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1 Introduction

The nucleR package provides a high-level processing of genomic datasets focused in nucleosome
positioning experiments, despite they should be also applicable to chromatin inmunoprecipita-
tion (ChIP) experiments in general.

The aim of this package is not providing an all-in-one data analysis pipeline but comple-
ment those existing specialized libraries for low-level data importation and pre-processment into
R/Bioconductor framework.

nucleR works with data from the two main high-troughput technologies available nowa-
days for ChIP: Next Generation Sequencing/NGS (ChIP-seq) and Tiling Microarrays (ChIP-
on-Chip).

This is a brief summary of the main functions:

• Data importation: processReads, processTilingArray

• Data transformation: coverage.rpm, filterFFT, controlCorrection

• Nucleosome calling: peakDetection, peakScoring

• Visualization: plotPeaks

• Data generation: syntheticNucMap

For more details about the functions and how to use them refer to the nucleR manual.

This software was published in Bioinformatics Journal. See the paper for additional information.[1]

2 Reading data

As mentioned previously, nucleR uses the pre-processed data of other lower level packages for
data importation, supporting a few but common formats that should fulfill the requirements of
most users..
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ExpressionSet from package Biobase [2] is used for Tiling Array experiments as described
in Starr [3] and other packages for the Tiling Array manipulation. This kind of experiments can
be readed with the processTilingArray function.

AlignedRead from package ShortRead [4] is recommended for NGS, covering most of the
state of the art sequencing technologies. Additionally, support for reads in RangedData format
is also provided (a range per read with a "strand" column) .

2.1 Reading Tiling Arrays

Tiling Arrays are a cheap and fast way to have low-resolution nucleosome coverage maps. They
have been widely used in literature[5, 6, 7], but complex statistical methods were needed for
their processing [8].

This kind of microarrays cover a part of the genome with certain spacing between probes
which causes a drop in the resolution and originates some problems. The nucleosome calling from
Tiling Array data required hard work on bioinformatics side and use of heavy and artificious
statistical machinery such as Hidden Markov Models [5, 6] or higher order Bayesian Networks
[9].

nucleR presents a new method based on a simple but effective peak calling method which
achieves a great performance at low computing cost that will be presented in subsequent sections.

In order to standardize the data coming both from Tiling Arrays and NGS, the array fluo-
rescence intensities (usually the ratio of the hybridization of nucleosomal and control sample)
are converted to 1bp resolution by inferring the missed values from the neighboring probes.
This is done by the function processTilingArray:

processTilingArray(data, exprName, chrPattern, inferLen=50)

An example of a processed dataset is provided in this package. See the help page of tilin-
gArray_preproc for details on how it has been created. This object is a numeric vector covering
the 8000 first positions of chromosome 1 in yeast (Saccharomices Cerevisiae genome (SacCer1)).

> require(IRanges)

> library(nucleR)

> data(nucleosome_tiling)

> head(nucleosome_tiling, n=25)

[1] 1.273222 1.281978 1.290734 1.299490 1.308246 1.352696 1.397145 1.441595

[9] 1.486044 1.501795 1.517547 1.533298 1.549049 1.547577 1.546105 1.544633

[17] 1.543161 1.539886 1.536612 1.533337 1.530063 1.488922 1.447782 1.406642

[25] 1.365502

This values represent the normalized fluorescence intensity from hybridized sample of nucleo-
somal DNA versus naked DNA obtained from Starr. The values can be either direct observations
(if a probe was starting at that position) or a inferred value from neighboring probes. This data
can be passed directly to the filtering functions, as described later in the section 3.
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2.2 Next Generation Sequencing

NGS has become one of the most popular technique to map nucleosome in the genome in the
last years [10, 11, 12]. The drop of the costs of a genome wide sequencing together with the
high resolution coverage maps obtained, made it the election of many scientists.

The package ShortRead allows reading of the data coming from many sources (Bowtie, MAQ,
Illumina pipeline...) and has become one of the most popular packages in R/Bioconductor for
NGS data manipulation.

