
 1

CALIB package User’s Guide

Hui Zhao, Kristof Engelen, Bart DeMoor and Kathleen Marchal

Katholieke University Leuven, Belgium

July, 2006

 2

Table of contents

1. Introduction 3

2. Classes 3

3. Example data file 4

4. Reading data 5

5. Quality control 8

6. Estimation of model parameters 10

7. Normalization 12

8. Diagnostics and data visualization 15

9. References 19

 3

1. Introduction

Normalization of microarray measurements is the first step in a microarray analysis flow. It aims at

removing consistent sources of variations to make measurements mutually comparable. Reliable

normalization is essential since the results of all subsequent analyses (such as e.g. clustering) might largely

be influenced by the normalization procedure. For normalization of two-color arrays different methods

have been described. Although some approaches inherently work with absolute intensities (e.g. ANOVA
1), in general, preprocessing of two-color microarrays largely depends on the calculation of the log-ratios of

the measured intensities. A common normalization step consists of the linearization of the Cy3 vs. Cy5

intensities (e.g. loess 2). It assumes the distribution of gene expression is balanced and shows little change

between the biological samples tested (to which we refer as Global Normalization Assumption or GNA).

Global mRNA changes that result in an uneven distribution of expression changes however, have been

shown to occur more frequently than what is currently believed 3,4, and could have a significant impact on

the interpretation of data normalized according to the Global Normalization Assumption.

Recently, a different way of normalizing two-color microarray data was proposed that obviates the GNA

and that poses several advantages over ratio based approached (for details see Engelen et al., 2006 5).

Briefly, the normalization is based on a physically motivated model, explicitly modeling the hybridization

of transcript targets to their corresponding DNA probes, and the relation between the measured

fluorescence and the amount of hybridized, labeled target. The parameters of this model and incorporated

error distributions are estimated from external control spikes: targets that are added to the hybridization

solution in known concentrations. This, together with the inherent nonlinearity of the model, allows

normalizing the data without making any assumptions on the distribution of gene expression (as opposed to

procedures relying on the GNA). More importantly, since our model links target concentration to measured

intensity, estimating absolute expression levels of transcript targets in the hybridization solution becomes

possible.

Here we describe the implementation of this method as a Bio-Conductor package 6, called CALIB. This

package allows normalizing two-color microarray data, using the method mentioned above. A spike-based

calibration model is used to estimate absolute transcript levels for each combination of a gene and tested

biological condition, irrespective of the number of microarray slides or replicate spots on one slide.

2. Classes

Three data objects are used for storing data in the CALIB package.

RGList_CALIB: A list used to store raw measurement data after they are read in from an image analysis

output file, usually by read.rg(). The RGList_CALIB in this package is an extended limma::RGList

from the Limma package 7,8. As compared to the limma::RGList it contains two additional fields,

RArea and GArea . These two additional fields are meant to store the spot areas, which in some cases

are needed to calculate measured intensities. While the natural measure of spot intensity is the sum of

pixel intensities within the spot mask, often only mean or median pixel intensities are reported as the

ratio of averages is equivalent to the ratio of sums. Since CALIB does not work with intensity ratios, in

 4

cases were only mean or median pixel intensities are reported, the spot area is required to calculate

reliable spot intensity values.

SpikeList: A list used to store raw measurement data of all external control spikes spotted on the arrays.

An object of this class is created by read.spike(). It is a subset of the object of RGList_CALIB plus two

fields, RConc and Gconc to indicate known concentrations for the control spikes’ targets added to the

hybridization solution and labeled in red and green respectively.

ParameterList: A list used to store parameters of the calibration model for each array. An object of this

class is created by estimateParameter().

RGList_CALIB, SpikeList and ParameterList are inherited directly from the R data type LIST. Therefore,

methods that work on the LIST data type (e.g. summary, dim, length, ncol, nrow, dimnames, rownames,

colnames) can be used on these three classes. For example,

> dim(spike)

[1] 600 2

Shows that the SpikeList object spike contains data for 600 spikes and 2 arrays.

> colnames(spike)

will return the column names for the spike object, i.e. the names of the arrays.

