes.uniq <- genes.ord[keep]

> o2 <- order(genes.uniq)

> d.tuch <- DGEList(counts.uniq[o2,], group=rep(c("normal",

+ "tumour"),3), genes=genes.uniq[o2])

> d.tuch <- calcNormFactors(d.tuch)

> d.tuch

An object of class "DGEList"

$samples

group lib.size norm.factors

N8 normal 7795290 1.157

T8 tumour 7205310 1.091
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N33 normal 15761188 0.662

T33 tumour 14070267 0.958

N51 normal 21083214 1.039

T51 tumour 14819300 1.204

$counts

N8 T8 N33 T33 N51 T51

NM_000014 2242 261 2285 597 15121 1991

NM_144670 11731 912 13308 3071 6944 1160

NM_017436 162 296 111 362 751 182

NM_015665 199 81 215 344 512 342

NM_023928 470 710 573 1112 690 728

10459 more rows ...

$genes

[1] "A2M" "A2ML1" "A4GALT" "AAAS" "AACS"

10459 more rows ...

$all.zeros

NM_000014 NM_144670 NM_017436 NM_015665 NM_023928

FALSE FALSE FALSE FALSE FALSE

10459 more elements ...

This DGEList is now ready to be passed to the functions that do the calculations to
determine differential expression levels for the genes. Note that when we ‘see’ the DGEList

object d.tuch, the counts for just the first five genes in the table are shown, as well as the
samples element, which is a data frame containing information about groups, descriptions
and library sizes for the samples.

For this dataset (after our tweaking of it), there are over 10 000 unique tags (genes)
sequenced, some of which may have a very small number of counts in total across all libraries.
It is not possible to achieve statistical significance with fewer than ten counts in total for
a tag, and we also do not want to waste effort finding spurious DE (such as when a gene
is only expressed in one library), so we filter out tags with fewer than 1 count per million
in four or more libraries—this also helps to speed up the calculations we need to perform.
The subsetting capability of DGEList objects makes such filtering very easy to carry out (as
shown below). Interestingly, no genes are filtered out for this dataset, indicating that some
filtering of low expression transcripts may have been done by Tuch et al. [2010] in producing
the table of counts that we have used here.

> cpm.tuch <- cpm(d.tuch)

> d.tuch <- d.tuch[rowSums(cpm.tuch > 1) >= 2, ]

> nrow(d.tuch)

[1] 10464

Now the dataset is ready to be analysed for differential expression.
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13.4 Producing an MDS plot

Before proceeding with the computations for differential expression, it is possible to pro-
duce a plot showing the sample relations based on multidimensional scaling. The function
plotMDS.dge produces an MDS plot for the samples when provided with the DGEList object,
as shown in Figure 14.

> pdf(file="edgeR_case_study_Tuch_MDSplot.pdf", height=6, width=6)

> plotMDS(d.tuch, main="MDS Plot for Tuch Data")

> dev.off()

null device

1

> tools::compactPDF("edgeR_case_study_Tuch_MDSplot.pdf")

NULL

From the MDS plot, it can be seen that the libraries T51 and T8 (tumour samples from
patients 51 and 8 respectively) are most different from the other samples, but we will not
remove them from the analysis as we will just be demonstrating the use of edgeR.

13.5 The design matrix

Before we fit negative binomial GLMs, we need to define our design matrix based on the
experimental design. Here we want to test for differential expressions between tumour and
normal tissues within patients, i.e. adjusting for differences between patients. In statistical
terms, this is an additive linear model with patient as the blocking factor. So the full design
matrix can be created as follows.

> patient <- factor(c(8,8,33,33,51,51))

> design <- model.matrix(~patient+d.tuch$samples$group)

> rownames(design) <- rownames(d.tuch$samples)

> colnames(design)[4] <- "tumour"

> design

(Intercept) patient33 patient51 tumour

N8 1 0 0 0

T8 1 0 0 1

N33 1 1 0 0

T33 1 1 0 1

N51 1 0 1 0

T51 1 0 1 1

attr(,"assign")

[1] 0 1 1 2

attr(,"contrasts")

attr(,"contrasts")$patient
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Figure 14: Multidimensional scaling (MDS) plot for the Tuch data, showing the relations
between the samples in two dimensions. From this plot, the samples T33 and T8 can be
identified easily as outliers—there is a large distance between these two samples and the
others.

[1] "contr.treatment"

attr(,"contrasts")$‘d.tuch$samples$group‘

[1] "contr.treatment"

This is the design matrix under the alternative hypothesis (i.e. the difference between
the normal tissue and the tumour tissue does exist), and the design matrix under the null
hypothesis is just the above matrix without the last column.

