
Overlap encodings

Hervé Pagès

Last modified: August 2012; Compiled: August 24, 2013

Contents

1 Introduction 2

2 Load reads from a BAM file 2
2.1 Load single-end reads from a BAM file . 2
2.2 Load paired-end reads from a BAM file . 3

3 Validate the alignments produced by the aligner 5
3.1 Validate the single-end alignments . 6

3.1.1 Load the original query sequences . 6
3.1.2 Compute the reference query sequences . 6
3.1.3 Compare the original query sequences with the reference query sequences 7

3.2 Validate the paired-end alignments . 8
3.2.1 Load the original query sequences . 8
3.2.2 Compute the reference query sequences . 9
3.2.3 Compare the original query sequences with the reference query sequences 9

3.3 Conclusion . 10

4 Find all the overlaps between the reads and transcripts 10
4.1 Load the transcripts from a TranscriptDb object . 10
4.2 Single-end overlaps . 12

4.2.1 Find the single-end overlaps . 12
4.2.2 Tabulate the single-end overlaps . 12

4.3 Paired-end overlaps . 13
4.3.1 Find the paired-end overlaps . 13
4.3.2 Tabulate the paired-end overlaps . 14

5 Encode the overlaps between the reads and transcripts 15
5.1 Single-end encodings . 15
5.2 Paired-end encodings . 16

6 “Compatible” overlaps 17
6.1 “Compatible” single-end overlaps . 17

6.1.1 “Compatible” single-end encodings . 17
6.1.2 Tabulate the “compatible” single-end overlaps . 18

6.2 “Compatible” paired-end overlaps . 19
6.2.1 “Compatible” paired-end encodings . 19
6.2.2 Tabulate the “compatible” paired-end overlaps . 21

7 Project the alignments on the transcriptome 22
7.1 Project the single-end alignments on the transcriptome . 22
7.2 Project the paired-end alignments on the transcriptome . 23

1

8 Align the reads to the transcriptome 24
8.1 Align the single-end reads to the transcriptome . 24

8.1.1 Find the “hits” . 24
8.1.2 Tabulate the “hits” . 26
8.1.3 A closer look at the “hits” . 26

8.2 Align the paired-end reads to the transcriptome . 27

9 “Almost compatible” overlaps 27
9.1 “Almost compatible” single-end overlaps . 27

9.1.1 “Almost compatible” single-end encodings . 27
9.1.2 Tabulate the “almost compatible” single-end overlaps . 28

9.2 “Almost compatible” paired-end overlaps . 29
9.2.1 “Almost compatible” paired-end encodings . 29
9.2.2 Tabulate the “almost compatible” paired-end overlaps . 30

10 Detect novel splice junctions 31
10.1 By looking at single-end overlaps . 31
10.2 By looking at paired-end overlaps . 32

11 sessionInfo() 32

1 Introduction

In the context of an RNA-seq experiment, encoding the overlaps between the aligned reads and the transcripts can be
used for detecting those overlaps that are “compatible” with the splicing of the transcript.

Various tools are provided in the IRanges and GenomicRanges packages for working with overlap encodings. In this
vignette, we illustrate the use of these tools on the single-end and paired-end reads of an RNA-seq experiment.

2 Load reads from a BAM file

2.1 Load single-end reads from a BAM file

BAM file untreated1_chr4.bam (located in the pasillaBamSubset data package) contains single-end reads from the
“Pasilla” experiment and aligned against the dm3 genome (see ?untreated1_chr4 in the pasillaBamSubset package for
more information about those reads):

> library(pasillaBamSubset)

> untreated1_chr4()

[1] "E:/biocbld/bbs-2.12-bioc/R/library/pasillaBamSubset/extdata/untreated1_chr4.bam"

We use the readGappedAlignments function defined in the GenomicRanges package to load the reads into a GappedAlign-
ments object. It’s probably a good idea to get rid of the PCR or optical duplicates (flag bit 0x400 in the SAM format,
see the SAM Spec 1 for the details), as well as reads not passing quality controls (flag bit 0x200 in the SAM format).
We do this by creating a ScanBamParam object that we pass to readGappedAlignments (see ?ScanBamParam in the
Rsamtools package for the details). Note that we also use use.names=TRUE in order to load the query names (aka query
template names, see QNAME field in the SAM Spec) from the BAM file (readGappedAlignments will use them to set
the names of the returned object):

> library(GenomicRanges)

> library(Rsamtools)

> flag0 <- scanBamFlag(isDuplicate=FALSE, isNotPassingQualityControls=FALSE)

> param0 <- ScanBamParam(flag=flag0)

> U1.GAL <- readGappedAlignments(untreated1_chr4(), use.names=TRUE, param=param0)

> head(U1.GAL)

1http://samtools.sourceforge.net/

2

http://samtools.sourceforge.net/

GappedAlignments with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

SRR031729.3941844 chr4 - 75M 75 892 966 75 0

SRR031728.3674563 chr4 - 75M 75 919 993 75 0

SRR031729.8532600 chr4 + 75M 75 924 998 75 0

SRR031729.2779333 chr4 + 75M 75 936 1010 75 0

SRR031728.2826481 chr4 + 75M 75 949 1023 75 0

SRR031728.2919098 chr4 - 75M 75 967 1041 75 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

Because the aligner used to align those reads can report more than 1 alignment per original query (i.e. per read
stored in the input file, typically a FASTQ file), we shouldn’t expect the names of U1.GAL to be unique:

> U1.GAL_names_is_dup <- duplicated(names(U1.GAL))

> table(U1.GAL_names_is_dup)

U1.GAL_names_is_dup

FALSE TRUE

190770 13585

Storing the query names in a factor will be useful as we will see later in this document:

> U1.uqnames <- unique(names(U1.GAL))

> U1.GAL_qnames <- factor(names(U1.GAL), levels=U1.uqnames)

Note that we explicitely provide the levels of the factor to enforce their order. Otherwise factor() would put them
in lexicographic order which is not advisable because it depends on the locale in use.

Another object that will be useful to keep near at hand is the mapping between each query name and its first
occurence in U1.GAL_qnames:

> U1.GAL_dup2unq <- match(U1.GAL_qnames, U1.GAL_qnames)

Our reads can have up to 2 gaps (a gap corresponds to an N operation in the CIGAR):

> head(unique(cigar(U1.GAL)))

[1] "75M" "35M6727N40M" "22M6727N53M" "13M6727N62M" "26M292N49M" "62M21227N13M"

> table(ngap(U1.GAL))

0 1 2

184039 20169 147

Also, the following table indicates that indels were not allowed/supported during the alignment process (no I or D
CIGAR operations):

> colSums(cigarOpTable(cigar(U1.GAL)))

M I D N S H P

15326625 0 0 21682582 0 0 0

2.2 Load paired-end reads from a BAM file

BAM file untreated3_chr4.bam (located in the pasillaBamSubset data package) contains paired-end reads from the
“Pasilla” experiment and aligned against the dm3 genome (see ?untreated3_chr4 in the pasillaBamSubset package for
more information about those reads). We use the readGappedAlignmentPairs function to load them into a GappedAlign-
mentPairs object:

3

> U3.galp <- readGappedAlignmentPairs(untreated3_chr4(), use.names=TRUE, param=param0)

> head(U3.galp)

GappedAlignmentPairs with 6 alignment pairs and 0 metadata columns:

seqnames strand : ranges -- ranges

<Rle> <Rle> : <IRanges> -- <IRanges>

SRR031715.1138209 chr4 + : [169, 205] -- [326, 362]

SRR031714.756385 chr4 + : [943, 979] -- [1086, 1122]

SRR031714.2355189 chr4 + : [944, 980] -- [1119, 1155]

SRR031714.5054563 chr4 + : [946, 982] -- [986, 1022]

SRR031715.1722593 chr4 + : [966, 1002] -- [1108, 1144]

SRR031715.2202469 chr4 + : [966, 1002] -- [1114, 1150]

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

The show method for GappedAlignmentPairs objects displays two ranges columns, one for the first alignment in the
pair (the left column), and one for the last alignment in the pair (the right column). The strand column corresponds
to the strand of the first alignment.

> head(first(U3.galp))

GappedAlignments with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

SRR031715.1138209 chr4 + 37M 37 169 205 37 0

SRR031714.756385 chr4 + 37M 37 943 979 37 0

SRR031714.2355189 chr4 + 37M 37 944 980 37 0

SRR031714.5054563 chr4 + 37M 37 946 982 37 0

SRR031715.1722593 chr4 + 37M 37 966 1002 37 0

SRR031715.2202469 chr4 + 37M 37 966 1002 37 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> head(last(U3.galp))

GappedAlignments with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

SRR031715.1138209 chr4 - 37M 37 326 362 37 0

SRR031714.756385 chr4 - 37M 37 1086 1122 37 0

SRR031714.2355189 chr4 - 37M 37 1119 1155 37 0

SRR031714.5054563 chr4 - 37M 37 986 1022 37 0

SRR031715.1722593 chr4 - 37M 37 1108 1144 37 0

SRR031715.2202469 chr4 - 37M 37 1114 1150 37 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

According to the SAM format specifications, the aligner is expected to mark each alignment pair as proper or not
(flag bit 0x2 in the SAM format). The SAM Spec only says that a pair is proper if the first and last alignments in the
pair are “properly aligned according to the aligner”. So the exact criteria used for setting this flag is left to the aligner.

We use isProperPair to extract this flag from the GappedAlignmentPairs object:

> table(isProperPair(U3.galp))

4

FALSE TRUE

29518 45828

Even though we could do overlap encodings with the full object, we keep only the proper pairs for our downstream
analysis:

> U3.GALP <- U3.galp[isProperPair(U3.galp)]

Because the aligner used to align those reads can report more than 1 alignment per original query template (i.e. per
pair of sequences stored in the input files, typically 1 FASTQ file for the first ends and 1 FASTQ file for the last ends),
we shouldn’t expect the names of U3.GALP to be unique:

> U3.GALP_names_is_dup <- duplicated(names(U3.GALP))

> table(U3.GALP_names_is_dup)

U3.GALP_names_is_dup

FALSE TRUE

43659 2169

Storing the query template names in a factor will be useful:

> U3.uqnames <- unique(names(U3.GALP))

> U3.GALP_qnames <- factor(names(U3.GALP), levels=U3.uqnames)

as well as having the mapping between each query template name and its first occurence in U3.GALP_qnames:

> U3.GALP_dup2unq <- match(U3.GALP_qnames, U3.GALP_qnames)

Our reads can have up to 1 gap per end:

> head(unique(cigar(first(U3.GALP))))

[1] "37M" "6M58N31M" "25M56N12M" "19M62N18M" "29M222N8M" "9M222N28M"

> head(unique(cigar(last(U3.GALP))))

[1] "37M" "12M58N25M" "19M58N18M" "27M2339N10M" "29M2339N8M" "9M222N28M"

> table(ngap(first(U3.GALP)), ngap(last(U3.GALP)))

0 1

0 44510 596

1 637 85

Like for our single-end reads, the following tables indicate that indels were not allowed/supported during the align-
ment process:

> colSums(cigarOpTable(cigar(first(U3.GALP))))

M I D N S H P

1695636 0 0 673919 0 0 0

> colSums(cigarOpTable(cigar(last(U3.GALP))))

M I D N S H P

1695636 0 0 630395 0 0 0

3 Validate the alignments produced by the aligner

In this section we show how to validate the alignments produced by the aligner by comparing the original query sequences
(aka “true” or “real” query sequences, or query sequences before alignment) with the reference query sequences (i.e. the
query sequences after alignment).

