
Performance assessment of vsn with simulated data

Wolfgang Huber

November 30, 2008

Contents

1 Overview 1

2 Helper functions used in this document 1

3 Number of features n 3

4 Number of samples d 3

5 Number of strata 4

6 Differentially expressed genes 4

7 Missing values 5

8 Incremental normalization 7

1 Overview

The purpose of this vignette is to assess that the software in vsn does what it is intended do, and
in particular, to assess the performance of the parameter estimation on simulated data where the true
parameters are known.

There are two functions sagmbSimulateData and sagmbAssess that can be used to generate simulated
data and assess the difference between the ’true’ and ’estimated’ data calibration and transformation by
vsn. This vignette demonstrates some examples. Please refer to reference [1] for more detail on the
simulation model, the assessment strategy and a comprehensive suite of assessments with respect to the
number of features n, the number of arrays d, the fraction of differentially expressed genes de, and the
fraction of up-regulated genes up.

2 Helper functions used in this document

This section is given just for completeness – for the results, you can skip this and go to Section 3.

> library("vsn")

> set.seed(0xabcd)

The function sim computes simulated data using the function sagmbSimulateData from the vsn pack-
age, calls vsn2 to fit the VSN model, and assesses model fit using the function sagmbSimulateData.

1

> sim = function(..., lts.quantile=1, nrrep=30L) {

+ callpar = list(...)

+ ll = listLen(callpar)

+ stopifnot(ll[1]>=1, all(ll[-1]==1))

+ res = matrix(1, nrow=nrrep, ncol=ll[1])

+

+ ## default parameters

+ simpar = append(callpar,

+ list(n=4096L, d=2L, de=0, up=0.5, nrstrata=1L, miss=0, log2scale=TRUE))

+ simpar = simpar[!duplicated(names(simpar))]

+

+ for (i in 1:ll[1]) {

+ simpar[[1]] = callpar[[1]][i]

+ for (r in 1:nrrep) {

+ sim = do.call("sagmbSimulateData", simpar)

+ ny = vsn2(sim$y, strata=factor(sim$strata), lts.quantile=lts.quantile, verbose=!TRUE)

+ res[r, i] = sagmbAssess(exprs(ny), sim)

+ if(!TRUE){

+ cat(paste(sprintf("%6g", signif(sim$coefficients, 3), collapse=" ")), "")

+ cat(sprintf("i=%d, r=%d: %g\n", i, r, signif(res[r,i], 3)))

+ plot(sim$y, pch="."); abline(a=0, b=1, col="orange", main=paste(i,r))

+ if(res[r, i]>0.02) browser()

+ }

+ } ## for r

+ } ## for i

+ return(res)

+ }

Here some functions to automate the formating of the plots that are used in the following.

> onePlot = function(n, res, log="xy", ...) {

+ matplot(n, t(res), pch=20, log=log, ylab='r.m.s. error', col="orange",

+ xlab=deparse(substitute(n)), ...)

+ lines(n, colMeans(res), col="blue")

+ }

> twoPlot = function(n, rl) {

+ par(mfrow=c(1,2))

+ ylim=range(unlist(rl))

+ for(i in seq(along=rl)) {

+ x = if(is.list(n)) n[[i]] else n

+ matplot(x, t(rl[[i]]), pch=20, ylab='r.m.s. error', xlab=deparse(substitute(n)),

+ log="y", ylim=ylim, col="orange", main=names(rl)[i])

+ lines(x, colMeans(rl[[i]]), col="blue")

+ }

+ }

> makeFig = function(name, width, height, expr) {

+ pdfname = paste(name, "pdf", sep=".")

+ pdf(file=pdfname, width=4*width, height=4*height)

+ expr

+ dev.off()

2

●

●

●

●

●

●

●

●

500 2000 10000

0.
00

1
0.

00
5

0.
02

0
n: one stratum

n

r.m
.s

. e
rr

or

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●
●

● ●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

● ●

●

● ●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

1000 2000 5000 20000

0.
00

5
0.

01
0

0.
02

0
0.

05
0

n: 8 strata

n

r.m
.s

. e
rr

or

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 1: Estimation error as a function of the number of features n. If vsn works correctly, the estimation
error should decrease roughly as n−1/2.

+ invisible(pdfname)

+ }

3 Number of features n

Fig. 1 shows the estimation error for the transformation (i. e. the root mean squared difference between
true and estimated transformed data) as a function of the number of features n. If vsn works correctly,
the estimation error should decrease roughly as n−1/2.

