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1. Introduction 

 

Normalization of microarray measurements is the first step in a microarray analysis flow. It aims at 

removing consistent sources of variations to make measurements mutually comparable. Reliable 

normalization is essential since the results of all subsequent analyses (such as e.g. clustering) might largely 

be influenced by the normalization procedure.  For normalization of two-color arrays different methods 

have been described.  Although some approaches inherently work with absolute intensities (e.g. ANOVA 
1), in general, preprocessing of two-color microarrays largely depends on the calculation of the log-ratios of 

the measured intensities.  A common normalization step consists of the linearization of the Cy3 vs. Cy5 

intensities (e.g. loess 2).  It assumes the distribution of gene expression is balanced and shows little change 

between the biological samples tested (to which we refer as Global Normalization Assumption or GNA). 

Global mRNA changes that result in an uneven distribution of expression changes however, have been 

shown to occur more frequently than what is currently believed 3,4, and could have a significant impact on 

the interpretation of data normalized according to the Global Normalization Assumption. 

Recently,  a different way of normalizing two-color microarray data was proposed that obviates the GNA 

and that poses several advantages over ratio based approached (for details see Engelen et al., 2006 5). 

Briefly, the normalization is based on a physically motivated model, explicitly modeling the hybridization 

of transcript targets to their corresponding DNA probes, and the relation between the measured 

fluorescence and the amount of hybridized, labeled target.  The parameters of this model and incorporated 

error distributions are estimated from external control spikes: targets that are added to the hybridization 

solution in known concentrations. This, together with the inherent nonlinearity of the model, allows 

normalizing the data without making any assumptions on the distribution of gene expression (as opposed to 

procedures relying on the GNA). More importantly, since our model links target concentration to measured 

intensity, estimating absolute expression levels of transcript targets in the hybridization solution becomes 

possible. 

Here we describe the implementation of this method as a Bio-Conductor package 6, called CALIB. This 

package allows normalizing two-color microarray data, using the method mentioned above. A spike-based 

calibration model is used to estimate absolute transcript levels for each combination of a gene and tested 

biological condition, irrespective of the number of microarray slides or replicate spots on one slide. 

 

 

2.  Classes 

 

Three data objects are used for storing data in the CALIB package.  

RGList_CALIB:  A list used to store raw measurement data after they are read in from an image analysis 

output file, usually by read.rg(). The RGList_CALIB in this package is an extended limma::RGList 

from the Limma package 7,8. As compared to the limma::RGList it contains two additional fields, 

RArea and GArea . These two additional fields are meant to store the spot areas, which in some cases 

are needed to calculate measured intensities.  While the natural measure of spot intensity is the sum of 

pixel intensities within the spot mask, often only mean or median pixel intensities are reported as the 

ratio of averages is equivalent to the ratio of sums. Since CALIB does not work with intensity ratios, in 
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cases were only mean or median pixel intensities are reported, the spot area is required to calculate 

reliable spot intensity values. 

SpikeList: A list used to store raw measurement data of all external control spikes spotted on the arrays. 

An object of this class is created by read.spike(). It is a subset of the object of RGList_CALIB plus two 

fields, RConc and Gconc to indicate known concentrations for the control spikes’ targets added to the 

hybridization solution and labeled in red and green respectively. 

ParameterList: A list used to store parameters of the calibration model for each array. An object of this 

class is created by estimateParameter(). 

RGList_CALIB, SpikeList and ParameterList are inherited directly from the R data type LIST. Therefore, 

methods that work on the LIST data type (e.g. summary, dim, length, ncol, nrow, dimnames, rownames, 

colnames) can be used on these three classes. For example, 

 

> dim(spike) 

 

[1] 600  2 

 

Shows that the SpikeList object spike contains data for 600 spikes and 2 arrays. 

 

> colnames(spike) 

 

will return the column names for the spike object, i.e. the names of the arrays. 