Combination methods can be used on multiple data objects of these classes: cbind, rbind and merge can be

used on the RGList_CALIB class and the SpikeList class. On the ParameterList class, only cbind and merge

can be used, as it makes no sense to row combine different ParameterList objects. Combination methods

can be used as shown below:

> RG1 <- read.rg(files[1:2], source = “genepix”)

> RG2 <- read.rg(files[3:5], source = “genepix”)

> RG <- cbind(RG1,RG2)

Since the RGList_CALIB was adopted from the Limma package, we used an example of the Limma package

to explain the usage of this class. Some of the limma::RGList functions of the Limma package were

extended in RGList_CALIB to better suit our needs.

3. Example data file

In order to illustrate the workings and principles of the CALIB method and the usage of the functions in the

package, we included a test set containing two out of fourteen hybridizations of a publicly available

benchmark data set 9. The experimental design of these two arrays consists of a color-flip of two conditions.

The usage of the package is illustrated in this guide by means of this test example.

 5

Raw data, spikes, model parameters and normalized data are stored in the data files RG.rda, spike.rda,

parameter.rda and normdata.rda respectively. These examples can be read into R and then used as input of

the appropriate function in the package (note that the raw data files (.txt file) are not included in the

package). For example,

> data(RG)

> data(spike)

> par <- estimateParameter(RG, spike)

By using data(RG), RG.rda which stores an RGList_CALIB object is read into R. This R object is called

RG and can be used as input of function estimateParameter(), whose usage will be illustrated in section six

of this guide. The function data(spike) is used in the same way for reading spike.rda into R in this example.

4. Reading data

4.1 Reading two-color microarray Data

Since the RGList_CALIB used to store microarray data in the CALIB package is an extension of the

limma::RGList, the functions used for reading raw data into an RGList object in Limma are also applicable

in the CALIB package.

Following the steps in Limma, at first a target file needs to be created. It should be a tab-delimited text file

with the default name “targets.txt”, and basically describe the experiment design, listing for each array, its

name, the file where the data corresponding to this array can be found and the condition/dye combinations

measured on this array. Figure 1 gives an example of the target file.

Figure 1. An example of the target file “targets.txt’

The following command is used to read the target file into R.

> targets <- readTargets()

The targets object contains a column labeled “FileName”. The entries in this column correspond for each

array to the name of the image analysis output file. This column is used as input argument of the function to

read in the intensity data:

 6

> RG <- read.rg(targets$FileName, source=”<imageanalysisprogram>”,path=”<filedirectory>”)

where <imageanalysisprogram> is the name of the image analysis program used to generate the raw

datafile and <filedirectory> is the full path of the directory containing the raw data files. At present time,

the CALIB package supports three image analysis programs: “genepix”, “genepix.median” and

“quantarray”. RG is an RGList_CALIB object containing the imported microaray data.

After importing the raw data into R, a specific spot type will be assigned to each of the different spots on

the array (or different rows of the RG). This is done by first reading in the spot file (an example is given in

figure 2) which specifies the different user specified spot types (descriptive expression used to make a

distinction the regular cDNA probes and the different types of control spots (ratio, calibration,…)) and has

the default name “SpotType.txt” and secondly, by setting the status of each spot on the array to one of the

user specified spot types. This allows discriminating in the RG between regular cDNA spots, as opposed to

control spots from which the model parameters will be estimated. Note that while these steps are optional

in Limma package, they are required in the CALIB package.

Figure 2. An Example of spot type file “SpotType.txt”

The spot type file uses simplified regular expressions to match patterns. For example, AA* means any

string starting with AA, AA. means AA followed by exactly one other character and AA\. means AA

followed by a period and no other characters.

The status of the calibration controls, the ratio controls and the negative controls should be Calibration,

Ratio and Negative respectively.

The function used to read user-specified spot type files is readSpotType().The function used to control the

status of each spot on the array is controlStatus(). They are used as follows:

> spottypes <- readSpotType()

> RG$genes$Status <- controlStatus(spottypes, RG)

The function readSpotType() takes the spot type file name as input argument. In the example, default name

“SpotType.txt” is given to the spot type file. Therefore, readSpotType() just takes the default argument.

For details regarding the usage of these functions and the format of the target file and the spot type file and

for some more optional functions, we refer to the limma user’s guide in the Limma package.

 7

4.2 Reading Spike Data

Spike data are stored in a SpikeList object. The data in the SpikeList object correspond to a subset of the

data stored in the RGList_CALIB object, i.e. to these data that correspond to the measurements of the

externally added control spikes as specified by their user defined spot status.

