Package 'BiRewire'

April 4, 2014

Version 1.2.2

Date 2013-09-30
Title High-performing routines for the randomization of a bipartite graph (or a binary event matrix) preserving degree distribution (or marginal totals).

Maintainer Andrea Gobbi <gobbi. andrea@mail. com>
Description Fast functions for bipartite network rewiring through N consecutive switching steps (See References) and for the computation of the minimal number of switching steps to be performed in order to maximise the dissimilarity with respect to the original network. Includes function for the analysis of the introduced randomness across the switching and several other routines to analyse the resulting networks and their natural projections. Extension to undirected networks (not bipartite) is also provided.

License GPL-3
Depends igraph
Suggests RUnit, BiocGenerics
Author Andrea Gobbi [aut], Davide Albanese [cbt], Francesco Iorio [cbt], Giuseppe Jurman [cbt], Julio Saez-Rodriguez [cbt] .

URL http://www.ebi.ac.uk/~iorio/BiRewire

R topics documented:

BiRewire-package . 2
birewire.analysis . 3
birewire.analysis.undirected . 5
birewire.bipartite.from.incidence . 7
birewire.rewire . 9
birewire.rewire.bipartite . 10
birewire.rewire.bipartite.and.projections . 12
birewire.similarity . 14
BRCA_binary_matrix . 15
Index 16

Description

R package for computationally-efficient rewiring of bipartite graphs (or randomisation of 0-1 tables with prescribed marginal totals). The package provides useful functions for the analysis and the randomisation of large biological datasets that can be encoded as $0-1$ tables, hence modeled as bipartite graphs by considering a $0-1$ table as an incidence matrix. Large collections of such randomised tables can be used to approximate null models, preserving event-rates both across rows and columns, for statistical significance tests of combinatorial properties of the original dataset. Routines for undirected graphs are also provided.

Details

Summary:

Package:	BiRewire
Version:	1.2 .2
Date: 2013-07-15	
Require: igraph, R>=2.10	
URL: http://www.ebi.ac.uk/~iorio/BiRewire	
License:	GPL-3

Author(s)

Andrea Gobbi [aut], Davide Albanese [cbt], Francesco Iorio [cbt], Giuseppe Jurman [cbt].
Maintainer: Andrea Gobbi gobbi.andrea@mail.com

References

Gobbi, A. and Iorio, and Wedge, D. and Dawson, K. and Ludmil, A. F. and Jurman, G. and SaezRodriguez, J. (submitted), Randomization of next generation sequencing data preserving genomicevent distributions.
Jaccard, P. (1901), Étude comparative de la distribution florale dans une portion des Alpes et des Jura, Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547-579.

David J. Rogers and Taffee T. Tanimoto, A Computer Program for Classifying Plants, Science Vol 132 pp 1115-1118, October 1960

Hamming, Richard W. (1950), Error detecting and error correcting codes, Bell System Technical Journal 29 (2): 147-160, MR 0035935.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Csardi, G. and Nepusz, T (2006) The igraph software package for complex network research, InterJournal, Complex Systems http://igraph.sf.net
birewire.analysis Analysis of Jaccard similarity trends across switching steps.

Description

This function performs a sequence of max.iter switching steps on the input bipartite graph g and compute the Jaccard similarity between g (the initial network) and its rewired version each step switching steps.

Usage

birewire. analysis(incidence, step=10, max.iter="n", accuracy=1,
verbose=TRUE, MAXITER_MUL=10, exact=F)

Arguments

incidence Incidence matrix of the initial bipartite graph g (can be extracted from an igraph bipartite graph using the get.incidence)function;
step $\quad 10$ (default): the interval (in terms of switching steps) at which the Jaccard index between g and the its current rewired version is computed;
max.iter "n" (default) the number of switching steps to be performed (or if exact==TRUE the number of successful switching steps). If equal to "n" then this number is considered equal to the analytically derived lower bound presented in Gobbi et al. (see References): $N=e / 2(1-d) \ln (e-d e)$ if exact is FALSE, $N=$ $e(1-d) / 2 \ln (e-d e)$ otherwise, where e is the number of edges of g and d its edge density. This bound is much lower than the empirical one proposed in Milo et al. 2003 (see References);
accuracy $\quad 1$ (default) is the desired level of accuracy reflecting the average distance between the Jaccard index at the N -th step and its analytically derived fixed point;
verbose TRUE (default). When TRUE a progression bar is printed during computation;
MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the program stops anyway after MAXITER_MUL*max.iter iterations;
exact FALSE (default). If TRUE the program performs max.iter successful swithcing steps, otherwise the program will count also the not-performed swithcing steps;