Combination methods can be used on multiple data objects of these classes:  cbind, rbind and merge can be 

used on the RGList_CALIB class and the SpikeList class. On the ParameterList class, only cbind and merge 

can be used, as it makes no sense to row combine different ParameterList objects. Combination methods 

can be used as shown below: 

 

> RG1 <- read.rg(files[1:2], source = “genepix”) 

> RG2 <- read.rg(files[3:5], source = “genepix”) 

> RG <- cbind(RG1,RG2) 

 

Since the RGList_CALIB was adopted from the Limma package, we used an example of the Limma package 

to explain the usage of this class. Some of the limma::RGList functions of the Limma package were 

extended in RGList_CALIB to better suit our needs. 

 

 

3. Example data file 

 

In order to illustrate the workings and principles of the CALIB method and the usage of the functions in the 

package, we included a test set containing two out of fourteen hybridizations of a publicly available 

benchmark data set 9. The experimental design of these two arrays consists of a color-flip of two conditions. 

The usage of the package is illustrated in this guide by means of this test example. 
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Raw data, spikes, model parameters and normalized data are stored in the data files RG.rda, spike.rda, 

parameter.rda and normdata.rda respectively. These examples can be read into R and then used as input of 

the appropriate function in the package (note that the raw data files (.txt file) are not included in the 

package). For example, 

 

> data(RG) 

> data(spike) 

> par <- estimateParameter(RG, spike) 

 

By using data(RG), RG.rda which stores an RGList_CALIB object is read into R. This R object is called 

RG and can be used as input of function estimateParameter(), whose usage will be illustrated in section six 

of this guide. The function data(spike) is used in the same way for reading spike.rda into R  in this example.    

 

 

4. Reading data 

 

4.1  Reading two-color microarray Data 

Since the RGList_CALIB used to store microarray data in the CALIB package is an extension of the 

limma::RGList, the functions used for reading raw data into an RGList object in Limma are also applicable 

in the CALIB package.  

Following the steps in Limma, at first a target file needs to be created. It should be a tab-delimited text file 

with the default name “targets.txt”, and basically describe the experiment design, listing for each array, its 

name, the file where the data corresponding to this array can be found and the condition/dye combinations 

measured on this array. Figure 1 gives an example of the target file.  

 

 
 

Figure 1.  An example of the target file “targets.txt’ 

 

The following command is used to read the target file into R.  

 

> targets <- readTargets() 

 

The targets object contains a column labeled “FileName”. The entries in this column correspond for each 

array to the name of the image analysis output file. This column is used as input argument of the function to 

read in the intensity data: 
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> RG <- read.rg(targets$FileName, source=”<imageanalysisprogram>”,path=”<filedirectory>”) 

 

where <imageanalysisprogram> is the name of the image analysis program used to generate the raw 

datafile and <filedirectory> is the full path of the directory containing the raw data files. At present time, 

the CALIB package supports three image analysis programs: “genepix”, “genepix.median” and 

“quantarray”. RG is an RGList_CALIB object containing the imported microaray data.   

After importing the raw data into R, a specific spot type will be assigned to each of the different spots on 

the array (or different rows of the RG). This is done by first reading in the spot file (an example is given in 

figure 2) which specifies the different user specified spot types (descriptive expression used to make a 

distinction the regular cDNA probes and the different types of control spots (ratio, calibration,…)) and has 

the default name “SpotType.txt” and secondly, by setting the status of each spot on the array to one of the 

user specified spot types. This allows discriminating in the RG between regular cDNA spots, as opposed to 

control spots from which the model parameters will be estimated. Note that while these steps are optional 

in Limma package, they are required in the CALIB package. 

 

 
 

Figure 2.  An Example of spot type file “SpotType.txt” 
 

The spot type file uses simplified regular expressions to match patterns. For example, AA* means any 

string starting with AA, AA. means AA followed by exactly one other character and AA\. means AA 

followed by a period and no other characters.  

The status of the calibration controls, the ratio controls and the negative controls should be Calibration, 

Ratio and Negative respectively.  

The function used to read user-specified spot type files is readSpotType().The function used to control the 

status of each spot on the array is  controlStatus(). They are used as follows: 

 

> spottypes <- readSpotType() 

> RG$genes$Status <- controlStatus(spottypes, RG) 

 

The function readSpotType() takes the spot type file name as input argument. In the example, default name 

“SpotType.txt” is given to the spot type file. Therefore, readSpotType() just takes the default argument. 

