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1 Introduction

The GeneGroupAnalysis package provides functions to perform statistical identification of
gene functional classes that behave in a distinct manner between the phenotypes of interest
for data sets under cross-sectional or time series designs. This package includes (i) functions
to perform gene set comparison (ii) examples to visualize the results of such comparisons.

1.1 Installation

GeneGroupAnalysis requires that MCMCpack, AnnotationDbi, GO.db, annotate, tcltk and
R (>= 2.10.0) are installed. These should be installed automatically when you install Gene-
GroupAnalysis. To install GeneGroupAnalysis, source biocLite from bioconductor:

> source("http://bioconductor.org/biocLite.R")

> biocLite("GeneGroupAnalysis")

Load the GeneGroupAnalysis, into your current workspace:

> library(GeneGroupAnalysis)

1.2 Further help

To view the GeneGroupAnalysis description and a summary of all the functions within Gene-
GroupAnalysis, type the following:

> library(help=GeneGroupAnalysis)

1.3 Citing

We are delighted if you use this package. Please do email us if you find a bug or have a
suggestion. We would be very grateful if you could cite:

Quiroz-Zarate A and Quackenbush J (2012). Manuscript in preparation .

2 Two simple cases: from gene expression to functional
class selection.

We will very briefly demonstrate the use of some functions in GeneGroupAnalysis by provid-
ing its application on two data sets with different experimental design.

We use the breastCancerVDX data library from Bioconductor for demonstration pur-
poses under a cross-sectional design. This data set corresponds to the data set from [1].
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Minn, AJ and colleagues used Affymetrix U133A Gene Chips to profile gene expression in
286 fresh-frozen tumor samples from patients with lymph-node-negative breast cancer who
were treated during 1980 − 95, but who did not receive systemic neoadjuvant or adjuvant
therapy. These samples correspond from the data set used in [3] with GEO reference acces-
sion number GSE2034, from the tumor bank at the Erasmus Medical Center in Rotterdam,
Netherlands. An additional 58 estrogen receptor-negative samples were added from [1] GEO
(GSE5327). In total 209 tumor samples are classified as ER+ and 135 as ER-. Even though
this data set comes from a 5-year follow-up design, the way the data is conceived for this
analysis is cross-sectional. For purposes of providing an example on the use of the functions
on the package the data set with cross-sectional design has a 70% of the samples with ER+
and with ER- where selected randomly selected.

For a demonstration on a data set with a time series design we use the rheumaticCondi-
tionWOLLBOLD data library from Bioconductor. This data set corresponds to the data used
in [4]. Wollbold and colleagues used Affymetrix U133plus2 Gene Chips to profile expression
of Synovial fibroblasts (SFB) cell cultures derived from six patients with rheumatic diseases,
three with rheumatoid arthritis (RA) and three with osteoarthritis (OA). For each patient,
SFB in culture were treated independently with TNFα and TGFβ1 and profiled at 0, 1, 2, 4
and 12 hours after treatment; all analyses were performed in duplicate.

2.1 Example: Data analysis under a cross-sectional setting.

This is an example on how to perform an analysis with the proposed method in [2] for a data
set with cross-sectional design. This example is divided in two parts. The data preparation
and the execution of the Gibb’s sampler function.

2.1.1 Data preprocessing stage

The original gene expression data set Minn AJ and colleagues [1] has a U133A Affymetrix
platform. The normalized data set was saved to the variable vdx in the breastCancerVDX
data library from Bioconductor.

> library(breastCancerVDX)

> library(GeneGroupAnalysis)

> library(hgu133a.db)

> library(annotate)

> data(vdx,package="breastCancerVDX")

> #-Normalized expression data set

> minn.data.expr=exprs(vdx)

> #--- Checking that the columns correspond to their respective phenotype data id

> #all(colnames(minn.data.expr)==rownames(pData(vdx)))

The data on minn.data.expr has the following appearance (maybe with a different
column order):
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ER + ER −
Sample 1 . . . Sample 209 Sample 1 . . . Sample 135

Probe ID 1 7.84 . . . 7.31 7.11 . . . 6.98
...

...
...

...
...

...
...

Probe ID q 6.14 . . . 6.81 6.52 . . . 6.37

The rows correspond the the measurements for the Affymetrix identifiers and the columns
correspond to the gene expression measurements on the samples.

The first function from the GeneGroupAnalysis package to be used is ArrayInfoFun.
The function arguments are the normalized data set and the mapping between the probe
identifiers and the gene symbols. The output of this functions is a list with four items
containing the necessary information from the respective array platform in therms of gene
symbols and probe identifiers.