Note that even though this step is not strictly required for computing the overlap encodings, some of the concepts and
string-based computations described in this section are slightly related to some ideas introduced later in this document.

5

3.1 Validate the single-end alignments

3.1.1 Load the original query sequences

To load the original query sequences, we reload the BAM file but now we explicitely request the SEQ field by using
what="seq" in our call to ScanBamParam. To further validate the alignments produced by the aligner, we also need to
load the NM tag which is a predefined tag described in the SAM Spec as the “Edit distance to the reference, including
ambiguous bases but excluding clipping” (note that tags are optional fields i.e. not all BAM files have them):

> param1 <- ScanBamParam(flag=flag0, what="seq", tag="NM")

> U1.GAL <- readGappedAlignments(untreated1_chr4(), use.names=TRUE, param=param1)

> U1.GAL_qseq <- mcols(U1.GAL)$seq

> names(U1.GAL_qseq) <- names(U1.GAL)

> head(U1.GAL_qseq)

A DNAStringSet instance of length 6

width seq names

[1] 75 CTGTGGTGACCAACACCACAGAATGGTTCGGGC...GGGTTCCCTGCCCCTTTCCTGGCTAGGTTGTCC SRR031729.3941844

[2] 75 TCGGGCCCAATTAGAGGGTTCCCTGCCCCTTTC...TTGTCCGCTAGCTCATTTCCTGGGCTGTTGTTG SRR031728.3674563

[3] 75 CCCAATTAGAGGATTCTCTGCCCCTTTCCTGGC...CGGTAGCTCATTTCCCGGGATGTTGTTGTGTCC SRR031729.8532600

[4] 75 GTTCTCTGCCCCTTTCCTGGCTAGGTTGTCCGC...TCCCGAGATGTTGTTGTGTCCCGGGACCCACCT SRR031729.2779333

[5] 75 TTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCC...TTGTGTCCCGGGACACACCTTATTGTGAGTTTG SRR031728.2826481

[6] 75 GCTAGCTCATTTCCCGGGAGGTTGTTGTGTCCC...CTTATTGTGAGTTTGTTGACAGCTCCAAGTTTG SRR031728.2919098

Because the BAM format imposes that the read sequence is “reverse complemented” when the read is aligned to the
minus strand, we “reverse complement” it again to get the original query sequences:

> U1.GAL_oqseq <- U1.GAL_qseq

> U1.GAL_is_on_minus <- as.logical(strand(U1.GAL) == "-")

> U1.GAL_oqseq[U1.GAL_is_on_minus] <- reverseComplement(U1.GAL_oqseq[U1.GAL_is_on_minus])

> head(U1.GAL_oqseq)

A DNAStringSet instance of length 6

width seq names

[1] 75 GGACAACCTAGCCAGGAAAGGGGCAGGGAACCC...GCCCGAACCATTCTGTGGTGTTGGTCACCACAG SRR031729.3941844

[2] 75 CAACAACAGCCCAGGAAATGAGCTAGCGGACAA...GAAAGGGGCAGGGAACCCTCTAATTGGGCCCGA SRR031728.3674563

[3] 75 CCCAATTAGAGGATTCTCTGCCCCTTTCCTGGC...CGGTAGCTCATTTCCCGGGATGTTGTTGTGTCC SRR031729.8532600

[4] 75 GTTCTCTGCCCCTTTCCTGGCTAGGTTGTCCGC...TCCCGAGATGTTGTTGTGTCCCGGGACCCACCT SRR031729.2779333

[5] 75 TTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCC...TTGTGTCCCGGGACACACCTTATTGTGAGTTTG SRR031728.2826481

[6] 75 CAAACTTGGAGCTGTCAACAAACTCACAATAAG...GGGACACAACAACCTCCCGGGAAATGAGCTAGC SRR031728.2919098

Note that sequences with the same query name correspond to the same original query and therefore must be the
same. Let’s do a quick sanity check:

> stopifnot(all(U1.GAL_oqseq == U1.GAL_oqseq[U1.GAL_dup2unq]))

Finally, let’s reduce U1.GAL_oqseq to one original query sequence per unique query name:

> U1.oqseq <- U1.GAL_oqseq[!U1.GAL_names_is_dup]

If we had access to the FASTQ file used as input to the aligner, U1.oqseq would be the subset of this file made of
the sequences with at least 1 alignment reported in BAM file untreated1_chr4.bam.

3.1.2 Compute the reference query sequences

The reference query sequences can easily be computed by extracting the nucleotides mapped to each read from the refer-
ence genome. This of course requires that we have access to the reference genome used by the aligner. In Bioconductor,
the full genome sequence for the dm3 assembly is stored in the BSgenome.Dmelanogaster.UCSC.dm3 data package 2:

2See http://bioconductor.org/packages/release/data/annotation/ for the full list of annotation packages available in the current
release of Bioconductor.

6

http://bioconductor.org/packages/release/data/annotation/

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> Dmelanogaster

Fly genome

|

| organism: Drosophila melanogaster (Fly)

| provider: UCSC

| provider version: dm3

| release date: Apr. 2006

| release name: BDGP Release 5

|

| single sequences (see '?seqnames'):

| chr2L chr2R chr3L chr3R chr4 chrX chrU chrM

| chr2LHet chr2RHet chr3LHet chr3RHet chrXHet chrYHet chrUextra

|

| multiple sequences (see '?mseqnames'):

| upstream1000 upstream2000 upstream5000

|

| (use the '$' or '[[' operator to access a given sequence)

Let’s start by converting our GappedAlignments object U1.GAL into a GRangesList object:

> U1.grl <- grglist(U1.GAL, order.as.in.query=TRUE)

To extract the portions of the reference genome corresponding to the ranges in U1.grl, we can use the extract-

TranscriptsFromGenome function defined in the GenomicFeatures package:

> library(GenomicFeatures)

> U1.GAL_rqseq <- extractTranscriptsFromGenome(Dmelanogaster, U1.grl)

> head(U1.GAL_rqseq)

A DNAStringSet instance of length 6

width seq names

[1] 75 GGACAACCTAGCCAGGAAAGGGGCAGAGAACCC...GCCCGAACCATTCTGTGGTGTTGGTCACCACAG SRR031729.3941844

[2] 75 CAACAACATCCCGGGAAATGAGCTAGCGGACAA...GAAAGGGGCAGAGAACCCTCTAATTGGGCCCGA SRR031728.3674563

[3] 75 CCCAATTAGAGGGTTCTCTGCCCCTTTCCTGGC...CGCTAGCTCATTTCCCGGGATGTTGTTGTGTCC SRR031729.8532600

[4] 75 GTTCTCTGCCCCTTTCCTGGCTAGGTTGTCCGC...TCCCGGGATGTTGTTGTGTCCCGGGACCCACCT SRR031729.2779333

[5] 75 TTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCC...TTGTGTCCCGGGACCCACCTTATTGTGAGTTTG SRR031728.2826481

[6] 75 CAAACTTGGAGCTGTCAACAAACTCACAATAAG...GGGACACAACAACATCCCGGGAAATGAGCTAGC SRR031728.2919098

3.1.3 Compare the original query sequences with the reference query sequences

We can use the neditAt function defined in the Biostrings package to compute the edit distance between 2 strings.
Because the aligned reads have no indels, we should only see mismatches (typically a small number) during that com-
parison so we don’t need to call neditAt with with.indels=TRUE. And because calling neditAt in a loop is inefficient,
we only do this comparison for the first 500 sequences in U1.GAL_oqseq:

> U1.GAL_nedit500 <- sapply(1:500, function(i) neditAt(U1.GAL_oqseq[[i]], U1.GAL_rqseq[[i]]))

> table(U1.GAL_nedit500)

U1.GAL_nedit500

0 1 2 3 4 5

273 101 97 22 6 1

Yes, the first 500 sequences in U1.GAL_oqseq are “close” to the first 500 sequences in U1.GAL_rqseq.
Now let’s compare the edit distance reported by neditAt with the edit distance reported by the aligner (NM tag).

Because the latter excludes the N CIGAR operations, it should actually be the same as the former. We confirm this for
the 500 edit distances computed in U1.GAL_nedit500:

> U1.GAL_NM <- mcols(U1.GAL)$NM

> stopifnot(all(U1.GAL_NM[1:500] == U1.GAL_nedit500))

7

Note that the maximum observed number of mismatches tells us how many mismatches per read were tolerated by
the aligner:

> table(U1.GAL_NM)

U1.GAL_NM

0 1 2 3 4 5 6

135911 44033 15684 5172 2233 948 374

3.2 Validate the paired-end alignments

3.2.1 Load the original query sequences

To load the original query sequences, we reload the BAM file and request the SEQ field (and also the NM tag). Since
we’ve removed the improper pairs from our current U3.GALP object, we need to do this again but now we do it at load
time which is equivalent to doing it afterward (i.e. not only do we have the guarantee to end up with the same elements
in U3.GALP, but also to have them in the same order):

> flag2 <- scanBamFlag(isDuplicate=FALSE,

+ isNotPassingQualityControls=FALSE,

+ isProperPair=TRUE)

> param2 <- ScanBamParam(flag=flag2, what="seq", tag="NM")

> U3.GALP <- readGappedAlignmentPairs(untreated3_chr4(), use.names=TRUE, param=param2)

Let’s extract the first and last sequences from U3.GALP:

> U3.GALP_qseq1 <- mcols(first(U3.GALP))$seq

> U3.GALP_qseq2 <- mcols(last(U3.GALP))$seq

> names(U3.GALP_qseq1) <- names(U3.GALP_qseq2) <- names(U3.GALP)

> head(U3.GALP_qseq1)

A DNAStringSet instance of length 6

width seq names

[1] 37 CCGTTTCTGAAGGAGATGGCTCATGGAGTACCTGCCT SRR031715.1138209

[2] 37 GCCCCTTTCCTGGCTAGGTTGTCCGCTAGCTCATTTC SRR031714.756385

[3] 37 CCTTTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCCG SRR031714.5054563

[4] 37 CGCTAGCTCATTTCCCGGGCTGTTGTTGTGTCCCGGG SRR031715.1722593

[5] 37 CGCTAGCTCATTTCCCGAGATGTTGTTGTGTCCCGGG SRR031715.2202469

[6] 37 GCTTTGCTGAGCGCCTTTATGGCTGCTTGACTATCAG SRR031714.3544437

> head(U3.GALP_qseq2)

A DNAStringSet instance of length 6

width seq names

[1] 37 GTCTCCAGCAGAGCAGATGGAGCAACGGCCTATAGAG SRR031715.1138209

[2] 37 AGCTTTGCTGAGCGCCTTTATGGCTGCTTGACTATCA SRR031714.756385

[3] 37 TGTTGTTGTGTCCCGGGACCCACCTTATTGTGAGTTT SRR031714.5054563

[4] 37 GCTGCTTGACTATCAGACAGTATAGCAATGTCCTTGC SRR031715.1722593

[5] 37 TGACTATCAGACAGTATAGCAATGTCCTTGCCATGAT SRR031715.2202469

[6] 37 GTCCGCTAGCTCATTTCCCGGGATGTTTTTGTGTCCC SRR031714.3544437

To obtain the original query sequences we “reverse complement” the sequences that are aligned to the minus strand:

> U3.GALP_oqseq1 <- U3.GALP_qseq1

> U3.GALP_first_is_on_minus <- as.logical(strand(first(U3.GALP)) == "-")

> U3.GALP_oqseq1[U3.GALP_first_is_on_minus] <- reverseComplement(U3.GALP_oqseq1[U3.GALP_first_is_on_minus])

> U3.GALP_oqseq2 <- U3.GALP_qseq2

> U3.GALP_last_is_on_minus <- as.logical(strand(last(U3.GALP)) == "-")

> U3.GALP_oqseq2[U3.GALP_last_is_on_minus] <- reverseComplement(U3.GALP_oqseq2[U3.GALP_last_is_on_minus])

Note that sequence pairs with the same query template name correspond to the same original query pairs and
therefore should be the same. Let’s do a quick sanity check:

8

> stopifnot(all(U3.GALP_oqseq1 == U3.GALP_oqseq1[U3.GALP_dup2unq]))

> stopifnot(all(U3.GALP_oqseq2 == U3.GALP_oqseq2[U3.GALP_dup2unq]))

Finally, let’s reduce U3.GALP_oqseq1 and U3.GALP_oqseq2 to one original query sequence per unique query template
name:

> U3.oqseq1 <- U3.GALP_oqseq1[!U3.GALP_names_is_dup]

> U3.oqseq2 <- U3.GALP_oqseq2[!U3.GALP_names_is_dup]

If we had access to the 2 FASTQ files used as input to the aligner, U3.oqseq1 and U3.oqseq2 would be the subsets
of those files made of the sequence pairs with at least 1 alignment pair reported in BAM file untreated3_chr4.bam.