For details regarding the usage of these functions and the format of the target file and the spot type file and 

for some more optional functions, we refer to the limma user’s guide in the Limma package.     
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4.2 Reading Spike Data 

Spike data are stored in a SpikeList object. The data in the SpikeList object correspond to a subset of the 

data stored in the RGList_CALIB object, i.e. to these data that correspond to the measurements of the 

externally added control spikes as specified by their user defined spot status.  

In addition, the SpikeList object contains two more fields: RConc and GConc. The entries in these fields 

correspond to the absolute concentrations of labeled mRNAs for each of the control spikes. RConc and 

GConc are set by reading information from a user-specified concentration file.  

 

An example of a concentration file is given below in figure 3: it is a tab-delimited text file in which each 

row corresponds to a specific control spike, identified by the rows’ entry in an identifier column, in this 

case with the name “SOURCE_CLONE_ID”. This name of the identifier column should match the name of 

a column in the RG$genes (where RG is an RGList_CALIB object) of which the entries contain patterns or 

regular expressions sufficient to uniquely identify each different spike. The entries of each row in the 

columns REDCONC and GREENCONC by default contain the absolute concentrations of the spike, 

labeled with respectively the red and the green dye added to the hybridization solution. For each row, the 

entry in the TYPE column indicates the type of the particular spike. The names used to indicate spike types 

in the TYPE column should match the names used to indicate the spike status (or spot type) in the 

RGList_CALIB object.  

 

 
Figure 3. An example of concentration file “conc.txt” 

 

In this example, two identifier columns ORIGIN and SOURCE_CLONE_ID are used.     

For a concentration file named conc.txt a SpikeList object can be created by 

 

> spike <- read.spike(RG, file = “conc.txt”, path = <filedirectory>) 
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When the concentration column names differ from the default names “REDCONC” and “GREENCONC” 

(for example rconc and gconc) the function can be called as follows: 

 

> spike <- read.spike(RG, file = “conc.txt”, conccol = list (RConc = “rconc”, GConc = “gconc”), path = 

<filedirectory>) 

 

In both previous examples, we assumed that the same spike set (e.g. a commercial kit) was hybridized to all 

arrays. When this is not the case, for instance, when the same spike set is added in different concentrations 

on the different arrays, or when different dye configurations are used for the same spike set hybridized to 

the different arrays (e.g. an experiment where ratio spikes are ‘color-flipped’ from one array to another), 

the user has to specify a separate concentration file for each array.  For example, if we have two different 

arrays with different sets of spikes hybridized to them, a single concentration file is defined for each array; 

say “conc1.txt” and “conc2.txt”. In case the default concentration column names are used, the read.spike() 

function should be called as follows: 

 

> spike <- read.spike(RG, file = c(“conc1.txt”, “conc2.txt”), different = TRUE, path = <filedirectory> ) 

 

where conc1.txt and conc2.txt correspond to the concentration files of the first and second array in the RG 

respectively. 

In all previous examples, a SpikeList called spike is created, containing the spike data of all the arrays. 

  

 

5. Quality control 

 

In the CALIB package, calibration model parameters are estimated from external control spikes. The final 

normalization thus depends on the quality of spotted spikes on the arrays. Checking the spike quality prior 

to estimating the model parameters is definitely advisable.  

Two functions to visually inspect the quality of the spikes are provided i.e., plotSpikeCI() and 

plotSpikeRG().  In the following, we will use the example dataset provided by the package to explain how 

to create plots with these functions. 

The function plotSpikeCI() plots for one specified array the known concentration of the spikes 

(corresponding to the amount of externally added labeled cDNA of each spike ) against their measured 

intensity and this for both the red and green channel.   