> #---Checking the annotation of the data

> #annotation(vdx)

> array.info=ArrayInfoFun(minn.data.expr,hgu133aSYMBOL)

The vectors er.pos and er.neg contain the column identifiers of the samples with ER
+ and ER − status respectively. These vectors are obtained from the phenotype information
provided along with the vdx eSet. Our next step is to obtain the probe identifiers with the
largest variability between ER status across the samples for which there exist a gene symbol.
By applying the GeneMaxVarFun we obtain a list the the row numbers of the probe identifiers
that presented the largest variability and its associated Affymetrix identifier.

> #---ER status of patients

> er.status=pData(vdx)$er

> er.pos=which(er.status==1)

> er.neg=which(er.status==0)

> genes.max.var=GeneMaxVarFun(array.info,minn.data.expr,er.pos,er.neg)

Before moving on, we will define the amount of gene functional classes to considered for
the analysis. At the moment the GeneGroupAnalysis package only considers Gene Ontology
(GO) functional classes. For this example we will focus on its Cellular Component (CC)
ontology up to a depth of 3 on the CC directed acyclic graph (DAG). For this we use the
CC.trees. This object contains the GO processes and their associated gene symbols. This
annotation is a transformation from the original MSigDB ”c5.all.v3.0.symbols.gmt” provided
by the Broad Institute. It contains only the information provided by the respective Gene
Ontology Gene Sets with no additional information. The function GeneGrps2AffyGrpsFun
makes the gene symbol to their associated Affymetrix identifier transformation:

> GO2Gene.grps=GeneGrps2AffyGrpsFun("CC",3,array.info$genes.name.unique,genes.max.var$IndexMaxVar)

Gene functional classes with low number of genes may obscure the potential inferences
drawn from the proposed method. With the objective to keep only the meaningful functional
classes, the function SizeGOAffyGrps selects only those functional classes with our desired
size. For this example we chose the minimum group size of 10.
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> Minn07WrkngGrps=SizeGOAffyGrps(GO2Gene.grps$index.GO.grps,100)

In order to implement the Gibb’s sampler procedure the data set minn.data.expr needs
to be transformed to a data set with functional class expression measurements. The MCMC-

Data.cs performs this transformation.

> Minn07MCMCData=MCMCData.cs(Minn07WrkngGrps$groups,GO2Gene.grps$index.GO.grps,

+ GO2Gene.grps$GO.grps,minn.data.expr,er.pos,er.neg)

2.1.2 Gibb’s sampler executable example

To implement the Gibbs sampler we need to define the empty objects in which the posterior
samples of the parameters of interest are to be kept. The Gibb’s sampler implementation is
in the following way (toy example):

> nsim=40

> burn.in=10

> v.SS.A.i=matrix(0,length(Minn07MCMCData$proc.GO),nsim)

> v.SS.B.i=matrix(0,length(Minn07MCMCData$proc.GO),nsim)

> v.SS.Al=rep(0,nsim)

> v.beta.i=matrix(0,length(Minn07MCMCData$proc.GO),nsim)

> v.alfa.i=matrix(0,length(Minn07MCMCData$proc.GO),nsim)

> v.pi.a.i=matrix(0,length(Minn07MCMCData$proc.GO),nsim)

> v.rho.a=rep(0,nsim)

> #----- Initialization of the parameters

> v.beta.i[,1]=rnorm(length(Minn07MCMCData$proc.GO),0,1)

> v.alfa.i[,1]=rnorm(length(Minn07MCMCData$proc.GO),0,1)

> v.SS.Al[1]=0.1

> L0.alfa=0.001

> v.pi.a.i[,1]=runif(length(Minn07MCMCData$proc.GO))

> v.rho.a[1]=0.1

> Grps.apriori.diff.exp=23

> shape=3

> scale=0.3

> mm.pi=0.75

> aa.pi=10

> often=20

> cut.off=0.7

> result.MCMC=GeneGroupAnalysis::GibbsFun.cs(Minn07MCMCData$y.mu.a,Minn07MCMCData$y.mu.b,

+ Minn07WrkngGrps$group.size,v.beta.i,v.alfa.i,v.SS.A.i,v.SS.B.i,v.SS.Al,v.rho.a,v.pi.a.i,mm.pi,shape,

+ scale,aa.pi,Grps.apriori.diff.exp,nsim,burn.in,often,cut.off)

[1] 20

[1] 5

[1] 40

[1] 3
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2.1.3 Visualizing which gene groups are differentially expressed between pheno-
types.

