
MLSeq package: Machine Learning Interface to

RNA-Seq Data

Gokmen Zararsiz1, Dincer Goksuluk2, Selcuk Korkmaz2, Vahap Eldem3,
Izzet Parug Duru4, Turgay Unver5, Ahmet Ozturk5

1Erciyes University, Faculty of Medicine, Department of Biostatistics, Kayseri, TURKEY
2Hacettepe University, Faculty of Medicine, Department of Biostatistics, Ankara, TURKEY

3Istanbul University, Faculty of Science, Department of Biology, Istanbul, TURKEY
4Marmara University, Faculty of Science, Department of Physics, Istanbul, TURKEY
5Cankiri University, Faculty of Science, Department of Biology, Cankiri, TURKEY

1gokmenzararsiz@erciyes.edu.tr

Abstract

MLSeq package provides several algorithms including support vector machines (SVM), bag-
ging support vector machines (bagSVM), random forest (RF) and classification and regression
trees (CART) to classify sequencing data. To achieve this, MLSeq package requires a count table,
which contains the number of reads mapped to each transcript for each sample. This kind of
count data can be obtained from RNA-Seq experiments, also from other sequencing experiments
such as DNA or ChIP-sequencing. This vignette is presented to guide researchers how to use
this package.

Contents

1 Introduction 2

2 Preparation of input data 2

3 Data normalization and transformation 5

4 Cross-validation concept 5

5 Building classification models 5

6 Prediction of new samples 7

7 Session info 8

1

1 Introduction

With the recent developments in molecular biology, it is feasible to measure the expression levels of
thousands of genes simultaneously. Using this information, one major task is the gene-expression
based classification. With the use of microarray data, numerous classification algorithms are devel-
oped and adapted for this type of classification. RNA-Seq is a recent technology, which uses the
capabilities of next-generation sequencing (NGS) technologies. It has some major advantages over
microarrays such as providing less noisy data and detecting novel transcripts and isoforms. These
advantages can also affect the performance of classification algorithms. Working with less noisy
data can improve the predictive performance of classification algorithms. Further, novel transcripts
may be a biomarker in related disease or phenotype. MLSeq package includes several classification
algorithms, also normalization and transformation approaches for RNA-Seq classification. MLSeq

package can be loaded as below:

library(MLSeq)

2 Preparation of input data

MLSeq package expects a count table that contains the number of reads mapped to each transcript
for each sample and class label information of samples in an S4 class DESeqDataSet format.

After mapping the RNA-Seq reads to a reference genome or transcriptome, number of reads
mapped to the reference genome can be counted to measure transcript abundance. It is very
important that the count values must be raw sequencing read counts to implement the methods given
in MLSeq package. There are a number of functions in Bioconductor packages which summarizes
mapped reads to a count data format. These tools include featureCounts function in Rsubread

package [1], summarizeOverlaps function in GenomicRanges package [2] and easyRNASeq package
[3]. It is also possible to access this type of count data from Linux-based softwares as htseq-count
function in HTSeq [4] and multicov function in bedtools [5] software.

In this vignette, we will work with the cervical count data. Cervical data is from an experiment
that measures the expressions of 714 miRNA’s of human samples [6]. There are 29 tumor and
29 non-tumor cervical samples and these two groups can be treated as two separete classes for
classification purpose. We can define the file path with system.file function:

filepath = system.file("extdata/cervical.txt", package = "MLSeq")

filepath

[1] "/tmp/RtmpqI4ldU/Rinst3ae1731fb562/MLSeq/extdata/cervical.txt"

Next, we can load the data using read.table function:

cervical = read.table(filepath, header = TRUE)

After loading the data, we can check the counts as follows. These counts are the number of
mapped miRNA reads to each transcript.

head(cervical[, 1:5])

2

N1 N2 N3 N4 N5

let-7a 865 810 5505 6692 1456

let-7a* 3 12 30 73 6

let-7b 975 2790 4912 24286 1759

let-7b* 15 18 27 119 11

let-7c 828 1251 2973 6413 713

let-7c* 0 0 0 1 0

Cervical data is in data.frame format which contains 714 miRNA mapped counts given in rows,
belonging to 58 samples given in columns:

class(cervical)