3.2.2 Compute the reference query sequences

Because our reads are paired-end, we extract separately the ranges corresponding to their first ends (aka first segments
in BAM jargon) and those corresponding to their last ends (aka last segments in BAM jargon):

> U3.grl_first <- grglist(first(U3.GALP), order.as.in.query=TRUE)

> U3.grl_last <- grglist(last(U3.GALP, invert.strand=TRUE), order.as.in.query=TRUE)

Then we extract the portions of the reference genome corresponding to the ranges in GRangesList objects U3.grl_first
and U3.grl_last:

> U3.GALP_rqseq1 <- extractTranscriptsFromGenome(Dmelanogaster, U3.grl_first)

> U3.GALP_rqseq2 <- extractTranscriptsFromGenome(Dmelanogaster, U3.grl_last)

3.2.3 Compare the original query sequences with the reference query sequences

Because the aligned reads have no indels, we should only see mismatches (typically a small number) during that com-
parison so we don’t need to call neditAt with with.indels=TRUE. Let’s do this comparison for the first 500 sequences
in U3.GALP_oqseq1 and in reverseComplement(U3.GALP_oqseq2):

> U3.GALP_first_nedit500 <- sapply(1:500, function(i)

+ neditAt(U3.GALP_oqseq1[[i]], U3.GALP_rqseq1[[i]])

+)

> table(U3.GALP_first_nedit500)

U3.GALP_first_nedit500

0 1 2

337 135 28

> U3.GALP_last_nedit500 <- sapply(1:500, function(i)

+ neditAt(reverseComplement(U3.GALP_oqseq2[[i]]), U3.GALP_rqseq2[[i]])

+)

> table(U3.GALP_last_nedit500)

U3.GALP_last_nedit500

0 1 2

341 121 38

Yes, the first 500 sequences in U3.GALP_oqseq1 and in reverseComplement(U3.GALP_oqseq2) are “close” to the first
500 sequences in U3.GALP_rqseq1 and in U3.GALP_rqseq2, respectively.

Now let’s compare the edit distance reported by neditAt with the edit distance reported by the aligner (NM tag).
Because the latter excludes the N CIGAR operations, it should actually be the same as the former. We confirm this for
the 500 edit distances computed in U3.GALP_first_nedit500 and U3.GALP_last_nedit500:

> U3.GALP_first_NM <- mcols(first(U3.GALP))$NM

> stopifnot(all(U3.GALP_first_NM[1:500] == U3.GALP_first_nedit500))

> U3.GALP_last_NM <- mcols(last(U3.GALP))$NM

> stopifnot(all(U3.GALP_last_NM[1:500] == U3.GALP_last_nedit500))

Note that the following table tells us how many mismatches per read were tolerated by the aligner:

9

> table(U3.GALP_first_NM, U3.GALP_last_NM)

U3.GALP_last_NM

U3.GALP_first_NM 0 1 2

0 30140 4648 1292

1 5023 1522 760

2 1240 700 503

Up to 2 mismatches per end.

3.3 Conclusion

In addition to validate the alignments produced by the aligner, the validation described in this section is also an efficient
and accurate way to make sure that the reference genome we’ve picked up is the same as the reference genome used by
the aligner, at least for the regions covered by the reads.

In other words, if it’s known that the 2 reference genomes are different, then this validation could still be performed,
and, if successful, would indicate that the 2 genomes are probably substitutable for most analysis happening downstream
of the BAM file.

4 Find all the overlaps between the reads and transcripts

4.1 Load the transcripts from a TranscriptDb object

In order to compute overlaps between reads and transcripts, we need access to the genomic positions of a set of known
transcripts and their exons. It is essential that the reference genome of this set of transcripts and exons be exactly the
same as the reference genome used to align the reads.

We could use the makeTranscriptDbFromUCSC function defined in the GenomicFeatures package to make a Tran-
scriptDb object containing the dm3 transcripts and their exons retrieved from the UCSC Genome Browser3. The Biocon-
ductor project however provides a few annotation packages containing TranscriptDb objects for the most commonly stud-
ied organisms (those data packages are sometimes called the TxDb packages). One of them is the TxDb.Dmelanogaster.-
UCSC.dm3.ensGene package. It contains a TranscriptDb object that was made by pointing the makeTranscriptDbFro-

mUCSC function to the dm3 genome and Ensembl Genes track 4. We can use it here:

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> TxDb.Dmelanogaster.UCSC.dm3.ensGene

TranscriptDb object:

| Db type: TranscriptDb

| Supporting package: GenomicFeatures

| Data source: UCSC

| Genome: dm3

| Organism: Drosophila melanogaster

| UCSC Table: ensGene

| Resource URL: http://genome.ucsc.edu/

| Type of Gene ID: Ensembl gene ID

| Full dataset: yes

| miRBase build ID: NA

| transcript_nrow: 23017

| exon_nrow: 69155

| cds_nrow: 59573

| Db created by: GenomicFeatures package from Bioconductor

| Creation time: 2013-03-08 09:48:17 -0800 (Fri, 08 Mar 2013)

| GenomicFeatures version at creation time: 1.11.14

| RSQLite version at creation time: 0.11.2

| DBSCHEMAVERSION: 1.0

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

3http://genome.ucsc.edu/cgi-bin/hgGateway
4See http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=276880911&g=ensGene for a description of this track.

10

http://genome.ucsc.edu/cgi-bin/hgGateway
http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=276880911&g=ensGene

We extract the exons grouped by transcript in a GRangesList object:

> exbytx <- exonsBy(txdb, by="tx", use.names=TRUE)

> length(exbytx) # nb of transcripts

[1] 23017

We check that all the exons in any given transcript belong to the same chromosome and strand. Knowing that our
set of transcripts is free of this sort of trans-splicing events typically allows some significant simplifications during the
downstream analysis 5. A quick and easy way to check this is to take advantage of the fact that seqnames and strand

return RleList objects. So we can extract the number of Rle runs for each transcript and make sure it’s always 1:

> table(elementLengths(runLength(seqnames(exbytx))))

1

23017

> table(elementLengths(runLength(strand(exbytx))))

1

23017

Therefore the strand of any given transcript is unambiguously defined and can be extracted with:

> exbytx_strand <- unlist(runValue(strand(exbytx)), use.names=FALSE)

We will also need the mapping between the transcripts and their gene. We start by using transcripts to extract
this information from our TranscriptDb object txdb, and then we construct a named factor that represents the mapping:

> tx <- transcripts(txdb, columns=c("tx_name", "gene_id"))

> head(tx)

GRanges with 6 ranges and 2 metadata columns:

seqnames ranges strand | tx_name gene_id

<Rle> <IRanges> <Rle> | <character> <CharacterList>

[1] chr2L [7529, 9484] + | FBtr0300689 FBgn0031208

[2] chr2L [7529, 9484] + | FBtr0300690 FBgn0031208

[3] chr2L [67044, 71390] + | FBtr0078100 FBgn0067779

[4] chr2L [72388, 76211] + | FBtr0078101 FBgn0031213

[5] chr2L [73485, 76211] + | FBtr0302164 FBgn0031213

[6] chr2L [74485, 76211] + | FBtr0301733 FBgn0031213

seqlengths:

chr2L chr2R chr3L chr3R chr4 ... chr3RHet chrXHet chrYHet chrUextra

23011544 21146708 24543557 27905053 1351857 ... 2517507 204112 347038 29004656

> df <- mcols(tx)

> exbytx2gene <- as.character(df$gene_id)

> exbytx2gene <- factor(exbytx2gene, levels=unique(exbytx2gene))

> names(exbytx2gene) <- df$tx_name

> exbytx2gene <- exbytx2gene[names(exbytx)]

> head(exbytx2gene)

FBtr0300689 FBtr0300690 FBtr0078100 FBtr0078101 FBtr0302164 FBtr0301733

FBgn0031208 FBgn0031208 FBgn0067779 FBgn0031213 FBgn0031213 FBgn0031213

14869 Levels: FBgn0031208 FBgn0067779 FBgn0031213 FBgn0031214 FBgn0031216 FBgn0031217 ... FBgn0085792

> nlevels(exbytx2gene) # nb of genes

[1] 14869

5Dealing with trans-splicing events is not covered in this document.

11

4.2 Single-end overlaps

4.2.1 Find the single-end overlaps

We are ready to compute the overlaps with the findOverlaps function. Note that the strand of the queries produced
by the RNA-seq experiment is typically unknown so we use ignore.strand=TRUE:

> U1.OV00 <- findOverlaps(U1.GAL, exbytx, ignore.strand=TRUE)

U1.OV00 is a Hits object that contains 1 element per overlap. Its length gives the number of overlaps:

> length(U1.OV00)

[1] 496485

4.2.2 Tabulate the single-end overlaps

We will repeatedly use the 2 following little helper functions to “tabulate” the overlaps in a given Hits object (e.g.
U1.OV00), i.e. to count the number of overlaps for each element in the query or for each element in the subject:

> nhitPerQuery <- function(x) tabulate(queryHits(x), nbins=queryLength(x))

> nhitPerSubject <- function(x) tabulate(subjectHits(x), nbins=subjectLength(x))

Number of transcripts for each alignment in U1.GAL:

> U1.GAL_ntx <- nhitPerQuery(U1.OV00)

> mcols(U1.GAL)$ntx <- U1.GAL_ntx

> head(U1.GAL)