> n = 1000*2^seq(-2, 5)

> makeFig("fign1", 1, 1, {

+ res = sim(n=n)

+ onePlot(n, res, main="n: one stratum")

+ })

> n = 1000*2^seq(0, 5)

> makeFig("fign2", 1, 1, {

+ res = sim(n=n, nrstrata=8)

+ onePlot(n, res, main="n: 8 strata")

+ })

4 Number of samples d

Fig. 2a shows the estimation error as a function of the number of samples d. This curve is essentially flat.
This is because the number of parameters that need to be estimated is proportional to d, so the ”number
of data points per parameter” is constant in this plot (in contrast to Fig. 1).

3

●

●

●

●

●

2 5 10 20

0.
00

4
0.

00
8

a) d

d

r.m
.s

. e
rr

or

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

● ●

●

●

●
● ●

●

●

●

●
●

●

●

● ●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

●
● ●

● ●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●
●

●

●

●

●
●

●

●

●

●

1 2 5 10

0.
00

2
0.

00
5

0.
02

0

b) nrstrata

nrstrata

r.m
.s

. e
rr

or

●

●
●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

Figure 2: Estimation error as a function of (a) the number of samples and (b) the number of strata. See
Sections 4 and 5.

> makeFig("figd", 1, 1, {

+ d = 2^seq(1, 5)

+ res = sim(d=d)

+ onePlot(d, res, main="a) d")

+ })

5 Number of strata

In Fig. 2b, we see the estimation error as a function of the number of strata. It should increase, since for
each stratum, we need to estimate separate parameters, and if the overall number of features does not
change, more strata means less data per parameter.

> makeFig("fignrstrata", 1, 1, {

+ nrstrata = 2^seq(0, 4)

+ res = sim(nrstrata=nrstrata)

+ onePlot(nrstrata, res, main="b) nrstrata")

+ })

6 Differentially expressed genes

In the following code, de is the fraction of differentially expressed genes. We run the simulation both
with vsn2’s default setting lts.quantile=0.9 and the more robust lts.quantile=0.5. The reason why
lts.quantile=0.5 is not the default is that the estimator with lts.quantile=0.9 is more efficient (more
precise with less data) if the fraction of differentially expressed genes is not that large. See Figure 3.

> makeFig("figdiff", 2, 1, {

+ de = (0:6)/10
4

●

●

●

●

●

● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
02

0.
05

0.
10

0.
20

de, lts.quantile=0.9

de

r.m
.s

. e
rr

or

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ● ●
●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
02

0.
05

0.
10

0.
20

de, lts.quantile=0.5

de

r.m
.s

. e
rr

or

● ●

●
● ●

●
●

●
●

●
●

●
●

●

●

●
●

● ●
●

●

●
●

●

●

●
●

●

●

●
●

● ●

● ●

●

●
●

● ●

●

●

●

●
●

●
●

●
●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
● ● ●

●

●

● ●

●

● ● ●

●

● ●

● ●
● ●

●

●

● ●

● ●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●

● ● ● ●
●

●

●
● ●

● ●
●

●

●
●

● ●
●

●

●

●

● ●

●

●
●

●

●

●
● ● ●

●

● ●

●

●

● ●
●

●

●

● ●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

●
● ●

●

●
●

● ●
●

● ●

●

●

●
●

● ●
●

Figure 3: Estimation error as a function of the number of differentially expressed genes, for two different
settings of lts.quantile. Note how a) is better for small values auf de, but becomes worse for larger
values of de. See Section 6.

+ res1 = sim(de=de, nrstrata=2, lts.quantile=0.9)

+ res2 = sim(de=de, nrstrata=2, lts.quantile=0.5)

+ twoPlot(de, list("de, lts.quantile=0.9"=res1, "de, lts.quantile=0.5"=res2))

+ })

In the next code chunk, up is the fraction of up-regulated genes among the differentially expressed genes.

> makeFig("figup", 2, 1, {

+ up = (0:8)/8

+ res1 = sim(up=up, nrstrata=2, de=0.2)

+ res2 = sim(up=up, nrstrata=2, de=0.2, lts.quantile=0.5)

+ twoPlot(up, list("a) up, lts.quantile=0.9"=res1, "b) up, lts.quantile=0.5"=res2))

+ })

7 Missing values

In this Section, we check the impact of missing values on the performance of the estimator. miss is the
fraction of missing values in the overall

> makeFig("figmiss", 2, 1, {

+ miss1 = seq(0, 0.5, length=6)

+ res1 = sim(miss=miss1, d=8)

+ miss2 = seq(0, 0.1, length=6)