In addition, the SpikeList object contains two more fields: RConc and GConc. The entries in these fields

correspond to the absolute concentrations of labeled mRNAs for each of the control spikes. RConc and

GConc are set by reading information from a user-specified concentration file.

An example of a concentration file is given below in figure 3: it is a tab-delimited text file in which each

row corresponds to a specific control spike, identified by the rows’ entry in an identifier column, in this

case with the name “SOURCE_CLONE_ID”. This name of the identifier column should match the name of

a column in the RG$genes (where RG is an RGList_CALIB object) of which the entries contain patterns or

regular expressions sufficient to uniquely identify each different spike. The entries of each row in the

columns REDCONC and GREENCONC by default contain the absolute concentrations of the spike,

labeled with respectively the red and the green dye added to the hybridization solution. For each row, the

entry in the TYPE column indicates the type of the particular spike. The names used to indicate spike types

in the TYPE column should match the names used to indicate the spike status (or spot type) in the

RGList_CALIB object.

Figure 3. An example of concentration file “conc.txt”

In this example, two identifier columns ORIGIN and SOURCE_CLONE_ID are used.

For a concentration file named conc.txt a SpikeList object can be created by

> spike <- read.spike(RG, file = “conc.txt”, path = <filedirectory>)

 8

When the concentration column names differ from the default names “REDCONC” and “GREENCONC”

(for example rconc and gconc) the function can be called as follows:

> spike <- read.spike(RG, file = “conc.txt”, conccol = list (RConc = “rconc”, GConc = “gconc”), path =

<filedirectory>)

In both previous examples, we assumed that the same spike set (e.g. a commercial kit) was hybridized to all

arrays. When this is not the case, for instance, when the same spike set is added in different concentrations

on the different arrays, or when different dye configurations are used for the same spike set hybridized to

the different arrays (e.g. an experiment where ratio spikes are ‘color-flipped’ from one array to another),

the user has to specify a separate concentration file for each array. For example, if we have two different

arrays with different sets of spikes hybridized to them, a single concentration file is defined for each array;

say “conc1.txt” and “conc2.txt”. In case the default concentration column names are used, the read.spike()

function should be called as follows:

> spike <- read.spike(RG, file = c(“conc1.txt”, “conc2.txt”), different = TRUE, path = <filedirectory>)

where conc1.txt and conc2.txt correspond to the concentration files of the first and second array in the RG

respectively.

In all previous examples, a SpikeList called spike is created, containing the spike data of all the arrays.

5. Quality control

In the CALIB package, calibration model parameters are estimated from external control spikes. The final

normalization thus depends on the quality of spotted spikes on the arrays. Checking the spike quality prior

to estimating the model parameters is definitely advisable.

Two functions to visually inspect the quality of the spikes are provided i.e., plotSpikeCI() and

plotSpikeRG(). In the following, we will use the example dataset provided by the package to explain how

to create plots with these functions.

The function plotSpikeCI() plots for one specified array the known concentration of the spikes

(corresponding to the amount of externally added labeled cDNA of each spike) against their measured

intensity and this for both the red and green channel.

> plotSpikeCI(spike)

An additional argument array of the function plotSpikeCI() takes the first array as default value. Therefore,

this function gives the plot (shown in figure 4) of the first array of spike. If the second array needs to be

plotted, the argument array has to be specified.

 9

> arraynum<- 2

> plotSpikeCI(spike, array=arraynum)

Figure 4

From this plot, a sigmoidal relationship between the measured intensities and added concentrations is to be

expected. Indeed, in a certain range the relationship will be linear, but at the highest and lowest

concentration levels saturation effects will occur, which might be different for the red and green channel.

The function plotSpikeRG() plots for all spikes on a specified array the red versus the green intensities. For

example, if we want to plot the red versus green intensities of the first array, the function is used as follows:

> plotSpikeRG(spike)

Figure 5

In this plot we expect the ratio 1:1 spikes on the one-one axis. The higher intensity levels in this plot give

an idea of the multiplicative error variance on the measured intensities.