GappedAlignments with 6 alignments and 3 metadata columns:

seqnames strand cigar qwidth start end width ngap |

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer> |

SRR031729.3941844 chr4 - 75M 75 892 966 75 0 |

SRR031728.3674563 chr4 - 75M 75 919 993 75 0 |

SRR031729.8532600 chr4 + 75M 75 924 998 75 0 |

SRR031729.2779333 chr4 + 75M 75 936 1010 75 0 |

SRR031728.2826481 chr4 + 75M 75 949 1023 75 0 |

SRR031728.2919098 chr4 - 75M 75 967 1041 75 0 |

seq

<DNAStringSet>

SRR031729.3941844 CTGTGGTGACCAACACCACAGAATGGTTCGGGCCCAATTAGAGGGTTCCCTGCCCCTTTCCTGGCTAGGTTGTCC

SRR031728.3674563 TCGGGCCCAATTAGAGGGTTCCCTGCCCCTTTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCTGGGCTGTTGTTG

SRR031729.8532600 CCCAATTAGAGGATTCTCTGCCCCTTTCCTGGCTAGGTTGTCCGGTAGCTCATTTCCCGGGATGTTGTTGTGTCC

SRR031729.2779333 GTTCTCTGCCCCTTTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCCGAGATGTTGTTGTGTCCCGGGACCCACCT

SRR031728.2826481 TTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCCGGGCTGTTGTTGTGTCCCGGGACACACCTTATTGTGAGTTTG

SRR031728.2919098 GCTAGCTCATTTCCCGGGAGGTTGTTGTGTCCCGGGACCCACCTTATTGTGAGTTTGTTGACAGCTCCAAGTTTG

NM ntx

<integer> <integer>

SRR031729.3941844 1 0

SRR031728.3674563 3 0

SRR031729.8532600 2 0

SRR031729.2779333 1 0

SRR031728.2826481 2 0

SRR031728.2919098 1 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> table(U1.GAL_ntx)

12

U1.GAL_ntx

0 1 2 3 4 5 6 7 8 9 10

49079 37954 16036 58831 11042 5683 13877 2897 6914 1890 152

> mean(U1.GAL_ntx >= 1)

[1] 0.7598346

76% of the alignments in U1.GAL have an overlap with at least 1 transcript in exbytx.
Note that countOverlaps can be used directly on U1.GAL and exbytx for computing U1.GAL_ntx:

> U1.GAL_ntx_again <- countOverlaps(U1.GAL, exbytx, ignore.strand=TRUE)

> stopifnot(identical(unname(U1.GAL_ntx_again), U1.GAL_ntx))

Because U1.GAL can (and actually does) contain more than 1 alignment per original query (aka read), we also count
the number of transcripts for each read:

> U1.OV10 <- remapHits(U1.OV00, query.map=U1.GAL_qnames)

> U1.uqnames_ntx <- nhitPerQuery(U1.OV10)

> names(U1.uqnames_ntx) <- U1.uqnames

> table(U1.uqnames_ntx)

U1.uqnames_ntx

0 1 2 3 4 5 6 7 8 9 10

41205 30281 16063 59904 11909 5683 13876 2893 6914 1890 152

> mean(U1.uqnames_ntx >= 1)

[1] 0.7840069

78.4% of the reads have an overlap with at least 1 transcript in exbytx.
Number of reads for each transcript:

> U1.exbytx_nOV10 <- nhitPerSubject(U1.OV10)

> names(U1.exbytx_nOV10) <- names(exbytx)

> mean(U1.exbytx_nOV10 >= 50)

[1] 0.00868923

Only 0.869% of the transcripts in exbytx have an overlap with at least 50 reads.
Top 10 transcripts:

> head(sort(U1.exbytx_nOV10, decreasing=TRUE), n=10)

FBtr0089175 FBtr0089176 FBtr0089177 FBtr0112904 FBtr0289951 FBtr0089243 FBtr0089186 FBtr0089173

40582 40582 40582 11735 11661 11656 10084 6750

FBtr0089172 FBtr0300498

6749 6748

4.3 Paired-end overlaps

4.3.1 Find the paired-end overlaps

Like with our single-end overlaps, we call findOverlaps with ignore.strand=TRUE:

> U3.OV00 <- findOverlaps(U3.GALP, exbytx, ignore.strand=TRUE)

Like U1.OV00, U3.OV00 is a Hits object. Its length gives the number of paired-end overlaps:

> length(U3.OV00)

[1] 102883

13

4.3.2 Tabulate the paired-end overlaps

Number of transcripts for each alignment pair in U3.GALP:

> U3.GALP_ntx <- nhitPerQuery(U3.OV00)

> mcols(U3.GALP)$ntx <- U3.GALP_ntx

> head(U3.GALP)

GappedAlignmentPairs with 6 alignment pairs and 1 metadata column:

seqnames strand : ranges -- ranges | ntx

<Rle> <Rle> : <IRanges> -- <IRanges> | <integer>

SRR031715.1138209 chr4 + : [169, 205] -- [326, 362] | 0

SRR031714.756385 chr4 + : [943, 979] -- [1086, 1122] | 0

SRR031714.5054563 chr4 + : [946, 982] -- [986, 1022] | 0

SRR031715.1722593 chr4 + : [966, 1002] -- [1108, 1144] | 0

SRR031715.2202469 chr4 + : [966, 1002] -- [1114, 1150] | 0

SRR031714.3544437 chr4 - : [1087, 1123] -- [963, 999] | 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> table(U3.GALP_ntx)

U3.GALP_ntx

0 1 2 3 4 5 6 7 8 9 10 14

13219 8661 3581 11449 2384 1197 2708 423 1905 271 29 1

> mean(U3.GALP_ntx >= 1)

[1] 0.7115519

71% of the alignment pairs in U3.GALP have an overlap with at least 1 transcript in exbytx.
Note that countOverlaps can be used directly on U3.GALP and exbytx for computing U3.GALP_ntx:

> U3.GALP_ntx_again <- countOverlaps(U3.GALP, exbytx, ignore.strand=TRUE)

> stopifnot(identical(unname(U3.GALP_ntx_again), U3.GALP_ntx))

Because U3.GALP can (and actually does) contain more than 1 alignment pair per original query template, we also
count the number of transcripts for each template:

> U3.OV10 <- remapHits(U3.OV00, query.map=U3.GALP_qnames)

> U3.uqnames_ntx <- nhitPerQuery(U3.OV10)

> names(U3.uqnames_ntx) <- U3.uqnames

> table(U3.uqnames_ntx)

U3.uqnames_ntx

0 1 2 3 4 5 6 7 8 9 10 14

12094 7108 3701 11692 2530 1197 2708 423 1905 271 29 1

> mean(U3.uqnames_ntx >= 1)

[1] 0.7229895

72.3% of the templates have an overlap with at least 1 transcript in exbytx.
Number of templates for each transcript:

> U3.exbytx_nOV10 <- nhitPerSubject(U3.OV10)

> names(U3.exbytx_nOV10) <- names(exbytx)

> mean(U3.exbytx_nOV10 >= 50)

[1] 0.00755963

14

Only 0.756% of the transcripts in exbytx have an overlap with at least 50 templates.
Top 10 transcripts:

> head(sort(U3.exbytx_nOV10, decreasing=TRUE), n=10)

FBtr0089175 FBtr0089176 FBtr0089177 FBtr0112904 FBtr0089243 FBtr0289951 FBtr0089186 FBtr0089100

7573 7572 7556 2750 2732 2732 2260 1691

FBtr0089099 FBtr0089098

1691 1691

5 Encode the overlaps between the reads and transcripts

5.1 Single-end encodings

The overlap encodings are strand sensitive so we will compute them twice, once for the “original alignments” (i.e. the
alignments of the original queries), and once again for the “flipped alignments” (i.e. the alignments of the “flipped
original queries”). We extract the ranges of the “original” and “flipped” alignments in 2 GRangesList objects with:

> U1.grlf <- flipQuery(U1.grl) # flipped

and encode their overlaps with the transcripts:

> U1.ovencA <- encodeOverlaps(U1.grl, exbytx, hits=U1.OV00)

> U1.ovencB <- encodeOverlaps(U1.grlf, exbytx, hits=U1.OV00)

U1.ovencA and U1.ovencB are 2 OverlapsEncodings objects of the same length as Hits object U1.OV00. For each hit
in U1.OV00, we have 2 corresponding encodings, one in U1.ovencA and one in U1.ovencB, but only one of them encodes
a hit between alignment ranges and exon ranges that are on the same strand. We use the selectEncodingWithCompat-

ibleStrand function to merge them into a single OverlapsEncodings of the same length. For each hit in U1.OV00, this
selects the encoding corresponding to alignment ranges and exon ranges with compatible strand:

> U1.grl_strand <- unlist(runValue(strand(U1.grl)), use.names=FALSE)

> U1.ovenc <- selectEncodingWithCompatibleStrand(U1.ovencA, U1.ovencB,

+ U1.grl_strand, exbytx_strand,

+ hits=U1.OV00)

> U1.ovenc

OverlapEncodings of length 496485

Loffset Roffset encoding flippedQuery

[1] 0 3 1:i: TRUE

[2] 6 0 1:i: TRUE

[3] 6 0 1:i: TRUE

[4] 6 0 1:i: TRUE

[5] 6 0 1:i: TRUE

[6] 6 0 1:i: FALSE

[7] 6 0 1:i: TRUE

[8] 6 0 1:i: TRUE

[9] 6 0 1:i: TRUE

...

[496477] 23 0 1:i: TRUE

[496478] 24 0 1:i: TRUE

[496479] 22 0 1:i: TRUE

[496480] 23 0 1:i: FALSE

[496481] 24 0 1:i: FALSE

[496482] 22 0 1:i: FALSE

[496483] 23 0 1:i: TRUE

[496484] 24 0 1:i: TRUE

[496485] 22 0 1:i: TRUE

As a convenience, the 2 above calls to encodeOverlaps + merging step can be replaced by a single call to en-

codeOverlaps on U1.grl (or U1.grlf) with flip.query.if.wrong.strand=TRUE:

15

> U1.ovenc_again <- encodeOverlaps(U1.grl, exbytx, hits=U1.OV00, flip.query.if.wrong.strand=TRUE)

> stopifnot(identical(U1.ovenc_again, U1.ovenc))

Unique encodings in U1.ovenc:

> U1.unique_encodings <- levels(U1.ovenc)

> length(U1.unique_encodings)

[1] 116

> head(U1.unique_encodings)

[1] "1:c:" "1:e:" "1:f:" "1:h:" "1:i:" "1:j:"

> U1.ovenc_table <- table(encoding(U1.ovenc))

> tail(sort(U1.ovenc_table))

1:j: 1:k:c: 1:k: 1:c: 2:jm:af: 1:i:

1384 1919 10103 12659 65169 395278

Encodings are sort of cryptic but utilities are provided to extract specific meaning from them. Use of these utilities
is covered later in this document.

5.2 Paired-end encodings

Let’s encode the overlaps in U3.OV00:

> U3.grl <- grglist(U3.GALP, order.as.in.query=TRUE)

> U3.ovenc <- encodeOverlaps(U3.grl, exbytx, hits=U3.OV00, flip.query.if.wrong.strand=TRUE)

> U3.ovenc

OverlapEncodings of length 102883

Loffset Roffset encoding flippedQuery

[1] 6 0 1--1:i--m: FALSE

[2] 5 1 1--1:i--i: FALSE

[3] 4 2 1--1:i--i: TRUE

[4] 4 2 1--1:i--i: TRUE

[5] 4 2 1--1:i--i: TRUE

[6] 4 2 1--1:i--i: TRUE

[7] 4 2 1--1:i--i: FALSE

[8] 4 2 1--1:i--i: FALSE

[9] 4 2 1--1:i--i: FALSE

...

