
BiRewire

Andrea Gobbi, Francesco Iorio

Contents

1 Overview 1

2 Installation 2

3 Package Dependencies 2

4 Notation 2

5 Function Description 3
5.1 birewire.analysis andbirewire.analysis.undirected 3
5.2 birewire.rewire.bipartite . 5
5.3 birewire.rewire . 5
5.4 birewire.similarity . 5
5.5 birewire.rewire.bipartite.and.projections 5

1 Overview

BiRewire is an R package implementing high-performing routines for the ran-
domisation of bipartite graphs preserving their node degrees (i.e. Network
Rewiring), through the Switching Algorithm (SA) [4].
This package is particularly useful for the randomisation of ’0-1’ tables (or
presence-absence matrices) in which the distributions of non-null entries (i.e.
presence distributions) must be preserved both across rows and columns. By
considering these tables as incidence matrices of bipartite graphs then this prob-
lem reduces to bipartite network rewiring.
For example, by modeling a genomic dataset as a binary event matrix (BEM),
in which rows correspond to samples, columns correspond to genes and the
(i, j) entry is non-null if the i-th sample harbours a mutation in the j-th gene,
then with BiRewire is possible to randomise the dataset preserving its muta-
tion rates both across samples and genes. This is crucial to preserve tumour
specific alterations, dependencies between gene-mutations and heterogeneity in
mutation/copy-number-alteration rates across patients.
Large collections of such randomised tables can be then used to approximate
samples from the uniform distribution of all the possible genomic datasets with
the same mutation-rates of the initial one. Finally this data can be used as null
model to test the statistical significance of several combinatorial properties of
the original dataset: for example the tendency of a group of genes to be co- or

1

mutually-mutated [6].

Specifically, with BiRewire users can:

1. create bipartite graphs from genomic BEMs (or, generally, from any kind
of ṕresence-absenceḿatrix);

2. perform an analysis, which consists of studying the trend of Jaccard Sim-
ilarity between the original network and its rewired versions across the
switching steps (by using a user-defined sampling time), and analytically
estimating the number of steps at which this similarity reaches a plateau
(i.e. the maximal level of randomness is achieved) according to the lower
bound derived in [1];

3. generate rewired versions of a bipartite graph with the analytically derived
bound as number of switching steps or a user-defined one;

4. derive projections of the starting network and its rewired version and
perform different graph-theory analysis on them.

All the functions of the package are written in C-code and R-wrapped.

2 Installation

It is possible to download the package from http://www.ebi.ac.uk/~iorio/

BiRewire and install it with the shell-command:

R CMD INSTALL BiRewire_xx.yy.zz.tar.gz

or with biocLite() directly in R:

source("http://bioconductor.org/biocLite.R")

biocLite("BiRewire")

To load BiRewire use the following commands:

> library(BiRewire)

3 Package Dependencies

BiRewire requires the R package igraph (see [5]) available at the CRAN reposi-
tory, or downloadable at http://cran.r-project.org/web/packages/igraph/
index.html.

4 Notation

Let G be a bipartite graph, i.e. a graph containing two classes of nodes Vr and
Vc such that every edge e ∈ E connects one node in the first class to a node in
the second class.
Let B be the incidence matrix of G, i.e. the |Vr| × |Vc| binary matrix whose
generic entry mi,j is not null if an only if (i, j) ∈ E.

2

The number of edges is indicated with e = |E| and the edge density with
d = e

|Vr||Vc| .

The SA performs N Switching Steps (SSs), in which:

1. two edges (a, b) and (c, d) both ∈ E are randomly selected,

2. if a 6= c, b 6= d, (a, d) 6∈ E and (b, d) 6∈ E then:

(a) the edges (a, d) and (b, d) are added to E and

(b) the edges (a, b) and (c, d) are removed from E.

