Package 'lol'

March 26, 2013
Type Package
Title Lots Of Lasso
Version 1.6.0
Date 2011-04-02
Author Yinyin Yuan
Maintainer Yinyin Yuan < yy341@cam.ac.uk>
Description Various optimization methods for Lasso inference with matrix warpper
Depends penalized, Matrix
Imports Matrix, penalized, graphics, grDevices, stats
License GPL-2
LazyLoad yes
R topics documented:
lol-package 2
chin07 2
getLambdaNcoef 3
lasso 4
lasso.cv 5
lasso.multiSplit 6
lasso.simultaneous 8
lasso.stability 9
lmMatrixFit 10
matrixLasso 11
plotGW 13
print.lol 14
print.lolMatrix 15
Index 16
lol-package Lots of Lasso

Description

Various optimization methods for Lasso inference with matrix wrapper.

Details

Package:	lol
Type:	Package
Version:	0.99 .0
Date:	$2011-04-02$
License:	GPL-2
LazyLoad:	yes

Author(s)

Yinyin Yuan Maintainer: Yinyin Yuan yy341@cam.ac.uk

References

Goeman, J. J. (2009), L1 penalized estimation in the cox proportional hazards model. Biometrical Journal. N. Meinshausen and P. Buehlmann (2010), Stability Selection (with discussion), Journal of the Royal Statistical Society, Series B, 72, 417-473.

See Also

lasso, matrixLasso

Examples

```
data(chin07)
data \(<-\operatorname{list}(\mathrm{y}=\mathrm{t}(\) chin07\$ge \(), \mathrm{x}=\mathrm{t}(\operatorname{chin} 07 \$ \mathrm{cn}))\)
res \(<-\) matrixLasso(data, method='cv', nFold=5)
res
```

```
chin07
```

Breast cancer data set of genome-wide copy number merged data and expression of some important genes

Description

A subset of breast cancer data as used in Yuan et al. (to be submitted).

Usage

data(chin07)

Format

A list object of two named data matrices, cn: DNA copy number, ge: RNA expression. The matrices columns are samples and rows are probes/variables.

Details

Genome-wide copy number data was merged using CGHregions resulting in 339 regions across 106 samples. Expression data are 7 probes mapped to important breast cancer genes such as CCNE2, MYC, etc, also of 106 samples.

References

Chin SF, Teschendorff AE, Marioni JC, Wang Y, Barbosa-Morais NL, et al. (2007) High-resolution arraycgh and expression profiling identifies a novel genomic subtype of er negative breast cancer. Genome Biology 8: R215+. Yuan et al. (2011) Discovery and functional annotation of cis- and trans-acting DNA copy number hotspots in breast cancer, to be submitted.

Examples

```
data(chin07)
gain <- rowSums(chin07$cn >= .2)
loss <- -rowSums(chin07$cn <= -.2)
plotGW(data=cbind(gain, loss), pos=attr(chin07$cn, 'chrome'), legend=c('gain', 'loss'))
```

```
getLambdaNcoef
```

get the lambda value that yield certain number of non-zero coefficients

Description

get the lambda value that yield certain number of non-zero coefficients

Usage

getLambdaNcoef(y, x, lambda1, nCoef, track=FALSE, model='linear', standardize=FALSE)

Arguments

y	A vector of expressions
x	a matrix of CN variables
lambda1	minimum lambda to use
nCoef	the number of coefficients to get
track	logical value for tracking the progress
model	which model to use, default to 'linear'
standardize	standardize the data or not

Value

lambda The lambda value that gives approximate same number of non-zero coefficients as required

Author(s)

Yinyin Yuan

See Also

lasso

Examples

data(chin07)
data $<-$ list $(\mathrm{y}=\operatorname{chin} 07 \$ \mathrm{ge}[1],, \mathrm{x}=\mathrm{t}(\operatorname{chin} 07 \$ \mathrm{cn}))$
getLambdaNcoef(data\$y, data $\$ x$, lambda1 $=.1$, nCoef $=10$, track=TRUE)
lasso lasso

Description

Lasso penalized linear regression with different optimizers

Usage

lasso(y, ...)

Arguments

y A list object of one of the four classes: 'cv', 'stability', 'multiSplit', and 'simultaneous'. If x is NULL then y should a list of two components y and x, y is a vector of expression and x is a matrix containing copy number variables
... other parameters

Details

The function contains various optimization methods for Lasso inference, such as cross-validation, randomised lasso, simultaneous lasso etc. It is specifically designed for multicollinear predictor variables.