[102875] 22 0 2--1:jm--m:af--i: FALSE

[102876] 23 0 2--1:jm--m:af--i: FALSE

[102877] 21 0 2--1:jm--m:af--i: FALSE

[102878] 23 0 1--1:i--i: FALSE

[102879] 24 0 1--1:i--i: FALSE

[102880] 22 0 1--1:i--i: FALSE

[102881] 23 0 1--1:i--i: TRUE

[102882] 24 0 1--1:i--i: TRUE

[102883] 22 0 1--1:i--i: TRUE

Unique encodings in U3.ovenc:

> U3.unique_encodings <- levels(U3.ovenc)

> length(U3.unique_encodings)

[1] 123

> head(U3.unique_encodings)

16

[1] "1--1:a--c:" "1--1:a--e:" "1--1:a--f:" "1--1:a--i:" "1--1:a--j:" "1--1:a--k:"

> U3.ovenc_table <- table(encoding(U3.ovenc))

> tail(sort(U3.ovenc_table))

1--1:i--k: 1--1:i--m: 1--1:c--i: 1--2:i--jm:a--af: 2--1:jm--m:af--i:

1531 1534 1778 2023 2562

1--1:i--i:

87951

6 “Compatible” overlaps

We are interested in a particular type of overlap where the read overlaps the transcript in a “compatible” way, that is,
in a way compatible with the splicing of the transcript. The isCompatibleWithSplicing function can be used on an
OverlapEncodings object to detect this type of overlap. Note that isCompatibleWithSplicing can also be used on a
character vector or factor.

6.1 “Compatible” single-end overlaps

6.1.1 “Compatible” single-end encodings

U1.ovenc contains 7 unique encodings “compatible” with the splicing of the transcript:

> sort(U1.ovenc_table[isCompatibleWithSplicing(U1.unique_encodings)])

2:jm:ag: 2:gm:af: 3:jmm:agm:aaf: 1:f: 1:j: 2:jm:af:

25 54 342 1336 1384 65169

1:i:

395278

Encodings "1:i:" (395278 occurences in U1.ovenc), "2:jm:af:" (65169 occurences in U1.ovenc), and "3:jmm:agm:aaf:"

(342 occurences in U1.ovenc), correspond to the following overlaps:

� "1:i:"

- read (no gap): oooooooo

- transcript: ... >>>>>>>>>>>>>> ...

� "2:jm:af:"

- read (1 gap): ooooo---ooo

- transcript: ... >>>>>>>>> >>>>>>>>> ...

� "3:jmm:agm:aaf:"

- read (2 gaps): oo---ooooo---o

- transcript: ... >>>>>>>> >>>>> >>>>>>> ...

For clarity, only the exons involved in the overlap are represented. The transcript can of course have more upstream
and downstream exons, which is denoted by the ... on the left side (5’ end) and right side (3’ end) of each drawing.
Note that the exons represented in the 2nd and 3rd drawings are consecutive in the transcript.

Encodings "1:f:" and "1:j:" are variations of the situation described by encoding "1:i:". For "1:f:", the first
aligned base of the read (or “flipped” read) is aligned with the first base of the exon. For "1:j:", the last aligned base
of the read (or “flipped” read) is aligned with the last base of the exon:

� "1:f:"

- read (no gap): oooooooo

- transcript: ... >>>>>>>>>>>>>> ...

17

� "1:j:"

- read (no gap): oooooooo

- transcript: ... >>>>>>>>>>>>>> ...

> U1.OV00_is_comp <- isCompatibleWithSplicing(U1.ovenc)

> table(U1.OV00_is_comp) # 476124 "compatible" overlaps

U1.OV00_is_comp

FALSE TRUE

32897 463588

Finally, let’s extract the “compatible” overlaps from U1.OV00:

> U1.compOV00 <- U1.OV00[U1.OV00_is_comp]

Note that high-level convenience wrapper findCompatibleOverlaps can be used for computing the “compatible”
overlaps directly between a GappedAlignments object (containing reads) and a GRangesList object (containing tran-
scripts):

> U1.compOV00_again <- findCompatibleOverlaps(U1.GAL, exbytx)

> stopifnot(identical(U1.compOV00_again, U1.compOV00))

6.1.2 Tabulate the “compatible” single-end overlaps

Number of “compatible” transcripts for each alignment in U1.GAL:

> U1.GAL_ncomptx <- nhitPerQuery(U1.compOV00)

> mcols(U1.GAL)$ncomptx <- U1.GAL_ncomptx

> head(U1.GAL)

GappedAlignments with 6 alignments and 4 metadata columns:

seqnames strand cigar qwidth start end width ngap |

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer> |

SRR031729.3941844 chr4 - 75M 75 892 966 75 0 |

SRR031728.3674563 chr4 - 75M 75 919 993 75 0 |

SRR031729.8532600 chr4 + 75M 75 924 998 75 0 |

SRR031729.2779333 chr4 + 75M 75 936 1010 75 0 |

SRR031728.2826481 chr4 + 75M 75 949 1023 75 0 |

SRR031728.2919098 chr4 - 75M 75 967 1041 75 0 |

seq

<DNAStringSet>

SRR031729.3941844 CTGTGGTGACCAACACCACAGAATGGTTCGGGCCCAATTAGAGGGTTCCCTGCCCCTTTCCTGGCTAGGTTGTCC

SRR031728.3674563 TCGGGCCCAATTAGAGGGTTCCCTGCCCCTTTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCTGGGCTGTTGTTG

SRR031729.8532600 CCCAATTAGAGGATTCTCTGCCCCTTTCCTGGCTAGGTTGTCCGGTAGCTCATTTCCCGGGATGTTGTTGTGTCC

SRR031729.2779333 GTTCTCTGCCCCTTTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCCGAGATGTTGTTGTGTCCCGGGACCCACCT

SRR031728.2826481 TTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCCGGGCTGTTGTTGTGTCCCGGGACACACCTTATTGTGAGTTTG

SRR031728.2919098 GCTAGCTCATTTCCCGGGAGGTTGTTGTGTCCCGGGACCCACCTTATTGTGAGTTTGTTGACAGCTCCAAGTTTG

NM ntx ncomptx

<integer> <integer> <integer>

SRR031729.3941844 1 0 0

SRR031728.3674563 3 0 0

SRR031729.8532600 2 0 0

SRR031729.2779333 1 0 0

SRR031728.2826481 2 0 0

SRR031728.2919098 1 0 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

18

> table(U1.GAL_ncomptx)

U1.GAL_ncomptx

0 1 2 3 4 5 6 7 8 9 10

53514 43731 16616 50092 10949 5404 13088 2502 6688 1723 48

> mean(U1.GAL_ncomptx >= 1)

[1] 0.7381322

73.8% of the alignments in U1.GAL are “compatible” with at least 1 transcript in exbytx.
Note that high-level convenience wrapper countCompatibleOverlaps can be used directly on U1.GAL and exbytx

for computing U1.GAL_ncomptx:

> U1.GAL_ncomptx_again <- countCompatibleOverlaps(U1.GAL, exbytx)

> stopifnot(identical(U1.GAL_ncomptx_again, U1.GAL_ncomptx))

Number of “compatible” transcripts for each read:

> U1.compOV10 <- remapHits(U1.compOV00, query.map=U1.GAL_qnames)

> U1.uqnames_ncomptx <- nhitPerQuery(U1.compOV10)

> names(U1.uqnames_ncomptx) <- U1.uqnames

> table(U1.uqnames_ncomptx)

U1.uqnames_ncomptx

0 1 2 3 4 5 6 7 8 9 10

44832 36563 17029 51158 11735 5404 13088 2502 6688 1723 48

> mean(U1.uqnames_ncomptx >= 1)

[1] 0.7649945

76.5% of the reads are “compatible” with at least 1 transcript in exbytx.
Number of “compatible” reads for each transcript:

> U1.exbytx_ncompOV10 <- nhitPerSubject(U1.compOV10)

> names(U1.exbytx_ncompOV10) <- names(exbytx)

> mean(U1.exbytx_ncompOV10 >= 50)

[1] 0.008602337

Only 0.860% of the transcripts in exbytx are “compatible” with at least 50 reads.
Top 10 transcripts:

> head(sort(U1.exbytx_ncompOV10, decreasing=TRUE), n=10)

FBtr0089175 FBtr0089177 FBtr0089176 FBtr0089243 FBtr0289951 FBtr0112904 FBtr0089186 FBtr0089173

40289 33978 33621 11365 11332 11284 10025 6606

FBtr0300497 FBtr0089172

6601 6599

Note that this “top 10” is slightly different from the “top 10” we obtained earlier when we counted all the overlaps.

6.2 “Compatible” paired-end overlaps

6.2.1 “Compatible” paired-end encodings

U3.ovenc contains 13 unique paired-end encodings “compatible” with the splicing of the transcript:

> sort(U3.ovenc_table[isCompatibleWithSplicing(U3.unique_encodings)])

19

1--2:f--jm:a--af: 1--1:f--j: 2--1:jm--m:af--j:

3 9 12

2--1:jm--m:af--f: 1--1:i--m:a--f: 1--1:j--m:a--i:

24 48 56

2--2:jm--mm:af--jm:aa--af: 1--1:i--m:a--i: 1--1:i--j:

122 353 361

1--1:f--i: 1--2:i--jm:a--af: 2--1:jm--m:af--i:

544 2023 2562

1--1:i--i:

87951

Paired-end encodings "1--1:i--i:" (87951 occurences in U3.ovenc), "2--1:jm--m:af--i:" (2562 occurences in
U3.ovenc), "1--2:i--jm:a--af:" (2023 occurences in U3.ovenc), "1--1:i--m:a--i:" (353 occurences in U3.ovenc),
and "2--2:jm--mm:af--jm:aa--af:" (122 occurences in U3.ovenc), correspond to the following paired-end overlaps:

� "1--1:i--i:"

- paired-end read (no gap on the first end, no gap on the

last end): oooo oooo

- transcript: ... >>>>>>>>>>>>>>>> ...

� "2--1:jm--m:af--i:"

- paired-end read (1 gap on the first end, no gap on the

last end): ooo---o oooo

- transcript: ... >>>>>>>> >>>>>>>>>>> ...

� "1--2:i--jm:a--af:"

- paired-end read (no gap on the first end, 1 gap on the

last end): oooo oo---oo

- transcript: ... >>>>>>>>>>>>>> >>>>>>>>> ...

� "1--1:i--m:a--i:"

- paired-end read (no gap on the first end, no gap on the

last end): oooo oooo

- transcript: ... >>>>>>>>> >>>>>>> ...

� "2--2:jm--mm:af--jm:aa--af:"

- paired-end read (1 gap on the first end, 1 gap on the

last end): ooo---o oo---oo

- transcript: ... >>>>>> >>>>>>> >>>>> ...

Note: switch use of “first” and “last” above if the read was “flipped”.