Notice that we count a SS only if it is successfully performed.
The Jaccard Index (JI, [9]) is used to quantify the similarity between the

original graph and its rewired version at the k-th SS. Since the SA preserves the
degree distribution and does not alter the number of nodes, the JI, indicated
with s(k), can be computed as

s(k) =
x(k)

2e− x(k)
,

where x(k) is the number of edges in common between the two graphs. The
number N of SSs providing the rewired version of a network with the maxi-
mally achievable level of randomness (in terms of average dissimilarity from the
original network) is asymptotically equal to

e(1− d)

2
ln e(1− d).

This bound is much lower than the empirical one proposed in [4] (see Reference
for details).

5 Function Description

In this section all the functions implemented in BiRewire are described with a
simple practical example in which a real breast cancer dataset is modeled as
a bipartite network, and randomised preserving the mutation-rate both across
samples and genes (i.e. the corresponding bipartite network is rewired). In
each of the following functions it is possible to perform N successful switching
steps (see [1] for more details about this more general bound) using the flag
exact=TRUE. To prevent a possible indinite loop, the program performs at
maximum MAXITER MUL*max.iter iterations.

5.1 birewire.analysis andbirewire.analysis.undirected

First of all, we create a bipartite network modeling a genomic breast cancer
dataset downloaded from the Cancer Genome Atlas (TCGA) projects data
portal http://tcga.cancer.gov/dataportal/, used in [1] From this dataset
germline mutations were filtered out with state-of-the-art softwares; synonymous
mutations and mutations identified as benign and tolerated were also removed.
The resulting bipartite graph has nr = 757 nodes (corresponding to samples),

3

nc = 9, 757 nodes (corresponding to genes), and e = 19, 758 edges connecting
a node in nr to a node in nc if the gene corresponding to the node in nr is
mutated to the samples corresponding to the node in nC . The edge density of
this network is 0.27%.

The genomic dataset (in the form of a binary matrix in which rows corre-
spond to samples, columns correspond to genes and the (i, j) entry is non null
if the i-th sample harbours a mutation in the j-th gene) can be loaded and
modeled as a bipartite graph, with the following commands:

> data(BRCA_binary_matrix)##loads an binary genomic event matrix for the

> ##breast cancer dataset

> g=birewire.bipartite.from.incidence(BRCA_binary_matrix)##models the dataset

> ## as igraph bipartite graph

Once the bipartite graph is created it is possible to conduct the analysis by
calling the birewire.analysis function, using the following commands:

> step=5000

> max=100*sum(BRCA_binary_matrix)

> scores<-birewire.analysis(BRCA_binary_matrix,step,verbose=FALSE,max.iter=max)

> plot(x=step*seq(1:length(scores$similarity_scores)),y= scores$similarity_scores,

+ type='l', xlab="Number of switching steps",

+ ylab="Jaccard Similarity Score",ylim=c(0,1))

> legend(max*0.8,1, c("Jaccard Similarity","N"),

+ cex=0.9, col=c("black","red"), lty=1:1,lwd=3)

> abline(v=scores$N,col='red')

> plot(x=step*seq(1:length(scores$similarity_scores)),y= scores$similarity_scores,

+ type='l',xlab="Number of switching steps",

+ ylab="Jaccard Similarity Score",log="xy",main="Log-Log plot")

> legend("topright", c("Jaccard Similarity","N"),

+ cex=0.9, col=c("black","red"), lty=1:1,lwd=3)

> abline(v=scores$N,col='red')

The function birewire.analysis returns the Jaccard similarity sampled ev-
ery 5000 SSs. In the resulting plots the value of the analyitically derived lower
bound to the number of switching steps is also visualised $N . For more details
see the the documentation.

The same analysis can be performed on general undirected networks (not
bipartite).