Details

This function performs max.iter switching steps (see references). In particular, at each step two edges are randomly selected from the current version of g. Let these two edges be (a, b) and (c, d) (where a and c belong to the first class of nodes whereas b and d belong to the second one), with $a \neq c$ and $b \neq d$.
If the (a, d) and (c, b) edges are not already present in the current current version of g then (a, d)
$\operatorname{and}(c, b)$ replace (a, b) and (c, d).
At each step number of switching steps the function computes the Jaccard index between the original graph g and its current version.

Value

A list containing a vector of Jaccard index values computed each (scores) switching steps, whose length is equal to max.iter/step, and the analytically derived lower bound (N) of switching steps to be performed by the switching algorithm in order to provide the revired version of g with the maximal level of achievable randomness (in terms of dissimilarity from the initial g).

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi gobbi.andrea@mail.com
Special thanks to:
Davide Albanese

References

Gobbi, A. and Iorio, and Wedge, D. and Dawson, K. and Ludmil, A. F. and Jurman, G. and SaezRodriguez, J. (submitted), Randomization of next generation sequencing data preserving genomicevent distributions.

Jaccard, P. (1901), Étude comparative de la distribution florale dans une portion des Alpes et des Jura, Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547-579.

David J. Rogers and Taffee T. Tanimoto, A Computer Program for Classifying Plants, Science Vol 132 pp 1115-1118, October 1960

Hamming, Richard W. (1950), Error detecting and error correcting codes, Bell System Technical Journal 29 (2): 147-160, MR 0035935.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Examples

```
library(igraph)
library(BiRewire)
g <- simplify(graph.bipartite( rep(0:1,length=100),
c(c(1:100), seq(1,100,3),seq(1,100,7),100,seq(1,100,13),
seq(1,100,17),seq(1,100,19),seq(1,100, 23),100
)))
##get the incidence matrix of g
```

```
m<-as.matrix(get.incidence(graph=g))
## set parameters
step=1
max=100*length(E(g))
## perform two different analysis using two different maximal number of switching steps
scores<-birewire.analysis(m, step,max)
scores2<-birewire.analysis(m,step,"n")
## plot the Jaccard index scores across intervals of switching steps
plot(x=step*seq(1:length(scores$similarity_scores)),y= scores$similarity_scores,
type=l,xlab="Number of rewiring",ylab="Index value",ylim=c(0,1))
lines(x=step*seq(1:length(scores2$similarity_scores)),y= scores2$similarity_scores,
col="red")
legend(max*0.5,1, c("Jaccard index","Jaccard index with lower-bound N"), cex=0.9,
col=c("black","red"), lty=1:1,lwd=3)
```

birewire.analysis.undirected
Analysis of the randomness trend across switching steps in a general undirected graph.

Description

This function performs a sequence of maxiter switching steps on the input undirected graph g and compute the Jaccard similarity between g and its rewired version each step switching steps.

Usage

birewire.analysis.undirected(adjacency, step=10, max.iter="n", accuracy=1, verbose=TRUE,MAXITER_MUL=10, exact=F)