 

> plotSpikeCI(spike)  

 

An additional argument array of the function plotSpikeCI() takes the first array as default value. Therefore, 

this function gives the plot (shown in figure 4) of the first array of spike. If the second array needs to be 

plotted, the argument array has to be specified. 
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> arraynum<- 2 

> plotSpikeCI(spike, array=arraynum) 

 
Figure 4 

 

From this plot, a sigmoidal relationship between the measured intensities and added concentrations is to be 

expected. Indeed, in a certain range the relationship will be linear, but at the highest and lowest 

concentration levels saturation effects will occur, which might be different for the red and green channel. 

The function plotSpikeRG() plots for all spikes on a specified array the red versus the green intensities. For 

example, if we want to plot the red versus green intensities of the first array, the function is used as follows:  

 

> plotSpikeRG(spike) 

 
Figure 5 

In this plot we expect the ratio 1:1 spikes on the one-one axis. The higher intensity levels in this plot give 

an idea of the multiplicative error variance on the measured intensities. 
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6. Estimation of model parameters 

 

Once the quality of the spikes is assessed, spike measurements can be used to estimate the parameters of 

the calibration model. This model describes the relationship between measured intensities and target levels 

added to the hybridization solution. The function estimateParameter() is used to estimate the parameters of 

the calibration models based on the measured intensities and known concentrations of the external control 

spikes. It takes the RGList_CALIB and SpikeList objects as input arguments and estimates a set of 

parameters for each array. The function can be called as follows 

 

> parameter <-  estimateParameter (RG, spike) 

 

Besides the required inputs RGList_CALIB object and SpikeList object, there are three optional input 

arguments for this function.   

• bc and area (both logical values) are used to specify how intensity values per probe need to be 

calculated: bc indicates whether a background correction is used , area indicates whether the 

foreground intensity will be multiplied with the spot area The default value of these two 

arguments are bc = FALSE (no background correction) and area = TRUE (multiplication 

performed).  

• errormodel specifies the type of spot error distribution used to model the spot sizes. As described 

in Engelen et al. 2006, the calibration model contains a hybridization reaction which is modeled as  
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In this equation, the spot capacity s0 is assumed to follow a certain distribution around an average 

spot capacity. Two possible distributions are provided:  either the spot capacity is additive 

sss s εµµ +=0:   (errormodel =”A”), or the spot capacity error is multiplicative ses s

ε
µ=0  

(errormodel =”M”)  in both cases with the spot error ),0(~ ss N σε .  

 

If all arguments are given by the user, estimateParameter() can be used like  

 

> parameter <- estimateParameter(RG, spike, bc = FALSE, area = TRUE, errormodel = “M”) 

 

The output of this function is an object of ParameterList (named parameter in the above examples), 

containing for each array the model parameters and the user specified input arguments (the bc and area 

values and the type of errormodel). 

 

Results can be accessed by,  

 

> show (parameter) 
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or 

 

> summary (parameter) 

 

which allow viewing the compacted print-out and the summary of the parameter object. 

 

After the parameter estimation, an option is provided to adjust the estimated lower saturation level 

(indicated by P2 in the parameter list) for either one of both channels.  This is needed in these cases, where 

the lower saturation limit for the spike measurements is seen significantly below the saturation for other 

data points. This is illustrated in the Figure 6 below, where the lower green intensity levels for the spikes 

(black dots) are generally below those of the other data points (grey dots; the blue curve represents the 

estimated parameters), indicating that the estimated parameter P2 for the green channel (based on the 

spikes) is not ideal for normalizing the other data points. 

 

Figure 6. 

The cause for this discrepancy in lower intensity level between the spike intensities and the intensities of 

the other data points is not known. A possible explanation might be that fractions of degraded target more 

or less specifically bind to their corresponding probes raising the background. Industrially synthesized 

spikes are purer (less degradation), so the effect would be limited to the measurements of the actual gene 

probes. A higher incorporation rate of Cy3 labels could explain the difference between both channels (i.e. 

smaller, degraded targets might still get labeled with Cy3, but not with Cy5).  