 10

6. Estimation of model parameters

Once the quality of the spikes is assessed, spike measurements can be used to estimate the parameters of

the calibration model. This model describes the relationship between measured intensities and target levels

added to the hybridization solution. The function estimateParameter() is used to estimate the parameters of

the calibration models based on the measured intensities and known concentrations of the external control

spikes. It takes the RGList_CALIB and SpikeList objects as input arguments and estimates a set of

parameters for each array. The function can be called as follows

> parameter <- estimateParameter (RG, spike)

Besides the required inputs RGList_CALIB object and SpikeList object, there are three optional input

arguments for this function.

• bc and area (both logical values) are used to specify how intensity values per probe need to be

calculated: bc indicates whether a background correction is used , area indicates whether the

foreground intensity will be multiplied with the spot area The default value of these two

arguments are bc = FALSE (no background correction) and area = TRUE (multiplication

performed).

• errormodel specifies the type of spot error distribution used to model the spot sizes. As described

in Engelen et al. 2006, the calibration model contains a hybridization reaction which is modeled as

 A

s

s K
xsx

x
=

−)(00

In this equation, the spot capacity s0 is assumed to follow a certain distribution around an average

spot capacity. Two possible distributions are provided: either the spot capacity is additive

sss s εµµ +=0: (errormodel =”A”), or the spot capacity error is multiplicative ses s

ε
µ=0

(errormodel =”M”) in both cases with the spot error),0(~ ss N σε .

If all arguments are given by the user, estimateParameter() can be used like

> parameter <- estimateParameter(RG, spike, bc = FALSE, area = TRUE, errormodel = “M”)

The output of this function is an object of ParameterList (named parameter in the above examples),

containing for each array the model parameters and the user specified input arguments (the bc and area

values and the type of errormodel).

Results can be accessed by,

> show (parameter)

 11

or

> summary (parameter)

which allow viewing the compacted print-out and the summary of the parameter object.

After the parameter estimation, an option is provided to adjust the estimated lower saturation level

(indicated by P2 in the parameter list) for either one of both channels. This is needed in these cases, where

the lower saturation limit for the spike measurements is seen significantly below the saturation for other

data points. This is illustrated in the Figure 6 below, where the lower green intensity levels for the spikes

(black dots) are generally below those of the other data points (grey dots; the blue curve represents the

estimated parameters), indicating that the estimated parameter P2 for the green channel (based on the

spikes) is not ideal for normalizing the other data points.

Figure 6.

The cause for this discrepancy in lower intensity level between the spike intensities and the intensities of

the other data points is not known. A possible explanation might be that fractions of degraded target more

or less specifically bind to their corresponding probes raising the background. Industrially synthesized

spikes are purer (less degradation), so the effect would be limited to the measurements of the actual gene

probes. A higher incorporation rate of Cy3 labels could explain the difference between both channels (i.e.

smaller, degraded targets might still get labeled with Cy3, but not with Cy5).

As describing in section five, the function plotSpikeRG() can be used to check the quality of the spikes. It

can also be used to evaluate the necessity for an adjustment of P2 values if it is called with different

arguments as follows:

> plotSpikeRG(spike, parameter, RG)

This function will give plot shown in figure 6 (left hand panel). In the example, this plot indicates that

adjustment of cy3 is necessary.

 12

When deemed necessary, function adjustmentP2() is available for the adjustment. The user can specify the

array and channel for which the adjustment will be performed by giving the arguments arrayindex and

colorindex respectively. For the colorindex, 1 means red and 2 means green. For example,

> parameter -> adjustP2(RG, parameter, arrayindex = c(1,2), colorindex = c(1,2))

means that the arrays with index 1 and 2 (according to the data in RG) should be adjusted. For array 1, P2

of the red channel should be adjusted, while for array 2 P2 of the green channel should be adjusted. The

ParameterList object parameter gets an additional field called AdjustFactor for the adjustment factor of P2.

After adjustment, the evaluation function can also be called to check the result of adjustment. For example,

> plotSpikeRG(spike, parameter, RG)

Figure 6 (right hand panel) gives the plot created by this function. These two plots show that after

adjustment (right hand panel) the estimated model indicated by dotted line on the plot fits the data better

than without adjustment (left hand panel).

7. Normalization

Once the calibration curves for the red and green channels have been estimated for each array, they can be

used to normalize the data. The function normalizeData() is used to this and estimates absolute expression

levels for each combination of a gene and condition in the experiment design, regardless of the number of

replicates. This is conceptually shown for a loop design of three conditions in the figure 7 below.