A new R package, called htSeqTools [13], has been recently created to perform preprocessing
and quality assesment on NGS experiments. nucleR supports most of the output generated
by the functions on that package and recommends its use for quality control and correction of
common biases that affect NGS.

nucleR handles ShortRead and RangedData data formats. The dataset nucleosome_htseq

includes some NGS reads obtained from a nucleosome positioning experiment also from yeast
genome, following a protocol similar to the one described in [6].

The paired-end reads coming from Illumina Genome Analyzer II sequencer were mapped
using Bowtie and imported into R using ShortRead. Paired ends where merged and sorted
according the start position. Those in the first 8000bp of chromosome 1 where saved for this
example. Further details are in the reference [14]:

> data(nucleosome_htseq)

> class(nucleosome_htseq)

[1] "RangedData"

attr(,"package")

[1] "IRanges"

> nucleosome_htseq

RangedData with 18001 rows and 1 value column across 1 space

space ranges | strand

<factor> <IRanges> | <character>

1 chr1 [1, 284] | +

2 chr1 [5, 205] | +

3 chr1 [5, 205] | +

4 chr1 [5, 209] | +

5 chr1 [5, 283] | +

6 chr1 [6, 285] | +

7 chr1 [6, 285] | +

8 chr1 [8, 126] | +

9 chr1 [8, 127] | +

... ... ... ... ...

17993 chr1 [7994, 8148] | +

17994 chr1 [7994, 8150] | +

17995 chr1 [7994, 8150] | +
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17996 chr1 [7994, 8151] | +

17997 chr1 [7994, 8151] | +

17998 chr1 [7994, 8151] | +

17999 chr1 [7994, 8151] | +

18000 chr1 [7994, 8152] | +

18001 chr1 [7994, 8152] | +

Now we will transform the reads to a normalized format. Moreover, as the data is paired-
ended and we are only interested in mononucleosomes (which are typically 147bp), we will
discard the reads with a length greater than 200bp, allowing margin for some underdigestion
but discarding extra long reads. Note that the behaviour of fragmentLen is different for single-
ended data, see the manual page of this function for detailed information.

As our final objective is identifying the nucleosome positions, and nucleR does it from the
dyad, we will increase the sharpness of the dyads by removing some bases from the ends of each
read. In the next example, we will create two new objects, one with the original paired-end
reads and another one with the reads trimmed to the middle 40bp around the dyad (using the
trim argument).

> #Process the paired end reads, but discard those with length > 200

> reads_pair = processReads(nucleosome_htseq, type="paired", fragmentLen=200)

> #Process the reads, but now trim each read to 40bp around the dyad

> reads_trim = processReads(nucleosome_htseq, type="paired", fragmentLen=200, trim=40)

The next step is obtain the coverage (the count of how many reads are in each position). The
standard IRanges package function coverage will work well here, but it is a common practice
to normalize the coverage values according to the total number of short reads obtained in the
NGS experiment. The common used unit is reads per milon (r.p.m.) which is the coverage
value divided by the total number of reads and multiplied per one milion. A quick and efficient
way to do this with nucleR is the coverage.rpm function. 1

> #Calculate the coverage, directly in reads per million (r.p.m)

> cover_pair = coverage.rpm(reads_pair)

> cover_trim = coverage.rpm(reads_trim)

In Figure 1 we can observe the effect of trim attribute plotting both coverages. Note that
the coverages are normalized in the range 0–1:

2.3 MNase bias correction

The Microccocal Nuclease is a widely used enzyme that has been proved to have a biase for
certain dinucleotide steps [14]. In this package we offer a quick way to inspect the effect of such
artifact by correcting the profiles of nucleosomal DNA reads with a mock sample of naked DNA
digested with MNase.

1Note that conversion in the example dataset gives huge values. This is because r.p.m. expects a large number
of reads, and this dataset is only a fraction of a whole one. Also take into account that reads from single-ended
(or trimmed reads) and reads from paired-ended could have different mean value of coverage
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Figure 1: Variation in the sharpness of the peaks using trim attribute. In blue, the original coverage;
in orange the trimmed version

The use of this function requires a paired-end control sample and a paired end or extended
single-read nucleosomal DNA sample. A toy example generated using synthetic data can be
found in Figure 2.