Value

Varied depending on the optimizer used. Generally it contains
beta coefficients
residuals residuals of regression model
fit the corresponding fit of regression

Author(s)

Yinyin Yuan

References

Goeman, J. J. (2009), L1 penalized estimation in the cox proportional hazards model, Biometrical Journal. N. Meinshausen and P. Buehlmann (2010), Stability Selection (with discussion), Journal of the Royal Statistical Society, Series B, 72, 417-473. Nicolai Meinshausen, Lukas Meier and Peter Buehlmann (2009), P-values for high-dimensional regression. Journal of the American Statistical Association, 104, 1671-1681.

See Also

matrixLasso

Examples

```
data(chin07)
data <- list(y=chin07$ge[1,], x=t(chin07$cn))
class(data) <- 'cv'
res <- lasso(data)
```

lasso.cv Cross validation optimizer for lasso

Description

Cross validation lasso. This function optimizes the lasso solution for correlated regulators by an algorithm. this algorithm chooses the minimum lambda since the penalized package by default use 0 for the minimum, which sometimes take a long time to compute

Usage

lasso.cv(y, $\mathrm{x}=\mathrm{NULL}, \operatorname{lambda1}=\mathrm{NULL}$, model='linear', steps $=15$, minsteps $=5, \log =$ TRUE, track=FALSE, stan

Arguments

y A vector of gene expression of a probe, or a list object if x is NULL. In the latter case y should a list of two components y and x, y is a vector of expression and x is a matrix containing copy number variables
x
lambda1
model which model to use, one of "cox", "logistic", "linear", or "poisson". Default to 'linear'
steps parameter to be passed to penalized
minsteps parameter to be passed to penalized
$\log \quad$ parameter to be passed to penalized
track parameter to be passed to penalized
standardize parameter to be passed to penalized

unpenalized	parameter to be passed to penalized
nFold	parameter to be passed to penalized
nMaxiter	parameter to be passed to penalized
...	other parameter to be passed to penalized

Value

A list object of class 'lol', consisting of:
fit The final sparse regression fit
beta the coefficients, non-zero ones are significant
lambda the penalty parameter lambda used
residuals regression residuals
conv logical value indicating whether the optimization has converged

Author(s)

Yinyin Yuan

References

Goeman, J. J. (2009), L1 penalized estimation in the cox proportional hazards model, Biometrical Journal.

See Also

lasso

Examples

```
data(chin07)
data <- list(y=chin07$ge[1,], x=t(chin07$cn), nFold=5)
res <- lasso.cv(data)
res
```

lasso.multiSplit Multi-split lasso

Description

Multi-split lasso as described in Meinshausen 2009

Usage

lasso.multiSplit($\mathrm{y}, \mathrm{x}=\mathrm{NULL}$, lambda1 $=$ NULL, $\mathrm{nSubsampling}=200$, model $=$ 'linear', alpha $=0.05$, gamma. min $=0$

Arguments

y	A vector of gene expression of a probe, or a list object if x is NULL. In the latter case y should a list of two components y and x, y is a vector of expression and x is a matrix containing copy number variables
x	Either a matrix containing CN variables or NULL nSubsampling number of splits, default to 200
model	which model to use, one of "cox", "logistic", "linear", or "poisson". Default to 'linear'
alpha	specify significant level to determine the non-zero coefficients in the range of 0 and 1, default to 0.05
gamma.min	the lower bound of gamma
gamma.max	the higher bound of gamma lambda1
minimum lambda to be used, if known	
track	track progress o..

Details

This function performs the multi-split lasso as proposed by Meinshausen et al. 2009. The samples are first randomly split into two disjoint sets, one of which is used to find non-zero coefficients with a regular lasso regression, then these non-zero coefficients are fitted to another sample set with OLS. The resulting p-values after multiple runs can then be aggregated using quantiles.

Value

A list object of class 'lol', consisting of:

beta	coefficients
mat	the Q_gamma matrix as described in the paper
residuals	residuals, here is only the input y
pmat	the adjusted p matrix as described in the paper

Author(s)

Yinyin Yuan

References

Nicolai Meinshausen, Lukas Meier and Peter Buehlmann (2009), P-values for high-dimensional regression. Journal of the American Statistical Association, 104, 1671-1681.

See Also

lasso

Examples

```
data(chin07)
data <- list(y=chin07$ge[1,], x=t(chin07$cn))
res <- lasso.multiSplit(data, nSubsampling=50)
res
```

lasso.simultaneous Simultaneous lasso

Description

The function performs lasso with multiple random sample splits, selecting coefficients that are simultaneously non-zero in both subsets of samples.