13.6 Analysis using Cox-Reid common dispersion

13.6.1 Estimating the Cox-Reid common dispersion

The first major step in the analysis of DGE data using the NB model is to estimate the
dispersion parameter for each tag. Note that this is a paired design experiment, so the
dispersion has to be estimated in a different way such that both the cell-type and the patient
factors are taken into account.
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Like the qCML method (i.e.,the estimateCommonDisp() and the estimateTagwiseDisp()

function) we used in previous case studies, the CR method also calculates both the common
dispersion and tagwise dispersions. The most straight-forward analysis for a paired design
experiment uses the CR common dispersion estimate as the dispersion for all tags. For many
applications this will be adequate and it may not be necessary to estimate the CR tagwise
dispersions, i.e. estimate the CR dispersion separately for each tag.

Estimating the CR common dispersion is done using the function estimateGLMCommonDisp().
Once we have the design matrix, we pass it to the estimateGLMCommonDisp() function, to-
gether with the DGEList object ‘d.tuch’.

> d.tuch <- estimateGLMCommonDisp(d.tuch, design)

> names(d.tuch)

[1] "samples" "counts" "genes"

[4] "all.zeros" "common.dispersion"

The output of estimateCRDisp is a DGEList object with several new elements. The
element common.dispersion, as the name suggests, provides the estimate of the Cox-Reid
common dispersion, and design gives the design matrix as we defined at the start.

Under the negative binomial model, the square root of the common dispersion gives the
coefficient of variation of biological variation. Here the common dispersion is found to be
0.16, so the coefficient of biological variation is around 0.4.

> d.tuch$common.dispersion

[1] 0.16

> sqrt(d.tuch$common.dispersion)

[1] 0.4

13.6.2 Testing

Once we have an estimate of the CR common dispersion, we can proceed with testing pro-
cedures for determining differential expression. Since this is a paired design experiment, we
have to use the new testing method, the GLM method, rather than the exact test (the one
we demonstrated in the previous case studies).

The GLM method fits a negative binomial generalized linear model for each gene/tag with
the unadjusted counts provided, a value for the dispersion parameter and, optionally, offsets
and weights for different libraries or transcripts. This is done using the funtion glmFit()

and glmLRT().
The function glmFit() calls the in-built function glm.fit() to fit the NB GLM for each

tag and produces an object of class DGEGLM. Once we have a fit for a given design matrix,
glmLRT() can be run with a given coefficient or contrast specified and evidence for differential
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expression can be assessed using a likelihood ratio test. The glmLRT function produces an ob-
ject of class DGELRT with a table containing the abundance of each tag (log-concentration, log-
Conc), the log-fold change of expression between conditions/contrasts being tested (logFC),
the likelihood ratio statistic (LR.statistic) and the p-value from the LR test (p.value), for
each tag in the dataset. Then tags can be ranked in order of evidence for differential ex-
pression, based on either the p-value or the log-fold change of expression computed for each
tag.

The results of the NB GLM likelihood ratio test can be accessed conveniently using the
topTags function applied to the object produced by glmLRT. The user can specify the number,
n, of tags for which they would like to see the differential expression information, ranked by
p-value (default) or fold change. As the same test is conducted for many thousands of tags,
adjusting the p-values for multiple testing is recommended. The desired adjustment method
can be supplied by the user, with the default method being Benjamini and Hochberg’s
approach for controlling the false discovery rate (FDR) [Benjamini and Hochberg, 1995].
The table below shows the top 10 DE genes ranked by p-value.

> glmfit.tuch <- glmFit(d.tuch, design,

+ dispersion = d.tuch$common.dispersion)

> lrt.tuch <- glmLRT(d.tuch, glmfit.tuch, coef=4)

> topTags(lrt.tuch)

Coefficient: tumour

genes logConc logFC LR P.Value FDR

NM_182502 TMPRSS11B -8.51 -7.32 121.9 2.46e-28 2.57e-24

NM_016190 CRNN -6.99 -7.26 107.8 3.05e-25 1.59e-21

NM_002371 MAL -8.95 -6.81 106.7 5.29e-25 1.84e-21

NM_002465 MYBPC1 -8.16 -7.02 100.0 1.51e-23 3.94e-20

NM_014440 IL1F6 -10.06 -6.15 96.3 9.84e-23 2.06e-19

NM_002272 KRT4 -5.62 -7.13 93.1 5.09e-22 8.24e-19

NM_001010909 MUC21 -8.80 -6.72 92.9 5.51e-22 8.24e-19

NM_001100 ACTA1 -8.39 -6.28 92.3 7.34e-22 9.60e-19

NM_003280 TNNC1 -9.19 -6.96 91.6 1.05e-21 1.23e-18

NM_006063 KBTBD10 -8.23 -6.21 89.3 3.37e-21 3.53e-18

The output shows that the edgeR package identifies a good deal of differential expression
between the normal tissue group and the tumour tissue group. The top DE tags are given
very small p-values, even after adjusting for multiple testing. Furthermore, all of the top
tags have a large fold change, indicating that these tags are more likely to be biologically
meaningful.

