[1] Alan Agresti and Brent A. Coull. Approximate is better than exact for interval estimation of binomial proportions. The American Statistician, 52(2):119126, 1998. [ http ]
[2] Alan Agresti and Brian Caffo. Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. The American Statistician, 54(4):280288, 2000. [ http ]
[3] Walter W. Piegorsch. Sample sizes for improved binomial confidence intervals. Computational Statistics & Data Analysis, 46(2):309-316, June 2004. [ DOI | http ]
[4] Yoav Benjamini and Daniel Yekutieli. False discovery rateadjusted multiple confidence intervals for selected parameters. Journal of the American Statistical Association, 100(469):7181, 2005. [ http ]
[5] Frank Schaarschmidt, Martin Sill, and Ludwig A. Hothorn. Approximate simultaneous confidence intervals for multiple contrasts of binomial proportions. Biometrical Journal, 50(5):782792, 2008. [ DOI | http ]
[6] The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature, 467(7319):1061-1073, October 2010. [ DOI | .html ]
[7] Morten W. Fagerland, Stian Lydersen, and Petter Laake. Recommended confidence intervals for two independent binomial proportions. Statistical methods in medical research, 2011. [ http ]
[8] Mirjam J. Knol, Wiebe R. Pestman, and Diederick E. Grobbee. The (mis)use of overlap of confidence intervals to assess effect modification. European Journal of Epidemiology, 26(4):253-254, April 2011. PMID: 21424218 PMCID: PMC3088813. [ DOI | http ]
[9] Moritz Gerstung, Christian Beisel, Markus Rechsteiner, Peter Wild, Peter Schraml, Holger Moch, and Niko Beerenwinkel. Reliable detection of subclonal single-nucleotide variants in tumour cell populations. Nature Communications, 3:811, May 2012. [ DOI | .html ]
[10] Omkar Muralidharan, Georges Natsoulis, John Bell, Hanlee Ji, and Nancy R. Zhang. Detecting mutations in mixed sample sequencing data using empirical bayes. The Annals of Applied Statistics, 6(3):1047-1067, September 2012. Zentralblatt MATH identifier06096521, Mathematical Reviews number (MathSciNet) MR3012520. [ DOI | http ]
[11] Lucy R. Yates and Peter J. Campbell. Evolution of the cancer genome. Nature Reviews Genetics, 13(11):795, November 2012. [ DOI | .html ]
[12] Paul Theodor Pyl. h5vcData: example data for the h5vc package, 2013. [ .html ]
[13] Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik. Statistical methods for rates and proportions. John Wiley & Sons, 2013. [ http ]
[14] Geoffrey Decrouez and Peter Hall. Split sample methods for constructing confidence intervals for binomial and poisson parameters. Journal of the Royal Statistical Society: Series B (Statistical Methodology), page n/an/a, 2013. [ DOI | http ]
[15] Alan Agresti. Categorical data analysis. Wiley, Hoboken, NJ, 2013.
[16] Su Y. Kim and Terence P. Speed. Comparing somatic mutation-callers: beyond venn diagrams. BMC Bioinformatics, 14(1):189, June 2013. PMID: 23758877. [ DOI | http ]
[17] Nicola D. Roberts, R. Daniel Kortschak, Wendy T. Parker, Andreas W. Schreiber, Susan Branford, Hamish S. Scott, Garique Glonek, and David L. Adelson. A comparative analysis of algorithms for somatic SNV detection in cancer. Bioinformatics, 29(18):2223-2230, September 2013. PMID: 23842810. [ DOI | http ]
[18] Paul Theodor Pyl, Julian Gehring, Bernd Fischer, and Wolfgang Huber. h5vc: Scalable nucleotide tallies with HDF5. Bioinformatics, page btu026, January 2014. PMID: 24451629. [ DOI | http ]