To plot the probabilities of the functional classes of being differentially expressed we proposed
the following:

> #-------------------------------------------------

> #- Executable example after the application of GibbsFun.cs.

> #-------------------------------------------------

> total=length(burn.in:nsim)

> prob.a=apply(result.MCMC$Alfa[,burn.in:nsim],1,function(x) length(which(x!=0))/total)

> no.groups=length(Minn07MCMCData$proc.GO)

> plot(1:no.groups,prob.a,type="h",main="Probabilities of Alpha different to 0",

+ xlab="CC processes considered",ylab="probability of being differentially expressed")

> abline(h=cut.off,lwd=2,col="red")
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2.2 Example: Data analysis under a time series setting.

This is an example on how to perform an analysis with the proposed method in [2] for a data
set with time series design.
This example is divided in two parts. The data preparation and the execution of the Gibb’s
sampler function.

2.2.1 Data preprocessing stage

The original gene expression data set Wollbold J and colleagues [4] use has a U133plus2
Affymetrix platform. The normalized data set was saved to the variable wollbold in the
rheumaticConditionWOLLBOLD data library from Bioconductor.

> library(GeneGroupAnalysis)

> library(annotate)

> library(rheumaticConditionWOLLBOLD)

> library(hgu133plus2.db)

> data(wollbold,package="rheumaticConditionWOLLBOLD")

> #----Normalized expression data set

> woll.data.exp=exprs(wollbold)

The data on woll.data.exp has the following appearance:
TGF TNF

0hrs . . . 12hrs 0hrs . . . 12hrs
Sbj 1 . . . Sbj 6 . . . Sbj 1 . . . Sbj 6 Sbj 1 . . . Sbj 6 . . . Sbj 1 . . . Sbj 6

Probe ID 1 7.84 . . . 7.31 . . . 7.11 . . . 6.98 7.05 . . . 6.73 . . . 6.45 . . . 6.89
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Probe ID q 5.23 . . . 5.09 . . . 8.93 . . . 8.34 6.12 . . . 6.32 . . . 9.05 . . . 8.89

The rows correspond the the measurements for the Affymetrix identifiers. The subjects
between stimuli are different, but are the same across time, meaning that Sbj 1 at time 0
hrs under TGF is the same as Sbj 1 at time 12 hrs under TGF, but different from the one
on the same times but under TNF.

The first function from the GeneGroupAnalysis package to be used is ArrayInfoFun.
The function arguments are the normalized data set and the mapping between the probe
identifiers and the gene symbols. The output of this functions is a list with four items
containing the necessary information from the respective array platform in therms of gene
symbols and probe identifiers.

> #---Checking the annotation of the data

> #annotation(wollbold)

> array.info=ArrayInfoFun(woll.data.exp,hgu133plus2SYMBOL)

The vectors TGF.exp and TNF.exp contain the column identifiers of the samples with
TGFβ1 and TNFα stimulus respectively. These vectors are obtained from the phenotype
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information provided along with the wollbold eSet. Our next step is to obtain the probe
identifiers with the largest variability between stimuli status across the samples for which there
exist a gene symbol. By applying the GeneMaxVarFun we obtain a list the the row numbers
of the probe identifiers that presented the largest variability and its associated Affymetrix
identifier.

> #---ER status of patients

> TGF.exp=1:30

> TNF.exp=31:60

> genes.max.var=GeneMaxVarFun(array.info,woll.data.exp,TGF.exp,TNF.exp)

Before moving on, we will define the amount of gene functional classes to considered for
the analysis. At the moment the GeneGroupAnalysis package only considers Gene Ontology
(GO) functional classes. For this example we will focus on its Molecular Function (MF)
ontology up to a depth of 3 on the MF directed acyclic graph (DAG). For this we use the
MF.trees. This object contains the GO processes and their associated gene symbols. This
annotation is a transformation from the origial MSigDB ”c5.all.v3.0.symbols.gmt” provided
by the Broad Institute. It contains only the information provided by the respective Gene
Ontology Gene Sets with no additional information. The function GeneGrps2AffyGrpsFun
makes the gene symbol to their associated Affymetrix identifier transformation:

> GO2Gene.grps=GeneGrps2AffyGrpsFun("MF",3,array.info$genes.name.unique,genes.max.var$IndexMaxVar)

Gene functional classes with low number of genes may obscure the potential inferences
drawn from the proposed method. With the objective to keep only the meaningful functional
classes, the function SizeGOAffyGrps selects only those functional classes with our desired
size. For this example we chose the minimum group size of 10.