Figure 7.

C1

C2C3

C1

C2C3

1

#spots

.

.

.

1 1 2 2 3 3

G R G R G R

1 2 2 3 3 1

array

dye

cond

y

1 2 3cond

1

#genes

.

.

. x0

x xgene i

xgene i x

xgene i

1

#spots

.

.

.

1 1 2 2 3 3

G R G R G R

1 2 2 3 3 1

array

dye

cond

y

1

#spots

.

.

.

1 1 2 2 3 3

G R G R G R

1 2 2 3 3 1

array

dye

cond

y

1 2 3cond

1

#genes

.

.

. x0

1 2 3cond

1

#genes

.

.

. x0

x xgene i x xgene i

xgene i xxgene i x

xgene i xgene i

 13

The function normalizeData() takes as input arguments the raw data in the form of an RGList_CALIB

object, and the estimated model parameters in the form of a ParameterList object. The settings of the bc,

area and errormodel, also needed to perform the normalization are also obtained from the ParameterList

object.

The design of the array is specified by the input arguments array, condition and dye. Each of them is an

integer vector with equal length.

Figure 8.

For example, for a two array color-flip design as specified in figure 8, values of array, condition and dye

should be given as:

> varray <- c(1,1,2,2)

> vcondition <- c(1,2,2,1)

> vdye <- c(1,2,1,2)

Figure 9.

For or a loop design with three different conditions as specified in figure 9, values of array, condition and

dye should be given as:

> varray <- c(1,1,2,2,3,3)

> vcondition <- c(1,2,2,3,3,1)

> vdye <- c(1,2,1,2,1,2)

From the examples given above, it is clear that:

• Each entry in the vector corresponds to an array channel

• Each entry of array indicates on which array this channel was measured. Numbers are duplicated

because in a two color design, each array contains two channels.

 14

• Each entry of condition gives the numeric representation of the condition measured in this channel

• Each entry in dye indicates the dye used to label this channel. Because we are dealing with two-

color arrays, only two numbers are used in vector dye. By default 1 represents the red dye and 2

represents the green dye.

The input argument idcol specifies the column name of unique identifiers for each probe. It is possible for

the same gene to occur multiple times within one array. However, during the calculation, these replicates

will be combined and only one normalized value is calculated from these replicates, as indicated in figure

7. The argument is required since different arrays have different annotations. For example, this argument

can be specified as follows:

> id_col <- “CLONE_ID”

After specifying all these arguments, the function can be called as follows:

> normdata <- normalizeData(RG, parameter, array = varray, condition = vcondition, dye = vdye, idcol =

id_col,)

When the function is called like this, all genes in the RGList_CALIB object are normalized. However,

since normalization is calculated gene by gene, the normalization can also be performed on individual

genes or on a group of interesting genes instead of on the whole gene set. The user can enter the set of

selected genes on which normalization has to be performed by another argument of this function – cloneid.

For example, if we only want to know the estimated expression level of clone “200001”, we can type

> cloneid_interested <- “200001”

> normdata <- normalizeData(RG, parameter, array = varray, condition = vcondition, dye = vdye, cloneid

= cloneid_interested, idcol = id_col,)

Or if we are interested in a group of clones, we can type

> cloneid_interested <- c(“200001”, “200002”, “200003”, “200004”, “200005”)

> normdata <- normalizeData(RG, parameter, array = varray, condition = vcondition, dye = vdye, cloneid

= cloneid_interested, idcol = id_col)

In all examples, normdata is the output of this function. It is a numeric matrix with rows representing

individual genes and columns representing different condition. Namely, every value in this result matrix

represents the expression level in a different gene-condition combination (as illustrated by the figure 7 at

the beginning of this section).

 15

8. Diagnostics and data visualization

The CALIB package provides different visualization functions that facilitate quality control and data

exploration before and after parameter estimation.

The estimation of model parameters is dependent on the quality of the external control spikes. In order to

ensure good normalization results, it is advisable to check the quality of the external controls prior to

normalization, by using visualization functions described in section five.

Besides checking external control quality, the functions plotSpikeCI() and plotSpikeHI() can also be used

for evaluating the model fit after parameter estimation (if the additional argument “parameter” is added).