Arguments

adjacency adjacency matrix of the undirected graph g (can be extracted from a igraph graph using the get. adjacency) function;
step $\quad 10$ (default): the interval (in terms of switching steps) at which the Jaccard index between g and the its current rewired version is computed;
max.iter "n" (default) the number of switching steps to be performed (or if exact==TRUE the number of successful switching steps). If equal to "n" then this number is considered equal to the analytically derived lower bound presented in Gobbi et al. (see References): $N=e /\left(2 d^{3}-6 d^{2}+2 d+2\right) \ln (e-d e)$ if exact is FALSE, $N=e(1-d) / 2 \ln (e-d e)$ otherwise, where e is the number of edges of g and d its edge density. This bound is much lower than the empirical one proposed in Milo et al. 2003 (see References);

accuracy	1 (default) is the desired level of accuracy reflecting the average distance be- tween the Jaccard index at the N-th step and its analytically derived fixed point.
verbose	TRUE (default). When TRUE a progression bar is printed during computation.
MAXITER_MUL	10 (default). If exact==TRUE in order to prevent a possible infinite loop the program stops anyway after MAXITER_MUL*max.iter iterations;
exact	FALSE (default). If TRUE the program performs max.iter successful swithcing steps, otherwise the program will count also the not-performed swithcing steps;

Details

This function performs max.iter switching steps (see references). In particular, at each step two edges are randomly selected from the current version of g. Let these two edges be (a, b) and (c, d), with $a \neq c, b \neq d, a \neq d, b \neq c$.
If the (a, d) and (c, b) (or (a, d) and (b, d)) edges are not already present in the current version of g then (a, d) and (c, b) replace (a, b) and (c, d) (or (a, b) and (c, d) replace (a, c) and (b, d)). If both of the configuarations are allowed, then one of them is randomly selected.

At each step switching steps the function computes the Jaccard index between the original graph g and its current rewired version.

Value

A list containing a vector of Jaccard index values computed each (scores) switching steps whose length is max.iter/step and the analytically derived lower bound (N) of switching steps to be performed by the switching algorithm in order to provide the rewired version of g with maximal achievable level of randomness (in terms of dissimilarity from the initial g).

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi gobbi.andrea@mail.com
Special thanks to:
Davide Albanese

References

Gobbi, A. and Iorio, and Wedge, D. and Dawson, K. and Ludmil, A. F. and Jurman, G. and SaezRodriguez, J. (submitted), Randomization of next generation sequencing data preserving genomicevent distributions.

Gobbi, A. and Jurman, G. (in preparation), Number of required Switching Steps in the Switching Algorithm for undirected graphs.

Jaccard, P. (1901), Étude comparative de la distribution florale dans une portion des Alpes et des Jura, Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547-579.

David J. Rogers and Taffee T. Tanimoto, A Computer Program for Classifying Plants, Science Vol 132 pp 1115-1118, October 1960

Hamming, Richard W. (1950), Error detecting and error correcting codes, Bell System Technical Journal 29 (2): 147-160, MR 0035935.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Examples

```
library(igraph)
library(BiRewire)
g <- erdos.renyi.game(1000,0.1)
##get the incidence matrix of g
    m<-as.matrix(get.adjacency(graph=g,sparse=FALSE))
## set parameters
step=1000
max=100*length(E(g))
## perform two different analysis using two different numbers of switching steps
scores<-birewire.analysis.undirected(m, step,max)
scores2<-birewire.analysis.undirected(m, step, "n")
## plot the Jaccard index scores across intervals of switching steps
plot(x=step*seq(1:length(scores$similarity_scores)),y= scores$similarity_scores,
type=l,xlab="Number of rewiring",ylab="Index value",ylim=c(0,1))
lines(x=step*seq(1:length(scores2$similarity_scores)),y= scores2$similarity_scores,
col="red")
legend(max*0.5,1, c("Jaccard index","Jaccard index with lower-bound N"), cex=0.9,
col=c("black","red"), lty=1:1,lwd=3)
```

birewire.bipartite.from.incidence
Converts an incidence matrix into a bipartite graph.

Description

This function creates an igraph bipartite graph from an incidence matrix.

Usage

birewire.bipartite.from.incidence(matrix, directed=FALSE, reverse=FALSE)

Arguments

matrix incidence matrix: an (n-by-m) binary matrix where rows correspond to vertices in the frist class while columns correspond to vertices in the second one;
directed Logical, if TRUE a directed graph is created.
reverse Logical, if TRUE the edges will be directed from the nodes in the second class to those in the first one.