As describing in section five, the function plotSpikeRG()  can be used to check the quality of the spikes. It 

can also be used to evaluate the necessity for an adjustment of P2 values if it is called with different 

arguments as follows: 

 

> plotSpikeRG(spike, parameter, RG) 

 

This function will give plot shown in figure 6 (left hand panel). In the example, this plot indicates that 

adjustment of cy3 is necessary.  
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When deemed necessary, function adjustmentP2() is available for the adjustment. The user can specify the 

array and channel for which the adjustment will be performed by giving the arguments arrayindex and 

colorindex respectively. For the colorindex, 1 means red and 2 means green. For example, 

 

> parameter -> adjustP2(RG, parameter, arrayindex = c(1,2), colorindex = c(1,2))  

 

means that the arrays with index 1 and 2 (according to the data in RG) should be adjusted. For array 1, P2 

of the red channel should be adjusted, while for array 2 P2 of the green channel should be adjusted. The 

ParameterList object parameter gets an additional field called AdjustFactor for the adjustment factor of P2.  

After adjustment, the evaluation function can also be called to check the result of adjustment. For example, 

 

> plotSpikeRG(spike, parameter, RG) 

 

Figure 6 (right hand panel) gives the plot created by this function. These two plots show that after 

adjustment (right hand panel) the estimated model indicated by dotted line on the plot fits the data better 

than without adjustment (left hand panel). 

 

 

7. Normalization 

 

Once the calibration curves for the red and green channels have been estimated for each array, they can be 

used to normalize the data. The function normalizeData() is used to this and estimates absolute expression 

levels for each combination of a gene and condition in the experiment design, regardless of the number of 

replicates. This is conceptually shown for a loop design of three conditions in the figure 7 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. 
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The function normalizeData() takes as input arguments the raw data in the form of an RGList_CALIB 

object, and the estimated model parameters in the form of a ParameterList object. The settings of the bc, 

area and errormodel, also needed to perform the normalization are also obtained from the ParameterList 

object. 

  

The design of the array is specified by the input arguments array, condition and dye. Each of them is an 

integer vector with equal length. 

 

 
 

Figure 8. 

 

For example, for a two array color-flip design as specified in figure 8, values of array, condition and dye 

should be given as: 

 

> varray <- c(1,1,2,2) 

> vcondition <- c(1,2,2,1) 

> vdye <- c(1,2,1,2) 

 

 
 

Figure 9. 
 

For or a loop design with three different conditions as specified in figure 9, values of array, condition and 

dye should be given as: 

 

> varray <- c(1,1,2,2,3,3) 

> vcondition <- c(1,2,2,3,3,1) 

> vdye <- c(1,2,1,2,1,2) 

 

From the examples given above, it is clear that:  

• Each entry in the vector corresponds to an array channel 

• Each entry of array indicates on which array this channel was measured. Numbers are duplicated 

because in a two color design, each array contains two channels. 
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• Each entry of condition gives the numeric representation of the condition measured in this channel 

• Each entry in dye indicates the dye used to label this channel. Because we are dealing with two-

color arrays, only two numbers are used in vector dye.  By default 1 represents the red dye and 2 

represents the green dye.  

 

The input argument idcol specifies the column name of unique identifiers for each probe. It is possible for 

the same gene to occur multiple times within one array. However, during the calculation, these replicates 

will be combined and only one normalized value is calculated from these replicates, as indicated in figure 

7. The argument is required since different arrays have different annotations. For example, this argument 

can be specified as follows: 

 

> id_col <- “CLONE_ID” 

 

After specifying all these arguments, the function can be called as follows: 

  

> normdata <- normalizeData(RG, parameter,  array = varray, condition = vcondition, dye = vdye, idcol = 

id_col,) 

 

When the function is called like this, all genes in the RGList_CALIB object are normalized.  However, 

since normalization is calculated gene by gene, the normalization can also be performed on individual 

genes or on a group of interesting genes instead of on the whole gene set. The user can enter the set of 

selected genes on which normalization has to be performed by another argument of this function – cloneid.   