Usage

lasso.simultaneous($\mathrm{y}, \mathrm{x}=\mathrm{NULL}$, model='linear', $\mathrm{nSubsampling=200}, \mathrm{alpha=.5}, \mathrm{lambda1=} \mathrm{NULL} ,\mathrm{track} \mathrm{=} \mathrm{FALSE}$

Arguments

y A vector of gene expression of a probe, or a list object if x is NULL. In the latter case y should a list of two components y and x, y is a vector of expression and x is a matrix containing copy number variables
$\mathrm{x} \quad$ Either a matrix containing CN variables or NULL
model which model to use, one of "cox", "logistic", "linear", or "poisson". Default to 'linear'
nSubsampling The number of random permutations, both on sample spliting and on variable scaling, default to 200.
alpha weakness parameter: control the shrinkage of regulators. The lower alpha is, the bigger the vanishing effect on small coefficients.
lambda1 minimum lambda, default to NULL
track logical value, whether to track the progress
Other parameters to be passed to the penalized function

Details

In each run the function splits samples randomly to two equal sets, run lasso on both sets, then select those coefficients that are simultaneously non-zero across two sets. Finally the results across many runs are summarized as the frequency of selected predictors - the higher the frequency the more confidence that the corresponding predictors are significant.

Value

A list object of class 'lol', consisting of:
beta Coefficient vector
$\mathrm{n} \quad$ Number of actual subsampling, should be equal or smaller than nSubsampling in case of failing.
mat result matrix of the subsampling

Author(s)

Yinyin Yuan

References

N. Meinshausen and P. Buehlmann (2010), Stability Selection (with discussion), Journal of the Royal Statistical Society, Series B, 72, 417-473.

See Also

lasso

Examples

```
data(chin07)
data <- list(y=chin07$ge[1,], x=t(chin07$cn))
res <- lasso.simultaneous(data, nSubsampling=50)
res
```

lasso.stability Stability and randomised lasso

Description

point-wise controled lasso stability selection

Usage

lasso.stability $(\mathrm{y}, \mathrm{x}=\mathrm{NULL}$, alpha $=.5$, subsampling $=.5$, nSubsampling $=200$, model $=$ 'linear', pi_th $=.6$, alpha.fu

Arguments

y	A vector of gene expression of a probe, or a list object if x is NULL. In the latter case y should a list of two components y and x, y is a vector of expression and x is a matrix containing copy number variables
x	Either a matrix containing CN variables or NULL
alpha	weakness parameter: control the shrinkage of regulators, if alpha $=1$ then no randomisation, if NULL then a randomly generated vector is used
subsampling	fraction of samples to use in the sampling process, default to 0.5
nSubsampling	The number of subsampling to do, default to 200
model	which model to use, one of "cox", "logistic", "linear", or "poisson". Default to 'linear'
pi_th	The threshold of the stability probablity for selecting a regulator. It is to deter mine whether a coefficient is non-zero based on the frequency it is subsampled to be non-zero, default to 0.6
alpha.fwer	Parameter to control for the FWER, choosing alpha.fwer and alpha control the $\mathrm{E}(\mathrm{V}), \mathrm{V}$ being the number of noise variables, eg. when alpha=0.9, alpha.fwer $=$ 1 control the $\mathrm{E}(\mathrm{V})<=1$
lambda1	minimum lambda to use
steps	parameter to be passed on to penalized
track	track the progress, 0 none tracking, 1 minimum amount of information and 2 full information
standardize	standardize the data or not?

Details

The function first selects lambda that approximately give maximum sqrt $\left(.8^{*} \mathrm{p}\right)$ predictors, while p is the number of total predictors. Then it runs lasso a number of times keeping lambda fixed. These runs are randomised with scaled predictors and subsamples. At the end, the non-zero coefficients are determined by their frequencies of selections.

Value

A list object of class 'lol', consisting of:
beta coefficients
beta.bin binary beta vector as thresholded by pi_th
mat the sampling matrix, each column is the result of one sampling
residuals residuals of regression model

Author(s)

Yinyin Yuan

References

N. Meinshausen and P. Buehlmann (2010), Stability Selection (with discussion), Journal of the Royal Statistical Society, Series B, 72, 417-473.

See Also

lasso

Examples

```
data(chin07)
data <- list(y=chin07$ge[1,], x=t(chin07$cn))
res <- lasso.stability(data, nSubsampling=50)
res
```

lmMatrixFit

Multiple lm fit for penalized regressions

Description

Refit the regressions given matrices of responses, predictors, and the coefficients/interactions matrix. This is typically used after the lasso, since the coefficients were shrinked.