> #Toy example

> map = syntheticNucMap(as.ratio=TRUE, wp.num=50, fuz.num=25)

> exp = coverage(map$syn.reads)

> ctr = coverage(map$ctr.reads)

> corrected = controlCorrection(exp, ctr)
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Figure 2: Toy example of MNase biase correction. Random nucleosomal and control reads have been
generated using synteticNucMap function and corrected using controlCorrect

3 Signal Smoothing and Nucleosome Calling

In the previous sections we converted the experimental data from NGS or Tiling Arrays to a
continous, 1bp resolution signal. In this section we will remove the noise present in the data
and score the peaks identified, giving place to the nucleosome calls.

Previously, in the literature, Hidden Markov Models, Support Vector Machines or other
complex intelligent agents where used for this task [5, 6, 9, 15, 12]. This was needed for dealing
with the noise and uncertain characterization of the fuzzy positioning of the nucleosomes.
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Despite this approach is a valid way to face the problem, the use of such artificious con-
structs is difficult to implement and sometimes requires a subjective modeling of the solution,
constraining or at least conditioning the results observed.

The method presented here proposes to keep it simple, allowing the researcher to study the
results he or she is interested a posteriori.

nucleR aim is to evaluate where the nucleosomes are located and how accurate that position
is. We can find a nucleosome read in virtually any place in the genome, but some positions
will show a high concentration and will allow us to mark this nucleosome as well-positioned
whereas other will be less phased giving place to fuzzy or de-localized nucleosomes [16].

We think it’s better to provide a detailed but convenient identification of the relevant nu-
cleosome regions and score them according to its grade of fuzziness. From our point of view,
every researcher should make the final decision regarding filtering, merging or classifying the
nucleosomes according its necessities, and nucleR is only a tool to help in this ”dirty” part of
the research.

3.1 Noise removal

NGS and specially Tiling Array data show a very noisy profile which complicates the process of
the nucleosome detection from peaks in the signal. A common approach used in the literature
is smooth the signal with a sliding window average and then use a Hidden Markov Model to
calculate the probabilities of having one or another state.
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Figure 3: Original intensities from tiling array experiment. Smoothing using a sliding window of variable
length (0, 20, 50 and 100 bp) is presented.

As can be seen in Figure 3, data needs some smoothing to be interpretable, but a simple
sliding window average is not sufficient. Short windows allow too much noise but larger ones
change the position and the shape of the peaks.

nucleR proposes a method of filtering based on the Fourier Analysis of the signal and the
selection of its principal components.

Any signal can be described as a function of individual periodic waves with different fre-
quencies and the combination of them creates more complex signals. The noise in a signal can
be described as a small, non periodic fluctuations, and can be easily identified and removed [17].

nucleR uses this theory to transform the input data into the Fourier space using the Fast
Fourier Transform (FFT). A FFT has a real and a imaginary component. The representation
of the real component it’s called the power spectrum of the signals and shows which are the
frequencies that have more weight (power) in the signal. The low frequency components (so,
very periodic) usually have a huge influence in the composite signal, but its rellevance drops as
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the frequency increases.

We can look at the power spectrum of the example dataset with the following command:

> fft_ta = filterFFT(nucleosome_tiling, pcKeepComp=0.01, showPowerSpec=TRUE)
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Figure 4: Power spectrum of the example Tiling Array data, percentile 1 marked with a dashed line

In the Figure 4 only the half of the components are plotted, as the spectrum is repeated
symmetrically respect to its middle point. The first component (not shown in the plot), has
period 1, and, in practice, is a count of the lenght of the signal, so it has a large value.

High frequency signals are usually echoes (repeating waves) of lower frequencies, i.e. a peak
at 10 will be the sum of the pure frequence 10 plus the echo of the frequency 5 in its 2nd
repetition. Echoes can be ignored without losing relevant information.

