
An Introduction to the “genoset”Package

Peter M. Haverty

April 14, 2011

1 Introduction

The genoset package offers an extension of the BioConductor eSet object for genome arrays. The package
offers three classes. The first class is the “GenoSet” class which can hold an arbitrary number of equal-sized
matrices in its assayData slot. The principal addition of the GenoSet class is a “locData” slot that holds
a RangedData object from the IRanges package. The locData slot allows for quick subsetting by genome
position.

Two classes extend GenoSet: CNSet and BAFSet. CNSet is the basic copy number object. It keeps its
data in the “cn” slot, similar to the “exprs” slot of the ExpressionSet. BAFSet is intended to store “LRR” or
Log-R Ratio and “BAF” or B-Allele Frequency data for SNP arrays. LRR and BAF come from the terms
coined by Illumina. LRR is copynumber data processed on a per-snp basis to remove some variability using
the expected log-ratio of normal samples with the same genotype. BAF represents the fraction of signal
coming from the “B” allele, relative to the “A” allele, where A and B are arbitrarily assigned. BAF has the
expected value of 0 or 1 for HOM alleles and 0.5 for HET alelles. Deviation from these expected values can
be interpreted as Allelic Imbalance, which is a sign of gain, loss, or copy-neutral LOH.

I will use a CNSet to demonstrate the features that apply to both classes. Some BAFSet-specific features
will be handled later in the document.

1.1 Creating Objects

GenoSet, CNSet and BAFSet objects can be created using the functions with the same name. Let’s load up
some fake data to experiment with. Don’t worry too much about how the fake data gets made.

Notice how CNSet requires a ’cn’ element, BAFSet requires ’lrr’ and ’baf’, and genoset can take assayData
elements with any name. Also notice how assayData elements can be matrices or DataFrames with Rle
columns.

> library(genoset)

> data(genoset)

> genoset.ds = GenoSet(locData = locData.rd, foo = fake.lrr, pData = fake.pData,

+ annotation = "SNP6")

> baf.ds = BAFSet(locData = locData.rd, lrr = fake.lrr, baf = fake.baf,

+ pData = fake.pData, annotation = "SNP6")

> cn.ds = CNSet(locData = locData.rd, cn = fake.lrr, pData = fake.pData,

+ annotation = "SNP6")

> cn.ds

CNSet (storageMode: lockedEnvironment)

assayData: 1000 features, 3 samples

element names: cn

protocolData: none

1

phenoData

sampleNames: K L M

varLabels: a b ... e (5 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation: SNP6

Feature Locations:

RangedData with 1000 rows and 0 value columns across 3 spaces

space ranges |

<factor> <IRanges> |

p1 chr12 [1, 1] |

p2 chr12 [325001, 325001] |

p3 chr12 [650001, 650001] |

p4 chr12 [975001, 975001] |

p5 chr12 [1300001, 1300001] |

p6 chr12 [1625001, 1625001] |

p7 chr12 [1950001, 1950001] |

p8 chr12 [2275001, 2275001] |

p9 chr12 [2600001, 2600001] |

...

p992 chr8 [392000000, 392000000] |

p993 chr8 [393000000, 393000000] |

p994 chr8 [394000000, 394000000] |

p995 chr8 [395000000, 395000000] |

p996 chr8 [396000000, 396000000] |

p997 chr8 [397000000, 397000000] |

p998 chr8 [398000000, 398000000] |

p999 chr8 [399000000, 399000000] |

p1000 chr8 [400000000, 400000000] |

Universe: hg19

> rle.baf.ds = BAFSet(locData = locData.rd, lrr = DataFrame(K = Rle(c(rep(1.5,

+ 300), rep(2.3, 700))), L = Rle(c(rep(3.2, 700), rep(2.1, 300))),

+ M = Rle(rep(1.1, 1000)), row.names = rownames(fake.lrr)), baf = DataFrame(K = Rle(c(rep(0.05,

+ 600), rep(0.5, 400))), L = Rle(c(rep(0, 700), rep(0.5, 300))), M = Rle(rep(1,

+ 1000)), row.names = rownames(fake.baf)), pData = fake.pData, annotation = "SNP6")

1.2 Using the Subset Features

GenoSet objects can be subset using chromosome names, or with a set of ranges

> chr12.ds = cn.ds[["chr12"]]

> chr12.ds

CNSet (storageMode: lockedEnvironment)

assayData: 400 features, 3 samples

element names: cn

protocolData: none

phenoData

sampleNames: K L M

varLabels: a b ... e (5 total)

2

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation: SNP6

Feature Locations:

RangedData with 400 rows and 0 value columns across 1 space

space ranges |

<factor> <IRanges> |

p1 chr12 [1, 1] |

p2 chr12 [325001, 325001] |

p3 chr12 [650001, 650001] |

p4 chr12 [975001, 975001] |

p5 chr12 [1300001, 1300001] |

p6 chr12 [1625001, 1625001] |

p7 chr12 [1950001, 1950001] |

p8 chr12 [2275001, 2275001] |

p9 chr12 [2600001, 2600001] |

...