Usage

lm MatrixFit $(\mathrm{y}, \mathrm{x}=\mathrm{NULL}$, mat, $\mathrm{th}=\mathrm{NULL})$

Arguments

y

X
mat Coefficient matrix, number of columns is the number of predictors (y) and number of rows is the number of responses (x)
th The threshold to use in order to determine which coefficients are non-zero, so the corresponding predictors are used

Value

coefMat	A coefficient matrix, rows are responses and columns are predictors
resMat	A residual matrix, each row is the residuals of a response.
pvalMat	Matrix of p-values for each coefficients

Author(s)

Yinyin Yuan

See Also

lm, matrixLasso

Examples

```
data(chin07)
data <- list(y=t(chin07$ge), x=t(chin07$cn))
res <- matrixLasso(data, method='cv', nFold=5)
res
res.lm <- lmMatrixFit(y=data, mat=abs(res$coefMat), th=0.01)
res.lm
```


matrixLasso

A wrapper function for matrix-to-matrix Lasso regressions

Description

This function wraps up different types of lasso optimizers and perform multiple, independent lasso inference on matrix responses. If the dimensionality of the input is small, the function converts the matrix of input response into a vector and solves the problem with one lasso inference. Otherwise, lasso regression is performed independently for each variables in the response matrix.

Usage

matrixLasso($\mathrm{y}, \mathrm{x}=\mathrm{NULL}$, method $=$ ' cv ', nameControl $=$ FALSE, standardize $=$ FALSE, track $=0$, lambda $1=$ NUL

Arguments

y
x
method Which optimization method to use for lasso inference, such as 'cv', 'stability', 'simultaneous', and 'multiSplit'.
nameControl If the same item appears in both responses and predictors, the regression should remove the one same as the response from the predictors. This happens when for example a single data type is use for inferring gene network from expression data. Enable nameControl in this case.
standardize Option to standardize the data, default to TRUE
track
lambda1 The minimum lambda to use, default to NULL for which the program will select it automatically
nFold \quad Number of folds for cross-validation, default to 10

Value
coefMat A coefficient matrix, rows are responses and columns are predictors
fit If only a single regression is used for matrix lasso, the fit return.
resMat A residual matrix, each row is the residuals of a response.

Author(s)

Yinyin Yuan

See Also

lasso

Examples

```
data(chin07)
data <- list(y=t(chin07$ge), x=t(chin07$cn))
res <- matrixLasso(data, method='cv', nFold=5)
res
```

plotGW Plot genome-wide data along the genome

Description

Plot different measurements across the genome such as copy number amplifications and deletions.

Usage

plotGW (data, pos, marks $=$ NULL, fileType $=$ 'png', file $=$ 'plotGW', width $=1000$, height $=500$, autoscale $=$ FALSE

Arguments

data data matrix to plot, each column is plotted individually across the genome
pos the chromosome locations for the data, can be a matrix or data frame with a column named chromosome_name, or a numeric vector
marks if there is specific marks to plot on the baselne, eg. to indicate where are the SNPs, should be a vector of numbers indicating where the marks is relative to the input data matrix
fileType either png or pdf file type
file file name
width width of the plot
height height of the plot
autoscale should the columns of data be scaled?
col colors for each of the data columns to be plotted, should be no shorter than the number of columns in 'data'
legend legend text in the legend box
ylab parameter for par, default to "
pch parameter for par, default to 19
cex.axis parameter for par, default to 1.2
cex.lab parameter for par, default to 1.2
cex parameter for par, default to 0.5
legend.pos parameter for legend, default to 'bottomright'
mtext parameter for mtext, default to NULL
mtext.side parameter for mtext, default to 2
mtext.at parameter for mtext, default to 2
mtext.line parameter for mtext, default to 3
... Other parameters to pass to $\operatorname{plot}()$ or legend()

Details

This function requires as input data a vector or a matrix with different variables in columns, and a position matrix of chromosome name and start position. The number of rows in the position matrix should be the same as the length of the data vector or the number of rows of the data matrix. The function plots the data according to the position across the genome, providing a genome-wide description.

Value

Write an image file to disk, either in png or pdf format.

Author(s)

Yinyin Yuan

See Also

lasso.cv

Examples

```
data(chin07)
gain <- rowSums(chin07$cn >= .2)
loss <- -rowSums(chin07$cn <= -.2)
plotGW(data=cbind(gain, loss), pos=attr(chin07$cn, 'chrome'), legend=c('gain', 'loss'))
```

```
print.lol print function for class lol
```


Description

print function for class lol

Usage

print.lol(x,...)

Arguments

x	an object of class lol
\ldots	other parameters for consistency

Author(s)

Yinyin Yuan

```
print.lolMatrix print function for class lolMatrix
```


Description

print function for class lolMatrix

Usage

print.lolMatrix (x, \ldots)

Arguments

x	an object of class lolMatrix
\ldots	other parameters for consistency

Author(s)

Yinyin Yuan

Index

*Topic datasets

chin07, 2
*Topic package
lol-package, 2
chin07, 2
getLambdaNcoef, 3
lasso, 4
lasso.cv, 5
lasso.multiSplit, 6
lasso.simultaneous, 8
lasso.stability, 9
lmMatrixFit, 10
lol (lol-package), 2
lol-package, 2
matrixLasso, 11
plotGW, 13
print.lol, 14
print.lolMatrix, 15