The table below shows the raw counts for the tags that edgeR has identified as the most
differentially expressed. For these tags there seems to be very large differences between the
groups, suggesting that the DE tags identified are truly differentially expressed, and not false
positives.

> top <- rownames(topTags(lrt.tuch)$table)

> d.tuch$counts[top,order(d.tuch$samples$group)]
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N8 N33 N51 T8 T33 T51

NM_182502 2592 7805 3372 3 321 9

NM_016190 24146 22026 12480 49 2353 26

NM_002371 2697 3941 1750 3 265 8

NM_002465 4809 4146 15623 10 14 1311

NM_014440 367 1824 802 10 45 1

NM_002272 76461 99082 47411 353 20651 31

NM_001010909 4160 3425 1720 7 516 5

NM_001100 3334 3198 13643 8 32 1063

NM_003280 1684 1787 4894 0 7 559

NM_006063 4325 3115 16007 24 17 1461

Note that the 2nd tag (’CKM’) and the 7th tag (’MYBPC1’) have much larger counts
in patient 55 than in the other two patients, which shows that the effect from the patients
does exist and the GLM method can pick that up.

If we order the genes by fold change instead of p-value, as in the table below, we see
that the tags with the largest fold changes have very small concentrations. This ranking is
dominated by genes that have zero counts in one group and is less informative than ranking
by p-value.

> topTags(lrt.tuch, sort.by = "logFC")

Coefficient: tumour

genes logConc logFC LR P.Value FDR

NM_001100112 MYH2 -8.13 -7.35 87.2 9.84e-21 9.36e-18

NM_182502 TMPRSS11B -8.51 -7.32 121.9 2.46e-28 2.57e-24

NM_016190 CRNN -6.99 -7.26 107.8 3.05e-25 1.59e-21

NM_002272 KRT4 -5.62 -7.13 93.1 5.09e-22 8.24e-19

NM_002465 MYBPC1 -8.16 -7.02 100.0 1.51e-23 3.94e-20

NM_003280 TNNC1 -9.19 -6.96 91.6 1.05e-21 1.23e-18

NM_152381 XIRP2 -7.43 -6.93 76.1 2.74e-18 8.98e-16

NM_002371 MAL -8.95 -6.81 106.7 5.29e-25 1.84e-21

NM_001010909 MUC21 -8.80 -6.72 92.9 5.51e-22 8.24e-19

NM_198060 NRAP -8.45 -6.44 82.9 8.54e-20 4.96e-17

> top <- rownames(topTags(lrt.tuch, sort.by = "logFC")$table)

> d.tuch$counts[top,order(d.tuch$samples$group)]

N8 N33 N51 T8 T33 T51

NM_001100112 4389 7944 9262 7 16 1818

NM_182502 2592 7805 3372 3 321 9

NM_016190 24146 22026 12480 49 2353 26

NM_002272 76461 99082 47411 353 20651 31

NM_002465 4809 4146 15623 10 14 1311

NM_003280 1684 1787 4894 0 7 559

NM_152381 9915 10396 23309 15 48 7181

NM_002371 2697 3941 1750 3 265 8

NM_001010909 4160 3425 1720 7 516 5

NM_198060 3741 1990 12531 4 17 1829
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We see in the output below that over 1200 tags are significantly differentially expressed
according to edgeR when using the CR common dispersion estimate and GLM likelihood
ratio test. Of those tags, 298 are up-regulated in the tumour tissues compared with the
normal tissues and 976 are down-regulated in the tumour tissues compared with normal
tissues.

> summary(decideTestsDGE(lrt.tuch))

[,1]

-1 976

0 9190

1 298

13.7 Cox-Reid dispersions with mean-dependent trend

The function estimateGLMTrendedDisp in edgeR estimates dispersion values that depend on
the overall expression level of the genes. Typically, lowly expressed genes have a higher
value for the dispersion parameter than more highly expressed genes. There are a number of
possible options for the type of trend that is to be fit for the dispersion parameters. These
options are detailed in the help file for estimateGLMTrendedDisp.