p392 chr12 [127075001, 127075001] |

p393 chr12 [127400001, 127400001] |

p394 chr12 [127725001, 127725001] |

p395 chr12 [128050001, 128050001] |

p396 chr12 [128375001, 128375001] |

p397 chr12 [128700001, 128700001] |

p398 chr12 [129025001, 129025001] |

p399 chr12 [129350001, 129350001] |

p400 chr12 [129675001, 129675001] |

Universe: hg19

> gene.rd = RangedData(ranges = IRanges(start = c(3.5e+07, 1.27e+08),

+ end = c(35500000, 1.29e+08), names = c("HER2", "CMYC")), space = c("chr17",

+ "chr8"))

> gene.ds = cn.ds[gene.rd,]

> gene.ds

CNSet (storageMode: lockedEnvironment)

assayData: 5 features, 3 samples

element names: cn

protocolData: none

phenoData

sampleNames: K L M

varLabels: a b ... e (5 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation: SNP6

Feature Locations:

RangedData with 5 rows and 0 value columns across 2 spaces

space ranges |

<factor> <IRanges> |

p515 chr17 [35200000, 35200000] |

p516 chr17 [35500000, 35500000] |

3

p727 chr8 [127000000, 127000000] |

p728 chr8 [128000000, 128000000] |

p729 chr8 [129000000, 129000000] |

Universe: hg19

GenoSet objects can also be subset by a group of samples and/or features, just like an ExpressionSet.

> cn.ds[1:4, 1:2]

CNSet (storageMode: lockedEnvironment)

assayData: 4 features, 2 samples

element names: cn

protocolData: none

phenoData

sampleNames: K L

varLabels: a b ... e (5 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation: SNP6

Feature Locations:

RangedData with 4 rows and 0 value columns across 1 space

space ranges |

<factor> <IRanges> |

p1 chr12 [1, 1] |

p2 chr12 [325001, 325001] |

p3 chr12 [650001, 650001] |

p4 chr12 [975001, 975001] |

Universe: hg19

1.3 Slots

CNSets extend ExpressionSets and so have all of the same functions and slots, except that the exprs slot
and getter and setter functions have been replaced with “cn”. The locData slot has been added. This slot
holds a RangedData object that keeps track of the feature positions and allows for quick subsetting. The
RangedData object is always sorted such that the chromosomes are in contiguous blocks, which provides a
constraint on the ordering of the CNSet. There are a number of functions for getting portions of the locData
data. “chr” and “pos” return the chromosome and position information for each feature. “genoPos” is like
“pos”, but it returns the base positions counting from the first base in the genome, with the chromosomes
in order by number and then alphabetically for the letter chromosomes. “orderedChrs” returns this ordered
vector of unique chromosome names. “chrInfo” returns the genoPos of the first and last feature on each
chromosome in addition to the offset of the first feature from the start of the genome. “chrInfo” results are
used for drawing chromosome boundaries on genome-scale plots. “pos” and “genoPos” are defined as the floor
of the average of each features start and end positions.

1.4 Processing Data

Genoset contains a convenience function for segmenting data for each sample/chr using the DNACopy package
(CBS)

> assayDataElement(cn.ds, "cn.segs") = runCBS(cn(cn.ds), locData(cn.ds),

+ n.cores = 3)

4

Figure 1: Segmented copy number across the genome for 1st sample

Working on segmentation for sample number 1 : K

Working on segmentation for sample number 2 : L

Working on segmentation for sample number 3 : M

This function makes use of the multicore package to run things in parallel, so plan ahead when picking
“ncores”. Memory usage can be a bit hard to predict.

By default runCBS returns a DataFrame (from the IRanges package) with Run Length Encoded (Rle
objects from the IRanges package) columns. This dramatically reduces the amount of memory required.
DataFrame objects are valid assayData elements in GenoSet (see object creation above). runCBS can
optionally return a list of data.frames, one for each sample. These data.frames are simply the output of
DNAcopy.

> segs = runCBS(cn(cn.ds), locData(cn.ds), n.cores = 3, return.segs = TRUE)

These segments can also be obtained from the DataFrame of Rle objects:

> segTable(assayDataElement(cn.ds, "cn.segs"), locData(cn.ds))

1.5 Plots

CNSet has some handy plots for plotting data along the genome.

> genoPlot(cn.ds, 1)

> genoPlot(cn.ds, 1, element = "cn.segs", add = TRUE, col = "red")

The result is shown in Fig. 1.

> genoPlot(cn.ds, 1, chr = "chr12")

> genoPlot(cn.ds, 1, chr = "chr12", element = "cn.segs", add = TRUE, col = "red")

The result is shown in Fig. 2.

2 BAFSet Objects

BAFSet objects are similar in most ways to CNSet objects, but require at least two types of data, LRR and
BAF, in AssayData.