 

For example, if we only want to know the estimated expression level of clone “200001”, we can type 

 

> cloneid_interested <- “200001” 

> normdata <- normalizeData(RG, parameter,  array = varray, condition = vcondition, dye = vdye, cloneid 

= cloneid_interested, idcol = id_col,) 

 

Or if we are interested in a group of clones, we can type 

 

> cloneid_interested <- c(“200001”, “200002”, “200003”, “200004”, “200005”) 

> normdata <- normalizeData(RG, parameter,  array = varray, condition = vcondition, dye = vdye, cloneid 

= cloneid_interested, idcol = id_col) 

 

In all examples, normdata is the output of this function. It is a numeric matrix with rows representing 

individual genes and columns representing different condition. Namely, every value in this result matrix 

represents the expression level in a different gene-condition combination (as illustrated by the figure 7 at 

the beginning of this section).  
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8.  Diagnostics and data visualization 

 

The CALIB package provides different visualization functions that facilitate quality control and data 

exploration before and after parameter estimation.  

The estimation of model parameters is dependent on the quality of the external control spikes. In order to 

ensure good normalization results, it is advisable to check the quality of the external controls prior to 

normalization, by using visualization functions described in section five.  

Besides checking external control quality, the functions plotSpikeCI() and plotSpikeHI() can also be used 

for evaluating the model fit after parameter estimation (if the additional argument “parameter” is added). 

When including the estimated calibration parameters, both the data and the model fit (red and green curves) 

are plotted.  

The function plotSpikeCI() should then be called as follows (where arraynum is the index of the array that 

will be plotted.): 

 

> arraynum <- 1 

> plotSpikeCI(spike, parameter, array = arraynum) 

 

Figure 10 shows the plot created by this function. The red and green curves represent the estimated 

calibration models for the red and green channels respectively.  

 
Figure 10 

 

The function plotSpikeHI() should then be called as follows (again, arraynum is the index of the array that 

will be plotted.): 

 

> arraynum <- 1 

> plotSpikeHI(spike, parameter, array = arraynum) 
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The red and green curves represent the estimated calibration models for the red and green channel 

respectively. Light red and green dots indicate the amount of hybridized target for the measured intensities 

of the external control spikes if all spot capacities were equal (εs=0). Black dots represent the estimated 

amount of hybridized target by taking into account the estimated spot capacity errors, i.e. the black dots 

illustrate how the incorporation of spot errors into the model is an adequate tool for explaining the large 

variation in measured intensities. In general, the more tight and smooth (no visible artifacts) the black dots 

fit the model curves, the more suitable the model is for further normalization.  

 

 
Figure 11 

 

Note that for both plotSpikeCI() and plotSpikeHI()the default array index argument array is set to 1.   

 

The function plotSpikeSpotError()plots the distribution of the estimated spot capacity errors for all spikes 

of the specified array, and can be used to ascertain the number of outliers or ‘broken’ spots (spots with 

unusually small spot capacity errors). If there are a substantial amount of these outliers, it is advisable to re-

estimate the model parameters after omitting these spots from the spike set. Depending on the value of the 

argument plottype (“hist”, “boxplot” and “dens”) this distribution will be plotted as a histogram, a boxplot 

or a density plot. Resulting plots are shown in figure 12, 13 and 14. 

 

Function plotSpikeSpotError(), can thus be called in the following three ways,  

 

> ## plot histogram of the first array, which is the default value of the argument array. 

> plotSpikeSpotError(parameter, plottype = "hist") 

> ## plot boxplot of both arrays. 

> plotSpikeSpotError(parameter, plottype = "boxplot", plotnames = NULL) 

> ## plot density function of the first array, which is the default value of the argument array. 

> plotSpikeSpotError(parameter, plottype = “dens”, width = 1) 
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Figure 12 

 
 

 
Figure 13 
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Figure 14 

 

The function plotNormalzedData() can be called after data normalization and allows comparing the 

estimated expression levels of two selected conditions. It provides an image of the overall similarity 

between two conditions that were present in the experimental design, i.e. more similar conditions center 

more tightly around the bisector, as is the case for the example used in this guide (identical conditions). The 

function is called as follows: 

 

> ## specify the two conditions to be plotted. 

> cond <- c(1,2)              

> ## use the default values for other parameters. 

> plotNormalizedData(normdata,condition = cond) 

 

The plot created by this function is shown as Figure 15. 

 



 19 

 
 

Figure 15 
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