Details

The function calls graph.bipartite of package igraph. See igraph documentation for more details.

Value

Bipartite igraph graph.

Author(s)

Andrea Gobbi
Maintainer: Andrea Gobbi gobbi.andrea@mail.com

References

Csardi, G. and Nepusz, T (2006) The igraph software package for complex network research, InterJournal, Complex Systems url http://igraph.sf.net

Examples

```
library(igraph)
library(BiRewire)
g <- simplify(graph.bipartite( rep(0:1,length=100),
c(c(1:100),seq(1,100,3),seq(1,100,7),100,seq(1,100,13),
seq(1,100,17),seq(1,100,19),seq(1,100, 23),100
)))
##gets the incidence matrix of g
    m<-as.matrix(get.incidence(graph=g))
##rewire the current graph
m2=birewire.rewire.bipartite(m,100)
#create the rewired bipartite graph
g2<-birewire.bipartite.from.incidence(m2,TRUE,FALSE)
```

```
birewire.rewire Efficient rewiring of undirected graphs
```


Description

Optimal implementation of the switching algorithm. It returns the rewired version of the initial undirected graph or its adjacency matrix.

Usage

birewire.rewire(adjacency, max.iter="n", accuracy=1, verbose=TRUE, MAXITER_MUL=10, exact=F)

Arguments

adjacency An igraph undirected graph g or its adjacency matrix (can be extracted from g using get. adjacency (g));
max.iter $\quad \mathrm{n}$ " (default) the number of switching steps to be performed (or if exact==TRUE the number of successful switching steps). If equal to " n " then this number is considered equal to the analytically derived lower bound presented in Gobbi et al. (see References): $N=e /\left(2 d^{3}-6 d^{2}+2 d+2\right) \ln (e-d e)$ if exact is FALSE, $N=e(1-d) / 2 \ln (e-d e)$ otherwise, where e is the number of edges of g and d its edge density. This bound is much lower than the empirical one proposed in Milo et al. 2003 (see References);
accuracy $\quad 1$ (default) is the desired level of accuracy reflecting the average distance between the Jaccard index at the N -th step and its analytically derived fixed point;
verbose TRUE (default) boolean value. If TRUE print a processing bar during the rewiring algorithm.
MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the program stops anyway after MAXITER_MUL*max.iter iterations;
exact FALSE (default). If TRUE the program performs max. iter successful swithcing steps, otherwise the program will count also the not-performed swithcing steps;

Details

Performs at most max.iter number of rewiring steps producing a rewired version of an initial undirected graph.

Value

Adjacency matrix of the rewired graph.

Author(s)

Andrea Gobbi
Special thanks to:
Maintainer: Andrea Gobbi gobbi.andrea@mail.com
Davide Albanese

References

Gobbi, A. and Iorio, and Wedge, D. and Dawson, K. and Ludmil, A. F. and Jurman, G. and SaezRodriguez, J. (submitted), Randomization of next generation sequencing data preserving genomicevent distributions.

Gobbi, A. and Jurman, G. (in preparation), Number of required Switching Steps in the Switching Algorithm for undirected graphs.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Examples

```
library(igraph)
library(BiRewire)
g <- erdos.renyi.game(1000,0.1)
##gets the incidence matrix of g
    m<-as.matrix(get.adjacency(graph=g, sparse=FALSE))
## sets parameters
step=1000
max=100*length(E(g))
##rewiring
m2=birewire.rewire(m,100*length(E(g)))
##creates the corresponding bipartite graph
g2<-graph.adjacency(m2,mode="undirected")
```

birewire.rewire.bipartite
Efficient rewiring of bipartite graphs

Description

Optimal implementation of the switching algorithm. It returns the rewired version of the initial bipartite graph or its incidence matrix.