[1] "data.frame"

dim(cervical)

[1] 714 58

First 29 columns of the data contain the miRNA mapped counts of non-tumor samples, while
the last 29 columns contain the count information of tumor samples. We need to create a class label
information in order to apply classification models.

class = data.frame(condition = factor(rep(c("N", "T"), c(29, 29))))

as.factor(class[, 1])

[1] N

[30] T

Levels: N T

For simplicity, we can work with a subset of cervical data with first 150 features.

data = cervical[c(1:150),]

Now, we can split the data into two parts as training and test sets. Training set can be used to
build classification models, and test set can be used to assess the performance of each model. We
can use set.seed function to specify initial value of random-number seed and use sample function
for selection.

nTest = ceiling(ncol(data) * 0.2)

set.seed(12345)

ind = sample(ncol(data), nTest, FALSE)

Now, training and test sets can be created based on this sampling process:

data.train = data[, -ind]

data.train = as.matrix(data.train + 1)

classtr = data.frame(condition = class[-ind,])

3

data.test = data[, ind]

data.test = as.matrix(data.test + 1)

classts = data.frame(condition = class[ind,])

Now, we have 46 samples which will be used to train the classification models and have remaining
12 samples to be used to test the model performances:

dim(data.train)

[1] 150 46

dim(data.test)

[1] 150 12

We can now transform our training and test data to DESeqDataSet instance, which is the
main data structure in the MLSeq package. For this purpose, we use the DESeqDataSetFromMatrix

function of DESeq2 package [7]:

data.trainS4 = DESeqDataSetFromMatrix(countData = data.train, colData = classtr,

formula(~condition))

data.trainS4 = DESeq(data.trainS4, fitType = "local")

data.trainS4

class: DESeqDataSet

dim: 150 46

exptData(0):

assays(5): counts mu cooks replaceCounts replaceCooks

rownames(150): let-7a let-7a* ... miR-18a* miR-18b

rowData metadata column names(26): baseMean baseVar ...

maxCooks replace

colnames(46): 1 2 ... 45 46

colData names(3): condition sizeFactor replaceable

data.testS4 = DESeqDataSetFromMatrix(countData = data.test, colData = classts,

formula(~condition))

data.testS4 = DESeq(data.testS4, fitType = "local")

data.testS4

class: DESeqDataSet

dim: 150 12

exptData(0):

assays(3): counts mu cooks

rownames(150): let-7a let-7a* ... miR-18a* miR-18b

rowData metadata column names(25): baseMean baseVar ...

deviance maxCooks

colnames(12): 1 2 ... 11 12

colData names(2): condition sizeFactor

4

Counts and class label information are adequate for classification analysis. However, users can
also enter other information. Furthermore, users can directly call the count data obtained from
HTSeq software using DESeqDataSetFromHTSeqCount function of DESeq2 package.

3 Data normalization and transformation

In differential expression analysis of RNA-Seq data, it is crucial to normalize the count data to adjust
between-sample differences. In our experiments, we have also seen that normalization significantly
increase the performance of most classifiers. In MLSeq package two normalization methods are
available. First one is the ”deseq normalization”, which estimates the size factors by dividing
each sample by the geometric means of the transcript counts [7]. Median statistic is mostly used
as a size factor for each sample. Another normalization method is ”trimmed mean of M values
(TMM)”. TMM first trims the data in both lower and upper side by log-fold changes (default 30%)
to minimize the log-fold changes between the samples and by absolute intensity (default 5%). After
trimming, TMM calculates a normalization factor using the weighted mean of data. These weights
are calculated based on the inverse approximate asymptotic variances using the delta method [8].