> U3.OV00_is_comp <- isCompatibleWithSplicing(U3.ovenc)

> table(U3.OV00_is_comp) # 94068 "compatible" paired-end overlaps

U3.OV00_is_comp

FALSE TRUE

8815 94068

Finally, let’s extract the “compatible” paired-end overlaps from U3.OV00:

> U3.compOV00 <- U3.OV00[U3.OV00_is_comp]

Note that, like with our single-end reads, high-level convenience wrapper findCompatibleOverlaps can be used for
computing the“compatible”paired-end overlaps directly between a GappedAlignmentPairs object (containing paired-end
reads) and a GRangesList object (containing transcripts):

> U3.compOV00_again <- findCompatibleOverlaps(U3.GALP, exbytx)

> stopifnot(identical(U3.compOV00_again, U3.compOV00))

20

6.2.2 Tabulate the “compatible” paired-end overlaps

Number of “compatible” transcripts for each alignment pair in U3.GALP:

> U3.GALP_ncomptx <- nhitPerQuery(U3.compOV00)

> mcols(U3.GALP)$ncomptx <- U3.GALP_ncomptx

> head(U3.GALP)

GappedAlignmentPairs with 6 alignment pairs and 2 metadata columns:

seqnames strand : ranges -- ranges | ntx ncomptx

<Rle> <Rle> : <IRanges> -- <IRanges> | <integer> <integer>

SRR031715.1138209 chr4 + : [169, 205] -- [326, 362] | 0 0

SRR031714.756385 chr4 + : [943, 979] -- [1086, 1122] | 0 0

SRR031714.5054563 chr4 + : [946, 982] -- [986, 1022] | 0 0

SRR031715.1722593 chr4 + : [966, 1002] -- [1108, 1144] | 0 0

SRR031715.2202469 chr4 + : [966, 1002] -- [1114, 1150] | 0 0

SRR031714.3544437 chr4 - : [1087, 1123] -- [963, 999] | 0 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> table(U3.GALP_ncomptx)

U3.GALP_ncomptx

0 1 2 3 4 5 6 7 8 9 10

14242 10842 3569 8652 2345 1135 2589 356 1833 263 2

> mean(U3.GALP_ncomptx >= 1)

[1] 0.6892293

68.9% of the alignment pairs in U3.GALP are “compatible” with at least 1 transcript in exbytx.
Note that high-level convenience wrapper countCompatibleOverlaps can be used directly on U3.GALP and exbytx

for computing U3.GALP_ncomptx:

> U3.GALP_ncomptx_again <- countCompatibleOverlaps(U3.GALP, exbytx)

> stopifnot(identical(U3.GALP_ncomptx_again, U3.GALP_ncomptx))

Number of “compatible” transcripts for each template:

> U3.compOV10 <- remapHits(U3.compOV00, query.map=U3.GALP_qnames)

> U3.uqnames_ncomptx <- nhitPerQuery(U3.compOV10)

> names(U3.uqnames_ncomptx) <- U3.uqnames

> table(U3.uqnames_ncomptx)

U3.uqnames_ncomptx

0 1 2 3 4 5 6 7 8 9 10

13044 9376 3695 8914 2452 1135 2589 356 1833 263 2

> mean(U3.uqnames_ncomptx >= 1)

[1] 0.70123

70.1% of the templates are “compatible” with at least 1 transcript in exbytx.
Number of “compatible” templates for each transcript:

> U3.exbytx_ncompOV10 <- nhitPerSubject(U3.compOV10)

> names(U3.exbytx_ncompOV10) <- names(exbytx)

> mean(U3.exbytx_ncompOV10 >= 50)

[1] 0.007516184

21

Only 0.752% of the transcripts in exbytx are “compatible” with at least 50 templates.
Top 10 transcripts:

> head(sort(U3.exbytx_ncompOV10, decreasing=TRUE), n=10)

FBtr0089175 FBtr0089176 FBtr0089177 FBtr0289951 FBtr0089243 FBtr0112904 FBtr0089186 FBtr0089096

7490 5252 5234 2686 2684 2640 2246 1638

FBtr0089100 FBtr0089099

1632 1632

Note that this “top 10” is slightly different from the “top 10” we obtained earlier when we counted all the paired-end
overlaps.

7 Project the alignments on the transcriptome

7.1 Project the single-end alignments on the transcriptome

The extractQueryStartInTranscript function computes for each overlap the position of the query start in the tran-
script:

> U1.OV00_qstart <- extractQueryStartInTranscript(U1.grl, exbytx,

+ hits=U1.OV00, ovenc=U1.ovenc)

> head(subset(U1.OV00_qstart, U1.OV00_is_comp))

startInTranscript firstSpannedExonRank startInFirstSpannedExon

1 100 1 100

2 3584 7 26

3 3579 7 21

4 3579 7 21

5 3576 7 18

6 3574 7 16

U1.OV00_qstart is a data frame with 1 row per overlap and 3 columns:

1. startInTranscript: the 1-based start position of the read with respect to the transcript. Position 1 always
corresponds to the first base on the 5’ end of the transcript sequence.

2. firstSpannedExonRank: the rank of the first exon spanned by the read, that is, the rank of the exon found at
position startInTranscript in the transcript.

3. startInFirstSpannedExon: the 1-based start position of the read with respect to the first exon spanned by the
read.

Having this information allows us for example to compare the read and transcript nucleotide sequences for each
“compatible” overlap. If we use the reference query sequence instead of the original query sequence for this comparison,
then it should match exactly the sequence found at the query start in the transcript.

Let’s start by using the extractTranscriptsFromGenome to extract the transcript sequences (aka transcriptome)
from the dm3 reference genome:

> txseq <- extractTranscriptsFromGenome(Dmelanogaster, exbytx)

For each “compatible” overlap, the read sequence in U1.GAL_rqseq must be an exact substring of the transcript
sequence in exbytx_seq:

> U1.OV00_rqseq <- U1.GAL_rqseq[queryHits(U1.OV00)]

> U1.OV00_rqseq[flippedQuery(U1.ovenc)] <- reverseComplement(U1.OV00_rqseq[flippedQuery(U1.ovenc)])

> U1.OV00_txseq <- txseq[subjectHits(U1.OV00)]

> stopifnot(all(

+ U1.OV00_rqseq[U1.OV00_is_comp] ==

+ narrow(U1.OV00_txseq[U1.OV00_is_comp],

+ start=U1.OV00_qstart$startInTranscript[U1.OV00_is_comp],

+ width=width(U1.OV00_rqseq)[U1.OV00_is_comp])

+))

22

Because of this relationship between the reference query sequence and the transcript sequence of a “compatible”
overlap, and because of the relationship between the original query sequences and the reference query sequences, then
the edit distance reported in the NM tag is actually the edit distance between the original query and the transcript of
a “compatible” overlap.

7.2 Project the paired-end alignments on the transcriptome

For a paired-end read, the query start is the start of its “left end”.

> U3.OV00_Lqstart <- extractQueryStartInTranscript(U3.grl, exbytx,

+ hits=U3.OV00, ovenc=U3.ovenc)

> head(subset(U3.OV00_Lqstart, U3.OV00_is_comp))

startInTranscript firstSpannedExonRank startInFirstSpannedExon

2 3406 6 31

3 3158 5 22

4 3156 5 20

5 3140 5 4

6 3148 5 12

7 3174 5 38

Note that extractQueryStartInTranscript can be called with for.query.right.end=TRUE if we want this infor-
mation for the “right ends” of the reads:

> U3.OV00_Rqstart <- extractQueryStartInTranscript(U3.grl, exbytx,

+ hits=U3.OV00, ovenc=U3.ovenc,

+ for.query.right.end=TRUE)

> head(subset(U3.OV00_Rqstart, U3.OV00_is_comp))

startInTranscript firstSpannedExonRank startInFirstSpannedExon

2 3414 6 39

3 3315 5 179

4 3297 5 161

5 3297 5 161

6 3291 5 155

7 3289 5 153

Like with single-end reads, having this information allows us for example to compare the read and transcript nu-
cleotide sequences for each “compatible” overlap. If we use the reference query sequence instead of the original query
sequence for this comparison, then it should match exactly the sequences of the “left” and “right” ends of the read in
the transcript.

Let’s assign the “left and right reference query sequences” to each overlap:

> U3.OV00_Lrqseq <- U3.GALP_rqseq1[queryHits(U3.OV00)]

> U3.OV00_Rrqseq <- U3.GALP_rqseq2[queryHits(U3.OV00)]

For the single-end reads, the sequence associated with a “flipped query” just needed to be “reverse complemented”.
For paired-end reads, we also need to swap the 2 sequences in the pair:

> flip_idx <- which(flippedQuery(U3.ovenc))

> tmp <- U3.OV00_Lrqseq[flip_idx]

> U3.OV00_Lrqseq[flip_idx] <- reverseComplement(U3.OV00_Rrqseq[flip_idx])

> U3.OV00_Rrqseq[flip_idx] <- reverseComplement(tmp)

Let’s assign the transcript sequence to each overlap:

> U3.OV00_txseq <- txseq[subjectHits(U3.OV00)]

For each “compatible” overlap, we expect the “left and right reference query sequences” of the read to be exact
substrings of the transcript sequence. Let’s check the “left reference query sequences”:

23

> stopifnot(all(

+ U3.OV00_Lrqseq[U3.OV00_is_comp] ==

+ narrow(U3.OV00_txseq[U3.OV00_is_comp],

+ start=U3.OV00_Lqstart$startInTranscript[U3.OV00_is_comp],

+ width=width(U3.OV00_Lrqseq)[U3.OV00_is_comp])

+))

and the “right reference query sequences”:

> stopifnot(all(

+ U3.OV00_Rrqseq[U3.OV00_is_comp] ==

+ narrow(U3.OV00_txseq[U3.OV00_is_comp],

+ start=U3.OV00_Rqstart$startInTranscript[U3.OV00_is_comp],

+ width=width(U3.OV00_Rrqseq)[U3.OV00_is_comp])

+))

8 Align the reads to the transcriptome

Aligning the reads to the reference genome is not the most efficient nor accurate way to count the number of“compatible”
overlaps per original query. Supporting junction reads (i.e. reads that align with at least 1 gap) introduces a significant
computational cost during the alignment process. Then, as we’ve seen in the previous sections, each alignment produced
by the aligner needs to be broken into a set of ranges (based on its CIGAR) and those ranges compared to the ranges
of the exons grouped by transcript.

A more straightforward and accurate approach is to align the reads directly to the transcriptome, and without
allowing the typical gap that the aligner needs to introduce when aligning a junction read to the reference genome.
With this approach, a “hit” between a read and a transcript is necessarily compatible with the splicing of the transcript.
In case of a “hit”, we’ll say that the read and the transcript are “string-based compatible” (to differentiate from our
previous notion of “compatible” overlaps that we will call “encoding-based compatible” from now on, unless the context
is clear).

8.1 Align the single-end reads to the transcriptome

8.1.1 Find the “hits”

The single-end reads are in U1.oqseq, the transcriptome is in exbytx_seq.
Since indels were not allowed/supported during the alignment of the reads to the reference genome, we don’t need

to allow/support them either for aligning the reads to the transcriptome. Also since our goal is to find (and count)
“compatible” overlaps between reads and transcripts, we don’t need to keep track of the details of the alignments
between the reads and the transcripts. Finally, since BAM file untreated1_chr4.bam is not the full output of the
aligner but the subset obtained by keeping only the alignments located on chr4, we don’t need to align U1.oqseq to the
full transcriptome, but only to the subset of exbytx_seq made of the transcripts located on chr4.

With those simplifications in mind, we write the following function that we will use to find the “hits” between the
reads and the transcriptome:

> ### A wrapper to vwhichPDict() that supports IUPAC ambiguity codes in 'qseq'

> ### and 'txseq', and treats them as such.