When including the estimated calibration parameters, both the data and the model fit (red and green curves)

are plotted.

The function plotSpikeCI() should then be called as follows (where arraynum is the index of the array that

will be plotted.):

> arraynum <- 1

> plotSpikeCI(spike, parameter, array = arraynum)

Figure 10 shows the plot created by this function. The red and green curves represent the estimated

calibration models for the red and green channels respectively.

Figure 10

The function plotSpikeHI() should then be called as follows (again, arraynum is the index of the array that

will be plotted.):

> arraynum <- 1

> plotSpikeHI(spike, parameter, array = arraynum)

 16

The red and green curves represent the estimated calibration models for the red and green channel

respectively. Light red and green dots indicate the amount of hybridized target for the measured intensities

of the external control spikes if all spot capacities were equal (εs=0). Black dots represent the estimated

amount of hybridized target by taking into account the estimated spot capacity errors, i.e. the black dots

illustrate how the incorporation of spot errors into the model is an adequate tool for explaining the large

variation in measured intensities. In general, the more tight and smooth (no visible artifacts) the black dots

fit the model curves, the more suitable the model is for further normalization.

Figure 11

Note that for both plotSpikeCI() and plotSpikeHI()the default array index argument array is set to 1.

The function plotSpikeSpotError()plots the distribution of the estimated spot capacity errors for all spikes

of the specified array, and can be used to ascertain the number of outliers or ‘broken’ spots (spots with

unusually small spot capacity errors). If there are a substantial amount of these outliers, it is advisable to re-

estimate the model parameters after omitting these spots from the spike set. Depending on the value of the

argument plottype (“hist”, “boxplot” and “dens”) this distribution will be plotted as a histogram, a boxplot

or a density plot. Resulting plots are shown in figure 12, 13 and 14.

Function plotSpikeSpotError(), can thus be called in the following three ways,

> ## plot histogram of the first array, which is the default value of the argument array.

> plotSpikeSpotError(parameter, plottype = "hist")

> ## plot boxplot of both arrays.

> plotSpikeSpotError(parameter, plottype = "boxplot", plotnames = NULL)

> ## plot density function of the first array, which is the default value of the argument array.

> plotSpikeSpotError(parameter, plottype = “dens”, width = 1)

 17

Figure 12

Figure 13

 18

Figure 14

The function plotNormalzedData() can be called after data normalization and allows comparing the

estimated expression levels of two selected conditions. It provides an image of the overall similarity

between two conditions that were present in the experimental design, i.e. more similar conditions center

more tightly around the bisector, as is the case for the example used in this guide (identical conditions). The

function is called as follows:

> ## specify the two conditions to be plotted.

> cond <- c(1,2)

> ## use the default values for other parameters.

> plotNormalizedData(normdata,condition = cond)

The plot created by this function is shown as Figure 15.

 19

Figure 15

9. References

 1. Kerr, M. K., Martin, M. & Churchill, G. A. Analysis of variance for gene

expression microarray data. J. Comput. Biol 7, 819-837 (2000).

 2. Yang, Y. H. et al. Normalization for cDNA microarray data: a robust composite
method addressing single and multiple slide systematic variation. Nucleic Acids Res.
30, e15 (2002).

 3. van Bakel,H. and Holstege,F.C. (2004) In control: systematic assessment of
microarray performance. EMBO Rep., 5, 964-969.

 4. van de Peppel,J. et al. (2003) Monitoring global messenger RNA changes in
externally controlled microarray experiments. EMBO Rep., 4, 387-393.

 5. Engelen, K., Naudts, B., De Moor, B. & Marchal, K. A calibration method for
estimating absolute expression levels from microarray data. Bioinformatics 22,
1251-1258 (2006).

 6. Gentleman, R. C. et al. Bioconductor: open software development for
computational biology and bioinformatics. Genome Biology 5, (2004).

 7. Smyth, G. K. Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3
(2004).

 20

 8. Wettenhall, J. M. & Smyth, G. K. limmaGUI: a graphical user interface for linear
modeling of microarray data. Bioinformatics 20, 3705-3706 (2004).

 9. Hilson, P. et al. Versatile gene-specific sequence tags for Arabidopsis functional
genomics: transcript profiling and reverse genetics applications. Genome Res. 14,
2176-2189 (2004).