+ res2 = sim(miss=miss2, d=2)

+ twoPlot(list(miss1, miss2), list("fraction NA (d=8)"=res1, "b) fraction NA (d=2)"=res2))

+ })

5

●
●

● ●

●

● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
10

0.
15

0.
25

a) up, lts.quantile=0.9

up

r.m
.s

. e
rr

or

●

● ● ●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
10

0.
15

0.
25

b) up, lts.quantile=0.5

up
r.m

.s
. e

rr
or

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

● ●

●

●

● ●
● ●

● ●

●

●

● ●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

● ● ● ●

●

●
● ●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

Figure 4: Estimation error as a function of the fraction of up-regulated genes, for two different settings
of lts.quantile; see Section 6.

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

2
0.

01
0

0.
05

0

fraction NA (d=8)

list(miss1, miss2)

r.m
.s

. e
rr

or

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

2
0.

01
0

0.
05

0

b) fraction NA (d=2)

list(miss1, miss2)

r.m
.s

. e
rr

or

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●

●

●
● ●

Figure 5: Estimation error as a function of the fraction of missing data points, see Section 7.

6

> toLatex(sessionInfo())

� R version 2.9.0 Under development (unstable) (2008-11-29 r47029), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=it_IT.UTF-8;LC_NUMERIC=C;LC_TIME=it_IT.UTF-
8;LC_COLLATE=it_IT.UTF-8;LC_MONETARY=C;LC_MESSAGES=it_IT.UTF-8;LC_PAPER=it_IT.UTF-
8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=it_IT.UTF-
8;LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: affy 1.21.0, Biobase 2.3.3, fortunes 1.3-5, lattice 0.17-17, limma 2.17.3, vsn 3.10.2

� Loaded via a namespace (and not attached): affyio 1.11.2, grid 2.9.0, preprocessCore 1.5.2

Table 1: The output of sessionInfo on the build system after running this vignette.

8 Incremental normalization

First, let’s simulate a dataset with 10000 features, 12 arrays, and no differentially expressed genes (in
order to be able to look at the ML estimates rather than their robustified modifications).

> dat = sagmbSimulateData(n=10000, d=12, de=0, nrstrata=1, miss=0, log2scale=TRUE)

> v = new("vsn", mu=dat$mu, sigsq=dat$sigsq)

> fit = vsn2(dat$y, lts.quantile=1, verbose=FALSE)

fit contains the maximum profile likelihood estimate of the vsn model. Then we use the incremental
mode of vsn to estimate, in turn for each array individually, the parameters. The results are shown in
Figure 6.

> parRef = array(as.numeric(NA), dim=dim(coef(fit)))

> for(j in seq_len(ncol(dat$y))) {

+ vj = vsn2(dat$y[,j], reference=v, lts.quantile=1, verbose=FALSE)

+ parRef[,j,] = coef(vj)

+ }

> makeFig("figincr", 2, 2, {

+ par(mfcol=c(2,2))

+ for(k in 1:2) {

+ plot(dat$coefficients[1,,k], parRef[1,,k], pch=16, xlab="True", ylab="Reference fit",

+ main=c("offset", "factor")[k])

+ abline(a=0, b=1, col="orange")

+ plot(coefficients(fit)[1,,k], parRef[1,,k], pch=16, xlab="Profile Likelihood fit", ylab="Reference fit",

+ main=c("offset", "factor")[k])

+ abline(a=0, b=1, col="orange")

+ }

+ })

References

[1] W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Parameter estimation for
the calibration and variance stabilization of microarray data. Statistical Applications in Genetics and
Molecular Biology, Vol. 2: No. 1, Article 3, 2003. http://www.bepress.com/sagmb/vol2/iss1/art3

7

●
●

●

●

●

●

●

●

●

●

●

●

−1.5 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

offset

True

R
ef

er
en

ce
 fi

t

●
●

●

●

●

●

●

●

●

●

●

●

−1 0 1

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

offset

Profile Likelihood fit

R
ef

er
en

ce
 fi

t

●
●

●

●

●
●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5
−

1.
0

−
0.

5
0.

0
0.

5

factor

True

R
ef

er
en

ce
 fi

t

●
●

●

●

●
●

●

●

●

●

●

●

−0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5

factor

Profile Likelihood fit

R
ef

er
en

ce
 fi

t

Figure 6: Comparison of parameters fitted from incremental normalisation (y-axis) with true parameters
(x-axis, upper row) and with parameters fitted from joint profile-likelihood normalisation (x-axis, lower
row); see Section 8.

8