After the normalization process, it is useful to transform the data for classification analysis.
There are two transformation methods available in MLSeq package. First one is the ”voom trans-
formation” which applies a logarithmic transformation to normalized count data and computes
gene weights using the mean-dispersion relationship [9]. Second transformation method is the ”vst
transformation”. This approach uses an error modeling and the concept of variance stabilizing
transformations to estimate the mean-dispersion relationship of data [7].

If the normalization method is selected as ”TMM”, then MLSeq package automatically applies
”voom” transformation. However, it is possible to select either ”vst” or ”voom” transformations
after ”deseq” normalization.

Further details on these normalization and transformation methods can be found in referenced
papers.

4 Cross-validation concept

One essential goal of classification analysis is to build a generalizable model that will have a low
misclassification error when applied to new samples. One way is to use k -fold cross-validation to
validate obtained model. k -fold cross-validation technique randomly splits the data into k non-
overlapping and equally sized subsets. A classification model is trained on (k − 1) subsets and
tested in the remaining subsets. This process is repeated k times, thus all subsets are used as a test
set in each step. MLSeq package also has the repeat option to obtain more generalizable models.
Giving a number of m repeats, cross validation concept is applied m times.

5 Building classification models

Now, we can train our data, data.trainS4, using one of the classifiers among SVM, bagSVM, RF
and CART algorithms. To build a classification model, we simply use the classify function. First,
let us use SVM classifier and choose ”deseq” as normalization method, ”vst” as transformation
method and assign this model in ”svm” object. We also define the number of cross validation fold
as ”cv=5” and number of repeats as ”rpt=3” for model validation. The reference class is considered
as ”T” via ref = "T".

5

svm = classify(data = data.trainS4, method = "svm", normalize = "deseq",

deseqTransform = "vst", cv = 5, rpt = 3, ref = "T")

svm

##

An object of class MLSeq

##

Method : svm

##

Accuracy(%) : 97.83

Sensitivity(%) : 100

Specificity(%) : 95.65

##

Reference Class : T

After running the code given above, we obtain the results in MLSeq class. SVM successfully fits
a model with 97.8% true classification accuracy by misclassifying only one non-tumor sample.

”svm” object also stores information about model training and the parameters used to build
this model.

getSlots("MLSeq")

method deseqTransform normalization

"character" "character" "character"

confusionMat trained ref

"confusionMatrix" "train" "character"

trained(svm)

Support Vector Machines with Radial Basis Function Kernel

##

46 samples

150 predictors

2 classes: 'T', 'N'

##

No pre-processing

Resampling: Cross-Validated (5 fold, repeated 3 times)

##

Summary of sample sizes: 36, 37, 37, 36, 38, 36, ...

##

Resampling results across tuning parameters:

##

C Accuracy Kappa Accuracy SD Kappa SD

0.2 0.9 0.7 0.1 0.2

0.5 0.9 0.8 0.09 0.2

1 0.9 0.8 0.09 0.2

##

Tuning parameter 'sigma' was held constant at a value

of 0.004331

6

Accuracy was used to select the optimal model using

the largest value.

The final values used for the model were sigma = 0.004 and C

= 1.

Now, let us train another model with same parameters using RF classifier and save this model
in ”rf” object.

rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq",

deseqTransform = "vst", cv = 5, rpt = 3, ref = "T")

rf

##

An object of class MLSeq

##

Method : randomforest

##

Accuracy(%) : 100

Sensitivity(%) : 100

Specificity(%) : 100

##

Reference Class : T

We can see that RF method successfully trained the model without misclassifying any samples.

6 Prediction of new samples

Now, we will predict the class labels of our test data ”data.testS4” and test the performance of
classifiers based on the models we built using classify function. Here, we use predictClassify

function in order to achieve this goal.

pred.svm = predictClassify(svm, data.testS4)

pred.svm

[1] T T T T T T N N T T N N

Levels: T N

pred.rf = predictClassify(rf, data.testS4)

pred.rf

[1] T N T T N T N N T T N N

Levels: T N

To assess the predictive performance of each method, we can cross the actual class labels and
predictions in a table :

table(pred.svm, relevel(data.testS4$condition, 2))

7

##

pred.svm T N

T 6 2

N 0 4

table(pred.rf, relevel(data.testS4$condition, 2))

##

pred.rf T N

T 5 1

N 1 5

We can see that SVM and RF showed similar predictive performances and both methods cor-
rectly classified 10 out of 12 test samples with 83.3% classification accuracy. However, note that
the true classification rate for predictClassify is dependent on number of repeats and selected
folds. Therefore, users may have different results that we have obtained above.