> Wollbold09WrkngGrps=SizeGOAffyGrps(GO2Gene.grps$index.GO.grps,100)

In order to implement the Gibb’s sampler procedure the data set woll.data.exp needs
to be transformed to a data set with functional class expression measurements. The MCMC-
Data.ts performs this transformation.

> indexes.1=c(1,2,3,4,5,6)

> Wollbold09MCMCData=MCMCData.ts(Wollbold09WrkngGrps$groups,GO2Gene.grps$index.GO.grps,

+ GO2Gene.grps$GO.grps,woll.data.exp,TGF.exp,TNF.exp,indexes.1,5)

The function MCMCData.ts differs from the MCMCData.cs function in the last two argu-
ments. The first argument of these two is indexes.1. This is a vector with the order in
which the subjects are recorded across the time course considered on woll.data.exp. In
this case indexes.1= c(1, 2, 3, 4, 5, 6). The next argument is the number of time points in
the time series. In woll.data.exp the number of time points considered is 5: 0hrs, 1hrs,
2hrs, 4hrs and 12hrs.
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2.2.2 Gibb’s sampler executable example

To implement the Gibbs sampler we need to define the empty objects in which the posterior
samples of the parameters of interest are to be kept. The Gibb’s sampler implementation is
in the following way (toy example):

> nsim=40

> burn.in=10

> Grps.apriori.diff.exp=23

> shape=3

> scale=0.1

> mm.pi=0.75

> aa.pi=10

> often=20

> cut.off=0.72

> df.lambda=10

> no.time.pnts=5

> no.pcnts=6

> v.SS.i=array(0,c(length(Wollbold09MCMCData$proc.GO),no.time.pnts,no.time.pnts,2))

> v.SS.Al=array(0,c((no.time.pnts-1),(no.time.pnts-1),2))

> v.beta.i=array(0,c(length(Wollbold09MCMCData$proc.GO),no.time.pnts,nsim))

> v.alfa.0.i=matrix(0,length(Wollbold09MCMCData$proc.GO),nsim)

> v.alfa.i=array(0,c(length(Wollbold09MCMCData$proc.GO),(no.time.pnts-1),nsim))

> v.pi.a.i=matrix(0,length(Wollbold09MCMCData$proc.GO),nsim)

> v.rho.a=rep(0,nsim)

> v.beta.i[,,1]=rnorm(length(Wollbold09MCMCData$proc.GO),0,1)

> v.alfa.i[,,1]=rnorm(length(Wollbold09MCMCData$proc.GO),0,1)

> v.alfa.0.i[,1]=rnorm(length(Wollbold09MCMCData$proc.GO),0,1)

> v.SS.Al[,,1]=diag(0.1,(no.time.pnts-1))

> v.pi.a.i[,1]=runif(length(Wollbold09MCMCData$proc.GO))

> v.rho.a[1]=0.1

> L0.alfa=diag(0.005,(no.time.pnts-1))

> indexes.1=c(0,6,12,18,24)

> indexes.2=c(0,6,12,18)

> results.MCMC=GeneGroupAnalysis::GibbsNPFun.ts(Wollbold09MCMCData$y.mu.a,

+ Wollbold09MCMCData$y.mu.b,Wollbold09WrkngGrps$group.size,v.beta.i,v.alfa.0.i,

+ v.alfa.i,v.SS.Al,v.rho.a,v.pi.a.i,mm.pi,aa.pi,Wollbold09MCMCData$lambda,df.lambda,L0.alfa,

+ indexes.1,indexes.2,no.time.pnts,no.pcnts,Grps.apriori.diff.exp,nsim,burn.in,often,cut.off)

[1] 20

[1] 28

[1] 40

[1] 18

In GibbsNPFun.ts the vector indexes.1 has the indices that indicate the column num-
ber on woll.data.expr where a new time point period starts. Vector indexes.2 does the
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same for the parameter Alpha (see [2]). For both vectors first column number starts in 0
ONLY for this function.