The approach nucleR follows is supposing that with just a small percentage of the components
of the signal, the input signal can be recreated with a high precision, but without a significant
amount of noise. We check empirically that with 1% or 2% of the components (this means
account 1 or 2 components for each 100 positions of the genomic data) it’s enough to recreate
the signal with a very high correlation (>0.99). Tiling Array could require more smoothing
(about 1% should be fine) and NGS has less noise and more components can be selected for
fitting better the data (about 2%), See Figure 4 for the selected components in the example.

In order to easy the choice of the pcKeepComp parameter, nucleR includes a function for
automatic detection of a fitted value that provides a correlation between the original and the
filtered profiles close to the one specified. See the manual page of pcKeepCompDetect for detailed
information.

In short, the cleaning process consists on converting the coverage/intensity values to the
Fourier space, and knock-out (set to 0) the components greater than the given percentile in
order to remove the noise from the profile. Then the inverse Fast Fourier Transform is applyied
to recreate the filtered signal. In Figure 5 the filtered signal is overlapped to the raw signal.

The cleaning of the input has almost no effect on the position and shape of the peaks,
mantaining a high correlation with the original signal but allowing achieve a great performance
with a simple peak detection algorithm:

> tiling_raw = nucleosome_tiling

> tiling_fft = filterFFT(tiling_raw, pcKeepComp=0.01)
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Figure 5: Filtering in Tiling Array (up, blue) (1% comp.) and NGS (down, red) (2%comp.)

> htseq_raw = as.vector(cover_trim[[1]])

> htseq_fft = filterFFT(htseq_raw, pcKeepComp=0.02)

> cor(tiling_raw, tiling_fft, use="complete.obs")

[1] 0.7153782

> cor(htseq_raw, htseq_fft, use="complete.obs")

[1] 0.9937643

3.2 Peak detection and Nucleosome Calling

After noise removal, the calling for nucleosomes is easy to perform. In nucleosome position-
ing, in contrast with other similar experiments like ChIP, the problem for the peaks detection
algorithms is deal with the presence of an irregular signal which causes lots of local maxima
(i.e., peaks due to noise inside a real peak). Here, we avoid this problem applying the FFT
filter, allowing the detection of peaks in a simple but efficient way just looking for changes in
the trend of the profile. This is implemented in the peakDetection function and results can be
represented with the function plotPeaks:

> peaks = peakDetection(htseq_fft, threshold="25%", score=FALSE)

> peaks
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[1] 218 368 452 518 623 715 776 836 983 1213 1331 1437 1549 1603 1672

[16] 1785 1945 2005 2053 2241 2330 2546 2605 2702 2764 2899 3124 3285 3354 3518

[31] 3710 3869 4009 4137 4233 4305 4383 4524 4596 4832 4912 4981 5171 5241 5291

[46] 5366 5458 5529 5598 5688 5752 5906 5978 6065 6123 6238 6312 6410 6472 6669

[61] 6834 6892 7002 7048 7100 7152 7314 7405 7457 7545 7615 7684 7775 7932 8042

> plotPeaks(peaks, htseq_fft, threshold="25%")
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Figure 6: Output of plotPeaks function. Peaks are spotted in red and and detection threshold marked
with an horitzontal line.

All the peaks above a threshold value are identified. Threshold can be set to 0 for detecting
all the peaks, but this is not recommended as usually small fluctuations can apear in bottom
part of the profile. This package also provides an automatic scoring of the peaks, which accounts
for the two main features we are interested in: the height and the sharpness of the peak.

The height of a peak is a direct measure of the reads coverage in the peak position, but
represented as a probability inside a Normal distribution.

The sharpness is a measure of how fuzzy is a nucleosome. If a peak is very narrow and
the surrounding regions are depleted, this is an indicator of a good positioned nucleosome,
while wide peaks or peaks very close to each other are probably fuzzy nucleosomes (despite the
coverage can be very high in this region).

Scores can be calculated with the peakScoring function or directly with the argument
score=TRUE in peakDetection.