7 Session info

sessionInfo()

R version 3.1.0 alpha (2014-03-12 r65175)

Platform: x86_64-unknown-linux-gnu (64-bit)

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] parallel stats graphics grDevices utils datasets

[7] methods base

##

other attached packages:

[1] e1071_1.6-3 MLSeq_0.99.3

[3] edgeR_3.5.27 limma_3.19.28

[5] kernlab_0.9-19 randomForest_4.6-7

[7] Biobase_2.23.6 DESeq2_1.3.58

[9] RcppArmadillo_0.4.100.2.1 Rcpp_0.11.1

[11] GenomicRanges_1.15.40 GenomeInfoDb_0.99.23

[13] IRanges_1.21.36 BiocGenerics_0.9.3

[15] caret_6.0-24 ggplot2_0.9.3.1

[17] lattice_0.20-27 knitr_1.5

##

loaded via a namespace (and not attached):

8

[1] AnnotationDbi_1.25.16 DBI_0.2-7

[3] MASS_7.3-30 RColorBrewer_1.0-5

[5] RSQLite_0.11.4 XML_3.98-1.1

[7] XVector_0.3.7 annotate_1.41.2

[9] car_2.0-19 class_7.3-9

[11] codetools_0.2-8 colorspace_1.2-4

[13] compiler_3.1.0 dichromat_2.0-0

[15] digest_0.6.4 evaluate_0.5.1

[17] foreach_1.4.1 formatR_0.10

[19] genefilter_1.45.2 geneplotter_1.41.1

[21] grid_3.1.0 gtable_0.1.2

[23] highr_0.3 iterators_1.0.6

[25] labeling_0.2 locfit_1.5-9.1

[27] munsell_0.4.2 nnet_7.3-7

[29] plyr_1.8.1 proto_0.3-10

[31] reshape2_1.2.2 scales_0.2.3

[33] splines_3.1.0 stats4_3.1.0

[35] stringr_0.6.2 survival_2.37-7

[37] tools_3.1.0 xtable_1.7-3

References

[1] Liao Y, Smyth GK, Shi W (2013). featureCounts: an efficient general purpose program for
assigning sequence reads to genomic features. Bioinformatics.

[2] Lawrence M, Huber W, Pages H, et al. (2013). Software for Computing and Annotating Ge-
nomic Ranges. Plos Computational Biology, DOI: 10.1371/journal.pcbi.1003118.

[3] Delhomme N, Padioleau I, Furlong EE, et al. (2012). easyRNASeq: a bioconductor package for
processing RNA-Seq data. Bioinformatics, 28(19):2532-2533.

[4] http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html

[5] Quinlan AR, Hall IM (2010). BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics, 26(6):841-842.

[6] Witten D, Tibshirani R, Gu S, et al. (2010). Ultra-high throughput sequencing-based small
RNA discovery an discrete statistical biomarker analysis in a collection of cervical tumors and
matched controls. BMC Biology, 8(58).

[7] Anders S, Huber W (2010). Differential expression analysis for sequence count data. Genome
Biology, 11(10):R106.

9

[8] Robinson MD, Oshlack A (2010). A scaling normalization method for differential expression
analysis of RNA-Seq data. Genome Biology, 11:R25, doi:10.1186/gb–2010–11–3–r25.

[9] Charity WL, Chen Y, Shi W, et al. (2014) Voom: precision weights unlock linear model analysis
tools for RNA-Seq read counts, Genome Biology, 15:R29, doi:10.1186/gb–2014–15–2–r29.

10