> findSequenceHits <- function(qseq, txseq, which.txseq=NULL, max.mismatch=0)

+ {

+ .asHits <- function(x, pattern_length)

+ {

+ query_hits <- unlist(x)

+ if (is.null(query_hits))

+ query_hits <- integer(0)

+ subject_hits <- rep.int(seq_len(length(x)), elementLengths(x))

+ new("Hits", queryHits=query_hits, subjectHits=subject_hits,

+ queryLength=pattern_length, subjectLength=length(x))

+ }

+

+ .isHitInTranscriptBounds <- function(hits, qseq, txseq)

24

+ {

+ sapply(seq_len(length(hits)),

+ function(i) {

+ pattern <- qseq[[queryHits(hits)[i]]]

+ subject <- txseq[[subjectHits(hits)[i]]]

+ v <- matchPattern(pattern, subject,

+ max.mismatch=max.mismatch, fixed=FALSE)

+ any(1L <= start(v) & end(v) <= length(subject))

+ })

+ }

+

+ if (!is.null(which.txseq)) {

+ txseq0 <- txseq

+ txseq <- txseq[which.txseq]

+ }

+

+ names(qseq) <- NULL

+ other <- alphabetFrequency(qseq, baseOnly=TRUE)[, "other"]

+ is_clean <- other == 0L # "clean" means "no IUPAC ambiguity code"

+

+ ## Find hits for "clean" original queries.

+ qseq0 <- qseq[is_clean]

+ pdict0 <- PDict(qseq0, max.mismatch=max.mismatch)

+ m0 <- vwhichPDict(pdict0, txseq,

+ max.mismatch=max.mismatch, fixed="pattern")

+ hits0 <- .asHits(m0, length(qseq0))

+ hits0@queryLength <- length(qseq)

+ hits0@queryHits <- which(is_clean)[hits0@queryHits]

+

+ ## Find hits for non "clean" original queries.

+ qseq1 <- qseq[!is_clean]

+ m1 <- vwhichPDict(qseq1, txseq,

+ max.mismatch=max.mismatch, fixed=FALSE)

+ hits1 <- .asHits(m1, length(qseq1))

+ hits1@queryLength <- length(qseq)

+ hits1@queryHits <- which(!is_clean)[hits1@queryHits]

+

+ ## Combine the hits.

+ query_hits <- c(queryHits(hits0), queryHits(hits1))

+ subject_hits <- c(subjectHits(hits0), subjectHits(hits1))

+

+ if (!is.null(which.txseq)) {

+ ## Remap the hits.

+ txseq <- txseq0

+ subject_hits <- which.txseq[subject_hits]

+ hits0@subjectLength <- length(txseq)

+ }

+

+ ## Order the hits.

+ oo <- IRanges:::orderIntegerPairs(query_hits, subject_hits)

+ hits0@queryHits <- query_hits[oo]

+ hits0@subjectHits <- subject_hits[oo]

+

+ if (max.mismatch != 0L) {

+ ## Keep only "in bounds" hits.

+ is_in_bounds <- .isHitInTranscriptBounds(hits0, qseq, txseq)

+ hits0 <- hits0[is_in_bounds]

+ }

25

+ hits0

+ }

Let’s compute the index of the transcripts in exbytx_seq located on chr4 (findSequenceHits will restrict the search
to those transcripts):

> chr4tx <- transcripts(txdb, vals=list(tx_chrom="chr4"))

> chr4txnames <- mcols(chr4tx)$tx_name

> which.txseq <- match(chr4txnames, names(txseq))

We know that the aligner tolerated up to 6 mismatches per read. The 3 following commands find the “hits” for each
original query, then find the “hits” for each “flipped original query”, and finally merge all the “hits” (note that the 3
commands take about 1 hour to complete on a modern laptop):

> U1.sbcompHITSa <- findSequenceHits(U1.oqseq, txseq,

+ which.txseq=which.txseq, max.mismatch=6)

> U1.sbcompHITSb <- findSequenceHits(reverseComplement(U1.oqseq), txseq,

+ which.txseq=which.txseq, max.mismatch=6)

> U1.sbcompHITS <- union(U1.sbcompHITSa, U1.sbcompHITSb)

8.1.2 Tabulate the “hits”

Number of “string-based compatible” transcripts for each read:

> U1.uqnames_nsbcomptx <- nhitPerQuery(U1.sbcompHITS)

> names(U1.uqnames_nsbcomptx) <- U1.uqnames

> table(U1.uqnames_nsbcomptx)

U1.uqnames_nsbcomptx

0 1 2 3 4 5 6 7 8 9 10

42494 36484 16641 52677 12214 5542 13446 2642 6777 1787 66

> mean(U1.uqnames_nsbcomptx >= 1)

[1] 0.7772501

77.7% of the reads are “string-based compatible” with at least 1 transcript in exbytx.
Number of “string-based compatible” reads for each transcript:

> U1.exbytx_nsbcompHITS <- nhitPerSubject(U1.sbcompHITS)

> names(U1.exbytx_nsbcompHITS) <- names(exbytx)

> mean(U1.exbytx_nsbcompHITS >= 50)

[1] 0.008645784

Only 0.865% of the transcripts in exbytx are “string-based compatible” with at least 50 reads.
Top 10 transcripts:

> head(sort(U1.exbytx_nsbcompHITS, decreasing=TRUE), n=10)

FBtr0301886 FBtr0078118 FBtr0301887 FBtr0077816 FBtr0077815 FBtr0077817 FBtr0077837 FBtr0078047

40520 34703 34406 11605 11579 11548 10066 6710

FBtr0078128 FBtr0078131

6704 6701

8.1.3 A closer look at the “hits”

[WORK IN PROGRESS, might be removed or replaced soon...]
Any “encoding-based compatible” overlap is of course “string-based compatible”:

> ## FIXME: 11 September, 2012 requires U1.sbcompHITS object update

> ## stopifnot(length(setdiff(U1.compOV10, U1.sbcompHITS)) == 0)

but the reverse is not true:

> length(setdiff(U1.sbcompHITS, U1.compOV10))

[1] 474492

26

8.2 Align the paired-end reads to the transcriptome

[COMING SOON...]

9 “Almost compatible” overlaps

In many aspects, “compatible” overlaps can be seen as perfect. We are now insterested in a less perfect type of
overlap where the read overlaps the transcript in a way that would be “compatible” if 1 or more exons were re-
moved from the transcript. In that case we say that the overlap is “almost compatible” with the transcript. The
isCompatibleWithSkippedExons function can be used on an OverlapEncodings object to detect this type of overlap.
Note that isCompatibleWithSkippedExons can also be used on a character vector of factor.

9.1 “Almost compatible” single-end overlaps

9.1.1 “Almost compatible” single-end encodings

U1.ovenc contains 7 unique encodings “almost compatible” with the splicing of the transcript:

> sort(U1.ovenc_table[isCompatibleWithSkippedExons(U1.unique_encodings)])

2:jm:am:am:am:am:am:af: 2:jm:am:am:am:af: 2:gm:am:af: 3:jmm:agm:aam:aam:aaf:

1 2 3 3

3:jmm:agm:aam:aaf: 2:jm:am:am:af: 2:jm:am:af:

18 112 721

Encodings "2:jm:am:af:" (721 occurences in U1.ovenc), "2:jm:am:am:af:" (112 occurences in U1.ovenc), and
"3:jmm:agm:aam:aaf:" (18 occurences in U1.ovenc), correspond to the following overlaps:

� "2:jm:am:af:"

- read (1 gap): ooooo----------ooo

- transcript: ... >>>>>>> >>>> >>>>>>>> ...

� "2:jm:am:am:af:"

- read (1 gap): ooooo------------------ooo

- transcript: ... >>>>>>> >>>> >>>>> >>>>>>>> ...

� "3:jmm:agm:aam:aaf:"

- read (2 gaps): oo---oooo-----------oo

- transcript: ... >>>>>>> >>>> >>>>> >>>>>>>> ...

> U1.OV00_is_acomp <- isCompatibleWithSkippedExons(U1.ovenc)

> table(U1.OV00_is_acomp) # 860 "almost compatible" overlaps

U1.OV00_is_acomp

FALSE TRUE

495625 860

Finally, let’s extract the “almost compatible” overlaps from U1.OV00:

> U1.acompOV00 <- U1.OV00[U1.OV00_is_acomp]

27

9.1.2 Tabulate the “almost compatible” single-end overlaps

Number of “almost compatible” transcripts for each alignment in U1.GAL:

> U1.GAL_nacomptx <- nhitPerQuery(U1.acompOV00)

> mcols(U1.GAL)$nacomptx <- U1.GAL_nacomptx

> head(U1.GAL)

GappedAlignments with 6 alignments and 5 metadata columns:

seqnames strand cigar qwidth start end width ngap |

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer> |

SRR031729.3941844 chr4 - 75M 75 892 966 75 0 |

SRR031728.3674563 chr4 - 75M 75 919 993 75 0 |

SRR031729.8532600 chr4 + 75M 75 924 998 75 0 |

SRR031729.2779333 chr4 + 75M 75 936 1010 75 0 |

SRR031728.2826481 chr4 + 75M 75 949 1023 75 0 |

SRR031728.2919098 chr4 - 75M 75 967 1041 75 0 |

seq

<DNAStringSet>

SRR031729.3941844 CTGTGGTGACCAACACCACAGAATGGTTCGGGCCCAATTAGAGGGTTCCCTGCCCCTTTCCTGGCTAGGTTGTCC

SRR031728.3674563 TCGGGCCCAATTAGAGGGTTCCCTGCCCCTTTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCTGGGCTGTTGTTG

SRR031729.8532600 CCCAATTAGAGGATTCTCTGCCCCTTTCCTGGCTAGGTTGTCCGGTAGCTCATTTCCCGGGATGTTGTTGTGTCC

SRR031729.2779333 GTTCTCTGCCCCTTTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCCGAGATGTTGTTGTGTCCCGGGACCCACCT

SRR031728.2826481 TTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCCGGGCTGTTGTTGTGTCCCGGGACACACCTTATTGTGAGTTTG

SRR031728.2919098 GCTAGCTCATTTCCCGGGAGGTTGTTGTGTCCCGGGACCCACCTTATTGTGAGTTTGTTGACAGCTCCAAGTTTG

NM ntx ncomptx nacomptx

<integer> <integer> <integer> <integer>

SRR031729.3941844 1 0 0 0

SRR031728.3674563 3 0 0 0

SRR031729.8532600 2 0 0 0

SRR031729.2779333 1 0 0 0

SRR031728.2826481 2 0 0 0

SRR031728.2919098 1 0 0 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> table(U1.GAL_nacomptx)

U1.GAL_nacomptx

0 1 2 3 4 5 6 7 8 9

203902 299 28 79 20 1 12 6 3 5

> mean(U1.GAL_nacomptx >= 1)

[1] 0.002216731

Only 0.22% of the alignments in U1.GAL are “almost compatible” with at least 1 transcript in exbytx.
Number of “almost compatible” alignments for each transcript:

> U1.exbytx_nacompOV00 <- nhitPerSubject(U1.acompOV00)

> names(U1.exbytx_nacompOV00) <- names(exbytx)

> table(U1.exbytx_nacompOV00)

U1.exbytx_nacompOV00

0 1 2 3 4 6 7 8 9 10 12 13 14 18 20 21

22911 43 5 14 8 2 4 4 9 2 1 1 1 2 1 2

32 34 44 55 170

1 1 3 1 1

28

> mean(U1.exbytx_nacompOV00 >= 50)

[1] 0.0000868923

Only 0.0087% of the transcripts in exbytx are “almost compatible” with at least 50 alignments in U1.GAL.
Finally note that the“query start in transcript”values returned by extractQueryStartInTranscript are also defined

for “almost compatible” overlaps:

> head(subset(U1.OV00_qstart, U1.OV00_is_acomp))

startInTranscript firstSpannedExonRank startInFirstSpannedExon

132461 66 1 66

132472 84 1 84

134409 757 7 39

134410 689 8 39

134411 631 6 39

134412 877 7 39

9.2 “Almost compatible” paired-end overlaps

9.2.1 “Almost compatible” paired-end encodings

U3.ovenc contains 5 unique paired-end encodings “almost compatible” with the splicing of the transcript:

> sort(U3.ovenc_table[isCompatibleWithSkippedExons(U3.unique_encodings)])

2--1:jm--m:am--m:am--m:af--i: 1--2:i--jm:a--am:a--am:a--af:

1 4

2--2:jm--mm:am--mm:af--jm:aa--af: 1--2:i--jm:a--am:a--af:

9 36

2--1:jm--m:am--m:af--i:

54

Paired-end encodings "2--1:jm--m:am--m:af--i:" (54 occurences in U3.ovenc), "1--2:i--jm:a--am:a--af:" (36
occurences in U3.ovenc), and "2--2:jm--mm:am--mm:af--jm:aa--af:" (9 occurences in U3.ovenc), correspond to the
following paired-end overlaps:

� "2--1:jm--m:am--m:af--i:"

- paired-end read (1 gap on the first end, no gap on the

last end): ooo----------o oooo

- transcript: ... >>>>> >>>> >>>>>>>>> ...