Usage

```
birewire.rewire.bipartite(incidence, max.iter="n",accuracy=1,verbose=TRUE,
MAXITER_MUL=10,exact=F)
```


Arguments

incidence Incidence matrix of the initial bipartite graph g (can be extracted from an igraph bipartite graph using the get. incidence) function; or the entire bipartite igraph graph
max.iter "n" (default) the number of switching steps to be performed (or if exact==TRUE the number of successful switching steps). If equal to " n " then this number is considered equal to the analytically derived lower bound presented in Gobbi et al. (see References): $N=e / 2(1-d) \ln (e-d e)$ if exact is FALSE, $N=$ $e(1-d) / 2 \ln (e-d e)$ otherwise, where e is the number of edges of g and d its edge density. This bound is much lower than the empirical one proposed in Milo et al. 2003 (see References);
accuracy $\quad 1$ (default) is the desired level of accuracy reflecting the average distance between the Jaccard index at the N-th step and its analytically derived fixed point;
verbose TRUE (default). When TRUE a progression bar is printed during computation.
MAXITER_MUL 10 (default). If exact==TRUE in order to prevent a possible infinite loop the program stops anyway after MAXITER_MUL*max.iter iterations;
exact FALSE (default). If TRUE the program performs max.iter successful swithcing steps, otherwise the program will count also the not-performed swithcing steps. ;

Details

Main function of the package. It performs at most max.iter switching steps producing a rewired version of an initial bipartite graph.

Value

Incidence matrix of the rewired graph.

Author(s)

Andrea Gobbi
Special thanks to:
Maintainer: Andrea Gobbi gobbi.andrea@mail.com
Davide Albanese

References

Gobbi, A. and Iorio, and Wedge, D. and Dawson, K. and Ludmil, A. F. and Jurman, G. and SaezRodriguez, J. (submitted), Randomization of next generation sequencing data preserving genomicevent distributions.
R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon (2003), On the uniform generation of random graphs with prescribed degree sequences, eprint arXiv:cond-mat/0312028

Examples

```
library(igraph)
library(BiRewire)
g <- simplify(graph.bipartite( rep(0:1,length=100),
c(c(1:100),seq(1,100,3),seq(1,100,7),100, seq(1,100,13),
seq(1,100,17),seq(1,100,19),seq(1,100, 23),100
)))
##gets the incidence matrix of g
    m<-as.matrix(get.incidence(graph=g))
##rewiring
m2=birewire.rewire.bipartite(m,100*length(E(g)))
##creates the corresponding bipartite graph
g2<-birewire.bipartite.from.incidence(m2,directed=TRUE,reverse=FALSE)
```

birewire.rewire.bipartite.and.projections
Analysis and rewiring function processing a bipartite graphs and its
two projections

Description

This function performs the same analysis of birewire.analysis but additionally it provides in output a rewired version of the two networks resulting from the natural projections of the initial graph, together with the corresponding Jaccard index trends.

Usage

birewire.rewire.bipartite.and.projections(graph, step=10,max.iter="n", accuracy=1,verbose=TRUE,MAXITER_MUL=10)

Arguments

graph
max.iter
step

A bipartite graph g;
" n " (default) the number of successful switching steps to be performed. If equal to " n " then this number is considered equal to the analytically derived lower bound $N=e(1-d) / 2 \ln (e-d e)$ presented in Gobbi et al. (see References); 10 (default): the interval (in terms of switching steps) at which the Jaccard index between g and the its current rewired version is computed;

accuracy	1 (default) is the desired level of accuracy reflecting the average distance be- tween the Jaccard index at the N-th step and its analytically derived fixed point;
verbose	TRUE (default) boolean value. If TRUE print a processing bar during the rewiring algorithm.
MAXITER_MUL	10 (default).Since N indicates the number of successful switching steps, in or- der to prevent a possible infinite loop the program stops anyway after MAX- ITER_MUL*max.iter iterations ;

Details

See birewire.analysis for details.

Value

A list containing the three sequences of Jaccard index values (similarity_scores, similarity_scores.proj1, similarity_scores.proj2) for the three resulting graphs respectively (rewired, rewired.proj1, rewired.proj2). The first one is the rewired version of the initial graph g, while the second and the third one are rewired versions of its natural projections.