> d.tuch <- estimateGLMTrendedDisp(d.tuch, design)

> summary(d.tuch$trended.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.122 0.132 0.150 0.162 0.171 0.763

An analysis could be carried out just as for the common dispersion above, but is not
shown here.

13.8 Analysis using Cox-Reid tagwise dispersion

13.8.1 Estimating the Cox-Reid tagwise dispersion

An extension to simply using the CR common dispersion for each tag is to estimate the CR
dispersion separately for each tag, while ‘squeezing’ these estimates towards the CR common
dispersion estimate in order to improve inference by sharing information between tags. This
type of analysis can also be carried out in few steps using the edgeR package.

As noted earlier, the dispersion parameter is the overdispersion relative to the Poisson,
and represents the biological, or sample-to-sample variability. The methods we have devel-
oped moderate the dispersion estimates towards a common dispersion, much like how the
limma package moderates the variances in the analysis of microarray data.

The amount of moderation done is determined by the value of a weight parameter
prior.n. The value for prior.n corresponds to the number of individual tags equivalent
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to the weight given to the common likelihood. Thus, the higher prior.n, the more strongly
the individual dispersion estimates are moderated, or ‘squeezed’, towards the common value.
To run the moderated analysis, we need to determine how much moderation is necessary.
How best to do this is still an open research question, but we currently recommend selecting
a value for the weight parameter prior.n a priori and have found that very good results can
be obtained this way.

In our experience analysing RNA-Seq data we have found that a good rule of thumb for
choosing a value for prior.n is to choose a certain number of prior degrees of freedom (a
value between 20 and 30 works well) and then divide this number by the degrees of freedom
(number of samples minus the number of variables being fit in the model; in the case of a
simple multiple-group comparison this is simply the number of samples minus the number of
groups). The function getPriorN automatically calculates the appropriate value for prior.n

for a given experimental design.
In an experiment such as that we consider here, in which we have just six samples, with

two groups (group factor) and three patients (blocking factor), and we have just two degrees
of freedom for estimating the dispersion parameter. Standard tagwise dispersion estimates
are likely to be unreliable, so we want to give a reasonable weight to the common likelihood.
We need to choose a value for prior.n such that individual tagwise dispersion estimates are
‘squeezed’ quite strongly towards the common dispersion. As noted, we have two degrees of
freedom from the experimental design. Thus, setting the prior.n to be 10 (20 divided by
two) should be appropriate. This means that the common likelihood receives the weight of
ten individual tags. Therefore, there will be a reasonable degree of ‘squeezing’ towards the
common dispersion estimate, but still enough scope to allow flexibility when estimating the
individual dispersion for each gene. By default, estimateTagwiseDisp uses the prior.n value
from getPriorN, which in this case is prior.n=10..

The function estimateTagwiseDisp produces a DGEList object that contains all of the
elements present in the object produced by estimateCommonDisp, as well as the value for
prior.n used (d$prior.n) and the tagwise dispersion estimates (d$tagwise.dispersion),
as we see below. We use the trend argument below to indicate that we wish to allow a
dependence of the dispersion on the overall expression level.

> d.tuch <- estimateGLMTagwiseDisp(d.tuch, design)

> names(d.tuch)

[1] "samples" "counts" "genes"

[4] "all.zeros" "common.dispersion" "trended.dispersion"

[7] "abundance" "bin.dispersion" "bin.abundance"

[10] "tagwise.dispersion"

> head(d.tuch$tagwise.dispersion)

[1] 0.179 0.240 0.195 0.152 0.127 0.118
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It is interesting to consider the distribution of the CR tagwise dispersion estimates. As we
can see from the output below, the CR tagwise dispersion estimates range from a minimum
of 0.105 to a maximum of 0.775. The range of dispersions is therefore large, but the tags in
the middle two quartiles of the CR tagwise dispersion estimates have dispersion estimates
close to the CR common dispersion estimate.

> summary(d.tuch$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.105 0.127 0.149 0.161 0.173 0.775

> png("edgeR_case_study_Tuch_BCV_vs_abundance.png", height=600, width=600)

> plot(d.tuch$abund+log(1e06), sqrt(d.tuch$tagwise.dispersion), xlab="Counts per million (log scale)", ylab="Biological coefficient of variation")

> oo <- order(d.tuch$abundance)

> lines(d.tuch$abundance[oo]+log(1e06), sqrt(d.tuch$trended.dispersion[oo]), col="dodgerblue", lwd=3)

> abline(h=sqrt(d.tuch$common.dispersion), col="firebrick", lty=3, lwd=3)

13.8.2 Testing

The testing procedures when using CR tagwise dispersion estimates are carried out exactly
as for the CR common dispersion, as described above. Here we carry out the testing using
the CR tagwise dispersion estimates calculated using a prior.n value of eight. The GLM fit
and the likelihood ratio test are done using the same functions as before (i.e. glmFit() and
glmLRT()), the only difference is that we use CR tagwise dispersions as the dispersion in the
glmFit() function.