� "1--2:i--jm:a--am:a--af:"

- paired-end read (no gap on the first end, 1 gap on the

last end): oooo oo---------oo

- transcript: ... >>>>>>>>>>> >>> >>>>>> ...

� "2--2:jm--mm:am--mm:af--jm:aa--af:"

- paired-end read (1 gap on the first end, 1 gap on the

last end): o----------ooo oo---oo

- transcript: ... >>>>> >>>> >>>>>>>> >>>>>> ...

Note: switch use of “first” and “last” above if the read was “flipped”.

> U3.OV00_is_acomp <- isCompatibleWithSkippedExons(U3.ovenc)

> table(U3.OV00_is_acomp) # 104 "almost compatible" paired-end overlaps

U3.OV00_is_acomp

FALSE TRUE

102779 104

Finally, let’s extract the “almost compatible” paired-end overlaps from U3.OV00:

> U3.acompOV00 <- U3.OV00[U3.OV00_is_acomp]

29

9.2.2 Tabulate the “almost compatible” paired-end overlaps

Number of “almost compatible” transcripts for each alignment pair in U3.GALP:

> U3.GALP_nacomptx <- nhitPerQuery(U3.acompOV00)

> mcols(U3.GALP)$nacomptx <- U3.GALP_nacomptx

> head(U3.GALP)

GappedAlignmentPairs with 6 alignment pairs and 3 metadata columns:

seqnames strand : ranges -- ranges | ntx ncomptx nacomptx

<Rle> <Rle> : <IRanges> -- <IRanges> | <integer> <integer> <integer>

SRR031715.1138209 chr4 + : [169, 205] -- [326, 362] | 0 0 0

SRR031714.756385 chr4 + : [943, 979] -- [1086, 1122] | 0 0 0

SRR031714.5054563 chr4 + : [946, 982] -- [986, 1022] | 0 0 0

SRR031715.1722593 chr4 + : [966, 1002] -- [1108, 1144] | 0 0 0

SRR031715.2202469 chr4 + : [966, 1002] -- [1114, 1150] | 0 0 0

SRR031714.3544437 chr4 - : [1087, 1123] -- [963, 999] | 0 0 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> table(U3.GALP_nacomptx)

U3.GALP_nacomptx

0 1 3 4 6

45745 75 5 2 1

> mean(U3.GALP_nacomptx >= 1)

[1] 0.00181112

Only 0.18% of the alignment pairs in U3.GALP are “almost compatible” with at least 1 transcript in exbytx.
Number of “almost compatible” alignment pairs for each transcript:

> U3.exbytx_nacompOV00 <- nhitPerSubject(U3.acompOV00)

> names(U3.exbytx_nacompOV00) <- names(exbytx)

> table(U3.exbytx_nacompOV00)

U3.exbytx_nacompOV00

0 1 5 8 66

22997 15 3 1 1

> mean(U3.exbytx_nacompOV00 >= 50)

[1] 0.00004344615

Only 0.0043% of the transcripts in exbytx are “almost compatible” with at least 50 alignment pairs in U3.GALP.
Finally note that the“query start in transcript”values returned by extractQueryStartInTranscript are also defined

for “almost compatible” paired-end overlaps:

> head(subset(U3.OV00_Lqstart, U3.OV00_is_acomp))

startInTranscript firstSpannedExonRank startInFirstSpannedExon

43359 785 4 6

43366 808 4 29

43373 819 4 40

43380 785 4 6

43387 785 4 6

43394 810 4 31

> head(subset(U3.OV00_Rqstart, U3.OV00_is_acomp))

30

startInTranscript firstSpannedExonRank startInFirstSpannedExon

43359 845 4 66

43366 847 4 68

43373 849 4 70

43380 842 4 63

43387 847 4 68

43394 847 4 68

10 Detect novel splice junctions

10.1 By looking at single-end overlaps

An alignment in U1.GAL with “almost compatible” overlaps but no “compatible” overlaps suggests the presence of one or
more transcripts that are not in our annotations.

First we extract the index of those alignments (nsj here stands for “novel splice junction”):

> U1.GAL_is_nsj <- U1.GAL_nacomptx != 0L & U1.GAL_ncomptx == 0L

> head(which(U1.GAL_is_nsj))

[1] 57972 57974 58321 67251 67266 67267

We make this an index into U1.OV00:

> U1.OV00_is_nsj <- queryHits(U1.OV00) %in% which(U1.GAL_is_nsj)

We intersect with U1.OV00_is_acomp and then subset U1.OV00 to keep only the overlaps that suggest novel splicing:

> U1.OV00_is_nsj <- U1.OV00_is_nsj & U1.OV00_is_acomp

> U1.nsjOV00 <- U1.OV00[U1.OV00_is_nsj]

For each overlap in U1.nsjOV00, we extract the ranks of the skipped exons (we use a list for this as there might be
more than 1 skipped exon per overlap):

> U1.nsjOV00_skippedex <- extractSkippedExonRanks(U1.ovenc)[U1.OV00_is_nsj]

> names(U1.nsjOV00_skippedex) <- queryHits(U1.nsjOV00)

> table(elementLengths(U1.nsjOV00_skippedex))

1 2 3 5

226 91 2 1

Finally, we split U1.nsjOV00_skippedex by transcript names:

> f <- factor(names(exbytx)[subjectHits(U1.nsjOV00)], levels=names(exbytx))

> U1.exbytx_skippedex <- split(U1.nsjOV00_skippedex, f)

U1.exbytx_skippedex is a named list of named lists of integer vectors. The first level of names (outer names) are
transcript names and the second level of names (inner names) are alignment indices into U1.GAL:

> head(names(U1.exbytx_skippedex)) # transcript names

[1] "FBtr0300689" "FBtr0300690" "FBtr0078100" "FBtr0078101" "FBtr0302164" "FBtr0301733"

Transcript FBtr0089124 receives 7 hits. All of them skip exons 9 and 10:

> U1.exbytx_skippedex$FBtr0089124

$`104549`

[1] 9 10

$`104550`

[1] 9 10

31

$`104553`

[1] 9 10

$`104557`

[1] 9 10

$`104560`

[1] 9 10

$`104572`

[1] 9 10

$`104577`

[1] 9 10

Transcript FBtr0089147 receives 4 hits. Two of them skip exon 2, one of them skips exons 2 to 6, and one of them
skips exon 10:

> U1.exbytx_skippedex$FBtr0089147

$`72828`

[1] 10

$`74018`

[1] 2 3 4 5 6

$`74664`

[1] 2

$`74670`

[1] 2

A few words about the interpretation of U1.exbytx_skippedex: Because of how we’ve conducted this analysis, the
aligments reported in U1.exbytx_skippedex are guaranteed to not have any “compatible” overlaps with other known
transcripts. All we can say, for example in the case of transcript FBtr0089124, is that the 7 reported hits that skip
exons 9 and 10 show evidence of one or more unknown transcripts with a splice junction that corresponds to the gap
between exons 8 and 11. But without further analysis, we can’t make any assumption about the exons structure of those
unknown transcripts. In particular, we cannot assume the existence of an unknown transcript made of the same exons
as transcript FBtr0089124 minus exons 9 and 10!

10.2 By looking at paired-end overlaps

[COMING SOON...]

11 sessionInfo()

> sessionInfo()

R version 3.0.1 (2013-05-16)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods base

32

other attached packages:

[1] TxDb.Dmelanogaster.UCSC.dm3.ensGene_2.9.0 BSgenome.Dmelanogaster.UCSC.dm3_1.3.19

[3] pasillaBamSubset_0.0.7 BSgenome.Scerevisiae.UCSC.sacCer2_1.3.19

[5] org.Sc.sgd.db_2.9.1 RSQLite_0.11.4

[7] DBI_0.2-7 GenomicFeatures_1.12.3

[9] AnnotationDbi_1.22.6 leeBamViews_0.99.22

[11] BSgenome_1.28.0 Biobase_2.20.1

[13] EatonEtAlChIPseq_0.0.9 rtracklayer_1.20.4

[15] ShortRead_1.18.0 latticeExtra_0.6-26

[17] RColorBrewer_1.0-5 lattice_0.20-23

[19] Rsamtools_1.12.4 Biostrings_2.28.0

[21] GenomicRanges_1.12.5 IRanges_1.18.3

[23] BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] RCurl_1.95-4.1 XML_3.98-1.1 biomaRt_2.16.0 bitops_1.0-6 grid_3.0.1 hwriter_1.3

[7] stats4_3.0.1 tools_3.0.1 zlibbioc_1.6.0

33

	Introduction
	Load reads from a BAM file
	Load single-end reads from a BAM file
	Load paired-end reads from a BAM file

	Validate the alignments produced by the aligner
	Validate the single-end alignments
	Load the original query sequences
	Compute the reference query sequences
	Compare the original query sequences with the reference query sequences

	Validate the paired-end alignments
	Load the original query sequences
	Compute the reference query sequences
	Compare the original query sequences with the reference query sequences

	Conclusion

	Find all the overlaps between the reads and transcripts
	Load the transcripts from a TranscriptDb object
	Single-end overlaps
	Find the single-end overlaps
	Tabulate the single-end overlaps

	Paired-end overlaps
	Find the paired-end overlaps
	Tabulate the paired-end overlaps

	Encode the overlaps between the reads and transcripts
	Single-end encodings
	Paired-end encodings

	``Compatible'' overlaps
	``Compatible'' single-end overlaps
	``Compatible'' single-end encodings
	Tabulate the ``compatible'' single-end overlaps

	``Compatible'' paired-end overlaps
	``Compatible'' paired-end encodings
	Tabulate the ``compatible'' paired-end overlaps

	Project the alignments on the transcriptome
	Project the single-end alignments on the transcriptome
	Project the paired-end alignments on the transcriptome

	Align the reads to the transcriptome
	Align the single-end reads to the transcriptome
	Find the ``hits''
	Tabulate the ``hits''
	A closer look at the ``hits''

	Align the paired-end reads to the transcriptome

	``Almost compatible'' overlaps
	``Almost compatible'' single-end overlaps
	``Almost compatible'' single-end encodings
	Tabulate the ``almost compatible'' single-end overlaps

	``Almost compatible'' paired-end overlaps
	``Almost compatible'' paired-end encodings
	Tabulate the ``almost compatible'' paired-end overlaps

	Detect novel splice junctions
	By looking at single-end overlaps
	By looking at paired-end overlaps

	sessionInfo()