> g.und<-erdos.renyi.game(directed=F,loops=F,n=1000,p.or.m=0.01)

> m.und<-get.adjacency(g.und,sparse=FALSE)

> step=100

> max=100*length(E(g.und))

> scores.und<-birewire.analysis.undirected(m.und,step=step,verbose=FALSE,max.iter=max)

> plot(x=step*seq(1:length(scores.und$similarity_scores)),y= scores.und$similarity_scores,

+ type='l', xlab="Number of switching steps",

+ ylab="Jaccard Similarity Score",ylim=c(0,1))

> legend(max*0.8,1, c("Jaccard Similarity","N"),

4

+ cex=0.9, col=c("black","red"), lty=1:1,lwd=3)

> abline(v=scores.und$N,col='red')

> plot(x=step*seq(1:length(scores.und$similarity_scores)),y= scores.und$similarity_scores,

+ type='l',xlab="Number of switching steps",

+ ylab="Jaccard Similarity Score",log="xy",main="Log-Log plot")

> legend("topright", c("Jaccard Similarity","N"),

+ cex=0.9, col=c("black","red"), lty=1:1,lwd=3)

> abline(v=scores.und$N,col='red')

5.2 birewire.rewire.bipartite

To rewire a bipartite graph two modalities are available. Both of them can be
used with the analytical bound N as number of switching steps or with a user
defined value. The function takes in input an incidence matrix B or the an
igraph bipartite graph.

> m2<-birewire.rewire.bipartite(BRCA_binary_matrix,verbose=FALSE)

> g2<-birewire.rewire.bipartite(g,verbose=FALSE)

The first function gives in output the incidence matrix of the rewired graph
while the second one a rewired igraph graph. See documentation for further
details.

5.3 birewire.rewire

To rewire a general undirected graph the following functions can be used:

> m2.und<-birewire.rewire(m.und,verbose=FALSE)

> g2.und<-birewire.rewire(g.und,verbose=FALSE)

5.4 birewire.similarity

This function computes the Jaccard index between two incidence matrices with
same dimensions and node degrees.

> sc=birewire.similarity(BRCA_binary_matrix,m2)

> sc=birewire.similarity(BRCA_binary_matrix,t(m2))#also works

5.5 birewire.rewire.bipartite.and.projections

The following functions execute the Switching Algorithm and computes simi-
larity trends across its switching steps for the two natural projections of the
starting bipartite graph

> #use a smaller graph!

> gg <- simplify(graph.bipartite(rep(0:1,length=100),

+ c(c(1:100),seq(1,100,3),seq(1,100,7),100,seq(1,100,13),

+ seq(1,100,17),seq(1,100,19),seq(1,100,23),100

+)))

> result=birewire.rewire.bipartite.and.projections(gg,step=10,

+ max.iter="n",accuracy=1,verbose=FALSE)

5

> plot(result$similarity_scores.proj2,type='l',col='red',ylim=c(0,1))

> lines(result$similarity_scores.proj1,type='l',col='blue')

> legend("top",1, c("Proj2","Proj1"), cex=0.9, col=c("blue","red"), lty=1:1,lwd=3)

References

[1] Gobbi, A. and Iorio, and Wedge, D. and Dawson, K. and Ludmil, A. F.
and Jurman, G. and Saez-Rodriguez, J., Next-Generation-Sequencing data
randomisation preserving genomic-event distributions, submitted.

[2] Gobbi, A. and Jurman, G. Number of required Switching Steps in the Switch-
ing Algorithm for undirected graphs.in preparation, .

[3] Jaccard, P. (1901), Etude comparative de la distribution florale dans une
portion des Alpes et des Jura, Bulletin de la Societe Vaudoise des Sciences
Naturelles 37:547–579.

[4] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the
uniform generation of random graphs with prescribed degree sequences, eprint
arXiv:cond-mat/0312028.

[5] Csardi, G. and Nepusz, T (2006)The igraph software package for complex
network research, InterJournal, Complex Systems http://igraph.sf.net.

[6] Ciriello, G. and Cerami, E. and Sander, C. and Schultz, N.(2012) Mutual
exclusivity analysis identifies oncogenic network modules, Genome Research,
22, 398-406.

[7] Miklòs I, Podani J. Randomization of presence-absence matrices: comments
and new algorithms. Ecology. Eco Soc America; 2004;85(1):86–92.

[8] Gotelli NJ. Null model analysis of species co-occurrence patterns. Ecology.
2000.

[9] Jaccard, Paul. Étude comparative de la distribution florale dans une portion
des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles;
1901; 37:547–579.

6