Author(s)

Andrea Gobbi

Maintainer: Andrea Gobbi gobbi.andrea@mail.com

References

Gobbi, A. and Iorio, and Wedge, D. and Dawson, K. and Ludmil, A. F. and Jurman, G. and SaezRodriguez, J. (submitted), Randomization of next generation sequencing data preserving genomicevent distributions.

Examples

```
library(igraph)
library(BiRewire)
g <- simplify(graph.bipartite( rep(0:1,length=100),
c(c(1:100),seq(1,100,3), seq(1, 100,7),100, seq(1, 100,13),
seq(1,100,17),seq(1,100,19),seq(1,100, 23),100
)))
##gets the incidence matrix of g
    m<-as.matrix(get.incidence(graph=g))
## rewires g and its projections
result=birewire.rewire.bipartite.and.projections(g,step=10,max.iter="n",accuracy=1)
```

```
birewire.similarity Compute the Jaccard similarity index between two binary matrices
    with the same number of non-null entries and the sam row- and
    column-wise sums.
```


Description

Compute the Jaccard similarity index between two binary matrices with the same number of nonnull entries and the sam row- and column-wise sums.

Usage

birewire.similarity(m1,m2)

Arguments

m 1	First matrix;
m 2	Second matrix.

Details

The Jaccard index between two sets M and N is defined as:
$|M \cup N| /|M \cap N|$
With M and N binary matrices, the Jaccard index is computed as:

$$
\frac{\sum N_{i, j} \wedge M_{i, j}}{\sum N_{i, j} \vee M_{i, j}}
$$

The Jaccard index ranges between 0 and 1 .

Value
Returns the Jaccard similarity index between the two matrices

Author(s)

Andrea Gobbi

Maintainer: Andrea Gobbi gobbi.andrea@mail.com

Examples

```
library(igraph)
library(BiRewire)
g <- simplify(graph.bipartite( rep(0:1,length=100),
c(c(1:100),seq(1, 100, 3), seq (1, 100,7) , 100, seq (1, 100, 13) ,
seq(1, 100,17),\operatorname{seq}(1,100,19),\operatorname{seq}(1,100,23),100
)))
g2=birewire.rewire.bipartite(g)
birewire.similarity(get.incidence(g,sparse=FALSE),get.incidence(g2, sparse=FALSE))
```

```
BRCA_binary_matrix TCGA Brest Cancer data
```


Description

Breast cancer samples and their respective mutations downloaded from the Cancer Cancer Genome Atlas (TCGA), used in Gobbi et al.. Germline mutations were filtered out of the list of reported mutations; synonymous mutations and mutations identified as benign and tolerated were also removed from the dataset. The bipartite graph resulting when considering this matrix as an incidence matrix has $n_{r}=757, n_{c}=9757, e=19758$ for an edge density equal to 0.27%.

Usage

data(BRCA_binary_matrix)

Source

http://tcga.cancer.gov/dataportal/

References

Gobbi, A. and Iorio, and Wedge, D. and Dawson, K. and Ludmil, A. F. and Jurman, G. and SaezRodriguez, J. (submitted), Preserving genomic-event distributions in randomized next generation sequencing data.

Index

```
*Topic bipartite graph, incidece
    matrix
    birewire.bipartite.from.incidence,
    7
*Topic bipartite graph, projection,
    rewire
    birewire.rewire.bipartite.and.projections,
        12
*Topic bipartite graph, rewire
    birewire.rewire.bipartite, 10
*Topic datasets
    BRCA_binary_matrix, 15
*Topic package
    BiRewire-package, 2
*Topic rewire, bipartite graph
    birewire.analysis, 3
*Topic rewire, undirected graph
    birewire.analysis.undirected, 5
*Topic similarity,jaccard
    birewire.similarity,14
*Topic undirected graph, rewire
    birewire.rewire, }
BiRewire (BiRewire-package), 2
BiRewire-package, 2
birewire.analysis, 3, 12, 13
birewire.analysis.undirected, 5
birewire.bipartite.from.incidence, }
birewire.rewire,9
birewire.rewire.bipartite, 10
birewire.rewire.bipartite.and.projections,
    12
birewire.similarity,14
BRCA_binary_matrix, 15
```

