
Description of the pgUtils package

Johannes Rainer∗

March 22, 2011

Division Molecular Pathophysiology
Biocenter, Medical University Innsbruck

Fritz-Pregl Strasse 3
6020 Innsbruck, Austria, http://bioinfo.i-med.ac.at

and
Tyrolean Cancer Research Institute

Innrain 66, 6020 Innsbruck, Austria, http://www.tcri.at

Contents

1 Introduction 1

2 Creating a database table 2

3 Handling table references 3

1 Introduction

The package pgUtils depends on the RPostgreSQL package and provides some utility
functions for databases in special for a PostgreSQL database. The package provides
functions for creating database tables with autoincrementing primary keys and the posi-
bility to referencing to other tables using foreign keys to allow a referential integrity of
the data. Other functions can be used to insert or update the information in database
tables. All functions run within transactions, so if any error occurs during a database
call, the original state of the database before the call can be restored. Additionally the
packages provides a simple logging mechanism, which writes log messages to a file (which
can be specified).

∗johannes.rainer@i-med.ac.at

1

http://bioinfo.i-med.ac.at
http://www.tcri.at


2 Creating a database table

First of all a connection to the database has to be established. This can be done using
the dbConnect. The code below connects to the database template1 which is installed
by default in every PostgreSQL database. As we do not want to store any information
into this datbase we create a new database by sending the appropriate SQL call and
connect then to this new database.

> library(pgUtils)

> con.su <- dbConnect(PostgreSQL(), host = "localhost", user = "postgres",

+ dbname = "template1")

> if (sum(dbListDatabases(con.su)[, "datname"] == "pgutils") >

+ 0) {

+ dbSendQuery(con.su, "DROP DATABASE pgutils")

+ }

> res <- dbSendQuery(con.su, "CREATE DATABASE pgutils")

> dbDisconnect(con.su)

> con <- dbConnect(PostgreSQL(), host = "localhost", user = "postgres",

+ dbname = "pgutils")

> log.file <- "test.log"

The first database table that we will create is a simple table with 3 columns, two
of them contain numbers and one character strings. The log.file <- "test.log"

specifies the name for the log file. By default this file is called pgUtils.log and resides in
the current working directory.

> createDBTable(con, name = "firsttest", attributes = c("a", "b",

+ "c"), data.types = c("TEXT", "REAL", "REAL"))

> dbColnames(con, "firsttest")

character(0)

This call created a table called firsttest with three columns. The function auto-
matically created a additional column with the name firsttest_pk that is used as
primary key column and which is automatically incremented upon data insertion. The
data.types attribute allows to specify the data types for the columns (if not submitted
all data types will automatically set to TEXT ). To insert data into the database the
function insertIntoTable can be used.

> MyTable <- data.frame(a = c("some", "text"), b = c(2, 3), c = c(1.3,

+ 3.5))

> MyTable

a b c

1 some 2 1.3

2 text 3 3.5

> insertIntoTable(con, name = "firsttest", data = MyTable)

To read the data from the database the dbGetQuery function from the RpostgreSQL
package can be used.

> result <- dbGetQuery(con, "SELECT * FROM firsttest")

2



3 Handling table references

Relational databases allow to combine informations between database tables and to
concatenate the informations. In the next example we will also create two database
tables that are related to each other (to be exact we create a 1 to n relation, that means
that n entries of the one table are related (belong) to one entry in the other table).

> createDBTable(con, name = "species", attributes = c("speciesname",

+ "value"), data.types = c("TEXT"))

> insertIntoTable(con, name = "species", data = data.frame(speciesname = c("hobbit",

+ "human", "orc"), value = c("good", "bad", "very bad")))

> createDBTable(con, name = "individual", attributes = c("name",

+ "age"), data.types = c("TEXT"), references = "species")

> ref <- new("AutoReference", source.table = "individual", ref.table = "species",

+ source.table.column = "speciesref", ref.table.column = "speciesname")

> insertIntoTable(con, name = "individual", data = data.frame(name = c("frodo",

+ "fred", "bilbo"), speciesref = c("hobbit", "human", "hobbit"),

+ age = c(23, 32, 111)), references = ref)

The main points about the calls above are, that it is important to define which
table relates to which and which column of the submitted data table can be used to
establish the relation between the tables (in the example above this is done with the
AutoReference object and the column speciesref in the second data table). The function
insertIntoTable uses this information to insert the primary keys of the entry to which
the rows of the second table link into theyr foreign key field. The database table species
has the following data stored

> dbGetQuery(con, "SELECT * FROM species")

species_pk speciesname value

1 1 hobbit good

2 2 human bad

3 3 orc very bad

and the table individual

> dbGetQuery(con, "SELECT * FROM individual")

individual_pk species_fk name age

1 1 1 frodo 23

2 2 2 fred 32

3 3 1 bilbo 111

Both tables have a primary key column (usually the name of the table ending in
pk) and the individual table has also a foreign key column (usually the name of the

referenced table ending in fk) that is used to link to the species table. So n rows of the
individual table relate to one entry in the species table.

The information between the two tables can now be joined like

> dbGetQuery(con, "SELECT * FROM individual JOIN species ON (species_fk=species_pk) WHERE speciesname='hobbit'")

individual_pk species_fk name age species_pk speciesname value

1 1 1 frodo 23 1 hobbit good

2 3 1 bilbo 111 1 hobbit good

3



Another nice feature of this foreign keys concept is, that it is not possible to delete
entries from the database that are related by another entry. In our case it means that
we cannot delete the hobbit entry as long as there are hobbits in our individual table.

In this way the referential integrity will be mantained and the data in the database
will not get inconsistent.

4


	Introduction
	Creating a database table
	Handling table references