5

Figure 2: Segmented copy number across chromosome 12 for 1st sample

2.1 Processing Data

BAF data can be converted into the “Modified BAF” or mBAF metric, introduced by Staaf, et al., 2008.
mBAF folds the values around the 0.5 axis and makes the HOM positions NA. The preferred way to identify
HOMs is to use genotype calls from a matched normal (-1,0,1,2 for NA, AA, AB, BB), but NA’ing values
over a certain value works OK. A hom.cutoff of 0.90 is suggested for Affymetrix arrays and 0.95 for Illumina
arrays, following Staaf, et al.

> assayDataElement(baf.ds, "mbaf") = baf2mbaf(baf(baf.ds), hom.cutoff = 0.9)

Using the HOM SNP calls from the matched normal works much better. A matrix of genotypes can be
used to set the HOM SNPs to NA. A list of sample names matches the columns of the genotypes to the
columns of your baf matrix. The names of the list should match column names in your baf matrix and the
values of the list should match the column names in your genotype matrix. If this method is used and some
columns in your baf matrix do not have an entry in this list, then those baf columns are cleaned of HOMs
using the hom.cutoff, as above.

Both mBAF and LRR can and should be segmented

> assayDataElement(baf.ds, "baf.segs") = runCBS(assayDataElement(baf.ds,

+ "mbaf"), locData(baf.ds))

Working on segmentation for sample number 1 : K

Working on segmentation for sample number 2 : L

Working on segmentation for sample number 3 : M

> assayDataElement(baf.ds, "lrr.segs") = runCBS(lrr(baf.ds), locData(baf.ds))

Working on segmentation for sample number 1 : K

Working on segmentation for sample number 2 : L

Working on segmentation for sample number 3 : M

2.2 Plots

BAFSets (and GenoSets) have a genoPlot function as well that additionally requires a “element” argument,
which can be “lrr” or “baf” or any other element you happen to have put in “assayData”.

6

Figure 3: Segmented copy number across the genome for 1st sample

> genoPlot(baf.ds, 1, chr = "chr12", element = "lrr", main = "LRR of chr12")

> genoPlot(baf.ds, 1, chr = "chr12", element = "lrr.segs", add = TRUE,

+ col = "red")

The result is shown in Fig. 3.

> par(mfrow = c(2, 1))

> genoPlot(baf.ds, 1, chr = "chr12", element = "baf", main = "BAF of chr12")

> genoPlot(baf.ds, 1, chr = "chr12", element = "mbaf", main = "mBAF of chr12")

> genoPlot(baf.ds, 1, chr = "chr12", element = "baf.segs", add = TRUE,

+ col = "red")

The result is shown in Fig. 4.

2.3 Genome Order

Certain methods on GenoSet objects expect the rows to be in genome order. In this package, the use
of a RangedData object for feature location info (the locData slot) keeps data for each chromosome in a
contiguous block of rows. Users are free to rearrange rows within chromosome as they please. The function
“isGenomeOrder” can check if a rangedData object, like the locData slot, is in genome order. Here “genome
order” means that the rows within each chromosome are ordered by start position. “Strict genome order”
requires that the chromosome be in a certain order too. The proper order of chromosomes is desirable for
full-genome plots and is specified by the “chrOrder” function. The function “genomeOrder” returns a list of
integer indices to use to set a GenoSet or RangedData to weak, or optionaly, strict genome order. The object
creation methods “Genoset”, “BAFSet”, and “CNSet” order their objects in strict genome order. Methods,
like those in the next section, that require genome order use “genomeOrder” to set it themselves, so users
are not required to keep track of whether or not they have changed the row order.

7

2.4 Gene Level Summaries

GenoSet contains feature level data. Often it is desirable to get summaries of assayData matrices over an
arbitrary set of ranges, like genes or cytobands. The function “rangeSampleMeans” serves this purpose.
Given a RangedData of arbitrary genome ranges, a GenoSet-based object, and the name of a member of
that objects assayData slot, “rangeSampleMeans” will return a matrix of values for each of those ranges and
for each sample. For each range, “rangeSampleMeans” uses “boundingIndices” to select the features covered
by that range and the features bounding that range. The bounding features are the features with locations
equal to the start and end of the range or those outside the range and closest to the ends of the range.
This bounding ensures that the full extent of the range is accounted for, and more importantly, at least two
features are included for each gene, even if the range falls between two features.

As an example, let’s say you want to get the copynumber of your two favorite genes from the subsetting
example:

> rangeSampleMeans(gene.rd, baf.ds, "lrr")

HER2 CMYC

K 14.0000248 0.09744106

L -0.5194090 2.99732032

M 0.1941757 0.13363266

8

Figure 4: Segmented copy number across the genome for 1st sample

9

	Introduction
	Creating Objects
	Using the Subset Features
	Slots
	Processing Data
	Plots

	BAFSet Objects
	Processing Data
	Plots
	Genome Order
	Gene Level Summaries