2.2.3 Visualizing which gene groups are differentially expressed between pheno-
types.

To plot the probabilities of the functional classes of being differentially expressed we proposed
the following:

> #---------------------------------------------------

> #- Executable example after the application of GibbsNPFun.ts

> #---------------------------------------------------

> total=length(burn.in:nsim)

> prob.a=apply(results.MCMC$Alfa[,1,burn.in:nsim],1,function(x) length(which(x!=0))/total)

> no.groups=length(Wollbold09MCMCData$proc.GO)

> plot(1:no.groups,prob.a,type="h",main="Probabilities of Alpha different to 0",

+ xlab="CC processes considered",ylab="probability of being differentially expressed")

> abline(h=cut.off,lwd=2,col="red")
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2.2.4 Obtaining of the functional classes differentially expressed between pheno-
types.

> #---------------------------------------------------

> #- Executable example after the application of GibbsNPFun.ts

> #---------------------------------------------------

> library(annotate)

> library(GO.db)

> selection=which(prob.a>=cut.off)

> selected.GO.groups=GO2Gene.grps$GO.grps[Wollbold09WrkngGrps$groups][selection]

> print(selected.GO.groups)

[1] "GO:0009055" "GO:0003824" "GO:0005198" "GO:0005215" "GO:0060089"

[6] "GO:0016787" "GO:0016853" "GO:0016874" "GO:0022857" "GO:0022892"

[11] "GO:0000166" "GO:0005515" "GO:0016788" "GO:0004888" "GO:0022891"

[16] "GO:0017076" "GO:0032553" "GO:0003723"

> funct.classes=getGOTerm(selected.GO.groups)[[1]]

> print(funct.classes)

GO:0009055

"electron carrier activity"

GO:0003824

"catalytic activity"

GO:0005198

"structural molecule activity"

GO:0005215

"transporter activity"

GO:0060089

"molecular transducer activity"

GO:0016787

"hydrolase activity"

GO:0016853

"isomerase activity"

GO:0016874

"ligase activity"

GO:0022857

"transmembrane transporter activity"

GO:0022892

"substrate-specific transporter activity"

GO:0000166

"nucleotide binding"

GO:0005515
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"protein binding"

GO:0016788

"hydrolase activity, acting on ester bonds"

GO:0004888

"transmembrane signaling receptor activity"

GO:0022891

"substrate-specific transmembrane transporter activity"

GO:0017076

"purine nucleotide binding"

GO:0032553

"ribonucleotide binding"

GO:0003723

"RNA binding"
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3 Session Info

• R version 2.15.1 (2012-06-22), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: AnnotationDbi 1.20.0, Biobase 2.18.0, BiocGenerics 0.4.0,
DBI 0.2-5, GO.db 2.8.0, GeneGroupAnalysis 1.4.0, MASS 7.3-21, MCMCpack 1.2-4,
RSQLite 0.11.2, annotate 1.36.0, breastCancerVDX 1.0.3, coda 0.15-2,
hgu133a.db 2.8.0, hgu133plus2.db 2.8.0, lattice 0.20-10, org.Hs.eg.db 2.8.0,
rheumaticConditionWOLLBOLD 1.0.1

• Loaded via a namespace (and not attached): IRanges 1.16.0, XML 3.95-0,
grid 2.15.1, parallel 2.15.1, stats4 2.15.1, tcltk 2.15.1, tools 2.15.1, xtable 1.7-0
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4 Functions and Data sets within GeneGroupAnalysis

For references to the following functions, please see [2].

Function Description
ArrayInfoFun Function that extracts the required information from the data set
GOGrps2GeneGrpsFun Function that translates GO functional classes into their respective gene

symbol groups and into data matrix row number groups
GOProcsFun Function that computes the GO functional classes to a desired depth of the

GO DAG for the ontology of interest
GeneGroupAnalysis-package Perform Gene Functional Class Analysis
GeneMaxVarFun Function to compute the Affymetrix identifiers with the maximum variability

between phenotypes
GibbsAllFun.ts Function to compute the Gibb’s sampler for the series data design
GibbsFun.cs Function to compute the Gibb’s sampler for the cross-sectional data design
GibbsNPFun.ts Function to compute the Gibb’s sampler for the series data design
MCMCData.cs Function that computes the requiered data set objects for the Gibb’s sampler

under a cross-sectional data design
MCMCData.ts Function that computes the requiered data set objects for the Gibb’s sampler

under a time series data design
MeanMatGrps.Aux.ts Auxiliary function to ’MCMCData.ts’
SizeGOAffyGrps Function to compute gene functional classes with a desired size

14



References

[1] Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, Nuyten D, Kreike B, Zhang Y, Wang
Y, Ishwaran H, Foekens JA, Van de Vijver M and Massagué J: Lung Metastasis Genes
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