> glmfit.tuch.tgw <- glmFit(d.tuch, design,

+ dispersion = d.tuch$tagwise.dispersion)

> lrt.tuch.tgw <- glmLRT(d.tuch, glmfit.tuch.tgw)

The output below shows that when using CR tagwise dispersions, the edgeR package still
identifies a lot of differential expression between the normal tissue group and the tumour
tissue group. This arises because the moderated tagwise dispersions can be much smaller
than the common dispersion, and tags with smaller dispersions will have smaller p-values
than the same tags with p-values computed using a common dispersion. As with the analysis
using the common dispersion, all of the top tags have a large fold change, indicating that
these changes in expression are likely to be biologically meaningful. We note that the ranking
is different, however, and not all of the top ten tags according to using the common dispersion
are found to be among the top ten tags using tagwise dispersions.

> options(digits = 4)

> topTags(lrt.tuch.tgw)
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Coefficient: tumour

genes logConc logFC LR P.Value FDR

NM_014440 IL1F6 -10.060 -6.130 108.93 1.680e-25 1.758e-21

NM_005609 PYGM -9.653 -5.472 96.24 1.017e-22 5.319e-19

NM_001039585 PTGFR -10.519 -5.194 94.08 3.033e-22 1.058e-18

NM_182502 TMPRSS11B -8.506 -7.400 91.54 1.094e-21 2.861e-18

NM_004320 ATP2A1 -9.669 -4.619 85.62 2.180e-20 4.562e-17

NM_004533 MYBPC2 -9.298 -5.455 83.91 5.167e-20 9.011e-17

NM_057088 KRT3 -9.301 -5.820 82.25 1.199e-19 1.792e-16

NM_002371 MAL -8.952 -6.885 81.73 1.562e-19 2.042e-16

NM_001111283 IGF1 -9.841 -3.992 78.36 8.602e-19 1.000e-15

NM_001976 ENO3 -9.423 -5.175 75.57 3.522e-18 3.685e-15

The table below shows the raw counts for the tags that edgeR has identified as the
most differentially expressed using CR tagwise dispersions. For these tags there seems to be
very large differences between the groups, suggesting that the DE tags identified are truly
differentially expressed, and not false positives.

> top.tgw <- rownames(topTags(lrt.tuch.tgw)$table)

> d.tuch$counts[top.tgw,order(d.tuch$samples$group)]

N8 N33 N51 T8 T33 T51

NM_014440 367 1824 802 10 45 1

NM_005609 1399 1267 2171 22 16 103

NM_001039585 455 287 1736 7 12 46

NM_182502 2592 7805 3372 3 321 9

NM_004320 988 1558 2285 25 52 161

NM_004533 966 486 8045 11 6 457

NM_057088 1069 3774 885 7 358 5

NM_002371 2697 3941 1750 3 265 8

NM_001111283 460 343 4703 25 26 257

NM_001976 1092 1292 4841 4 74 223

We see in the output below that 1279 tags are significantly differentially expressed ac-
cording to edgeR when using the CR tagwise dispersion estimate and GLM likelihood ratio
test. It is slightly less the total number of DE tags under the CR common dispersion method.
Of those 1279 tags, 313 are up-regulated in the tumour tissues compared with the normal
tissues and 966 are down-regulated in the tumour tissues compared with normal tissues.

> summary(decideTestsDGE(lrt.tuch.tgw))

[,1]

-1 966

0 9185

1 313
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13.9 Setup

This analysis of Tuch et al. [2010]’s RNA-seq data was conducted on:

> sessionInfo()

R Under development (unstable) (2011-09-19 r57030)

Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252

[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[5] LC_TIME=English_Australia.1252

attached base packages:

[1] splines stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] org.Hs.eg.db_2.5.0 RSQLite_0.9-4 DBI_0.2-5

[4] AnnotationDbi_1.15.21 Biobase_2.13.9 limma_3.9.22

[7] edgeR_2.3.57

loaded via a namespace (and not attached):

[1] IRanges_1.11.27 tools_2.14.0
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