> peaks = peakDetection(htseq_fft, threshold="25%", score=TRUE)

> head(peaks)

peak score

1 218 0.9749612

2 368 0.6824909

3 452 0.2675856

4 518 0.3829457

5 623 0.4858367

6 715 0.8408881

The scores in Figure 7 only account for the punctual height of the peak. As said previously,
this measure can be improved by accounting the fuzzyness of a nucleosome call (the sharpness
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Figure 7: plotPeaks function with score=TRUE.

of the peak). This requires a way to account for longer range peaks, which can be obtained
with the width argument. In this way one can convert the identified nucleosome dyads to whole
nucleosome length ranges and account for its degree of fuzzyness:

> peaks = peakDetection(htseq_fft, threshold="25%", score=TRUE, width=140)

> head(peaks)

RangedData with 6 rows and 3 value columns across 1 space

space ranges | score score_w score_h

<factor> <IRanges> | <numeric> <numeric> <numeric>

1 1 [148, 287] | 0.8213296 0.6676980 0.9749612

2 1 [298, 437] | 0.6385168 0.5945427 0.6824909

3 1 [382, 521] | 0.3157506 0.3639156 0.2675856

4 1 [448, 587] | 0.5182733 0.6536008 0.3829457

5 1 [553, 692] | 0.5182437 0.5506507 0.4858367

6 1 [645, 784] | 0.7229812 0.6050742 0.8408881
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Figure 8: plotPeaks output with score=TRUE and width=140.

Note than in Figure 8 overlapped peaks in a width and tall region are penalized, meanwhile
the peaks with surrounding depleted regions have a higher relative score. This is the approach
recommended for working with nucleosome calls.

Nucleosome calls filtering, merging or classification can be performed with standard IRanges
[18] functions, shuch as reduce, findOverlaps or disjoint.
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The next example shows a simple way to merge those nucleosomes which are overlap ac-
counting them as a fuzzy regions:

> nuc_calls = ranges(peaks[peaks$score > 0.1,])[[1]]

> red_calls = reduce(nuc_calls)

> red_class = RangedData(red_calls, isFuzzy=width(red_calls) > 140)

> head(red_class)

RangedData with 6 rows and 1 value column across 1 space

space ranges | isFuzzy

<factor> <IRanges> | <logical>

1 1 [ 148, 287] | FALSE

2 1 [ 298, 905] | TRUE

3 1 [ 913, 1052] | FALSE

4 1 [1143, 1854] | TRUE

5 1 [1875, 2122] | TRUE

6 1 [2171, 2399] | TRUE
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Figure 9: Simple example of ranges manipulation to plot fuzzy nucleosomes

4 Exporting data

export.wig and export.bed allow exportation of coverage/intensity values and nucleosome
calls in a standard format which works on most of the genome browsers available today (like
UCSC Genome Browser or Integrated Genome Browser).

export.wig creates WIG files wich are suitable for coverage/intensities, meanwhile ex-

port.bed creates BED files which contain ranges and scores information, suitable for calls.

5 Generating synthetic maps

nucleR includes a synthetic nucleosome map generator, which can be helpful in benchmarking
or comparing data against a random map. syntheticNucMap function does that, allowing a full
customization of the generated maps.
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When generating a map, the user can choose the number of the well-positioned and fuzzy
nucleosome, as their variance or maximum number of reads. It also provides an option to
calculate the ratio between the generated nucleosome map and a mock control of random reads
(like a naked DNA randomly fragmented sample) to simulate hybridation data of Tiling Arrays.

The perfect information about the nucleosome dyads is returned by this function, together
with the coverage or ratio profiles.

See the man page of this function for detailed information about the different parameters
and options.

> syntheticNucMap(wp.num=100, wp.del=10, wp.var=30, fuz.num=20, fuz.var=50,

+ max.cover=20, nuc.len=147, lin.len=20, rnd.seed=1, as.ratio=TRUE, show.plot=TRUE)
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Figure 10: Example synthetic coverage map of 90 well-positioned (100-10) and 20 fuzzy nucleosomes.
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