
Description of the maDB package

Johannes Rainer∗

March 24, 2011

Division of Molecular Pathophysiology
Biocenter, Medical University Innsbruck

Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria, http://bioinfo.i-med.ac.at
and

Tyrolean Cancer Research Institute
Innrain 66, 6020 Innsbruck, Austria, http://www.tcri.at

Contents

1 Introduction 1

2 Storing a microarray experiment into the database 3

3 Reloading a set of arrays from the database 5
3.1 Loading expression values for a set of genes from the database 6
3.2 Loading regulation values for a set of genes from the database 6

4 Inserting the annotation into the database 7

5 Searching for genes with similar expression or regulation pattern 8

6 Microarray data visualizations 8

1 Introduction

The maDB provides functionality to store (preprocessed) data along with sample informa-
tions and annotations from microarray experiments into a database, and to retrieve data
sets or subsets of microarray experiments from a database generated with maDB . The rela-
tional concept of the database represented in figure 1 allows to store data of both two-color

∗johannes.rainer@i-med.ac.at

1

http://bioinfo.i-med.ac.at
http://www.tcri.at

microarrays and single channel microarrays (Affymetrix GeneChips) into the same database.
As database backend a PostgreSQL database is used, that allows the concurrent simulta-
neous access to a central database generated by maDB and or the usage of the microarray
database by other tools (like the web application madbWeb written in PHP that allows to
query a database created by maDB (http://madb.i-med.ac.at/madbWeb)). Another feature
of maDB allows to search for genes with a specific gene expression or regulation pattern over
a set for samples (arrays). As expression or regulation pattern template a custom template
or the expression/regulation pattern of a specific gene can be used (more informations in
section 5).
In addition to the database functionality maDB provides various functions for microarray
data visualizations like MA plots, volcano plots and others (see section 6 for some examples).
The database model of a maDB database is shown in figure 1. Attributes with the ending pk
and fk represent primary keys and foreign keys respectively. Briefly each microarray exper-
iment (experiments table) consists of a set of arrays (arrays table), where each of the arrays
has one (Affymetrix) or more (two or more color arrays) signal channels (signal channels
table). On each signal channel of an array a sample is hybridized (connection of the sig-
nal channels table to the samples table) and a set of n intensity values, where n is the
number of features on the array (eg spots on a two-color microarray or the number of probe-
sets of an Affymetrix GeneChip array), are measured for each signal channel. These intensity
values (in fact already preprocessed expression values) of a signal channels are stored into
the exp values table.
The expression values of the features of two signal channels / samples can be compared
by calculating M values (log2 fold change values, regulation values) and A values (average
expression values) with the dbCalculateRegulations function. Such M and A values are
stored in the regulation values table. The comparisons table contains the information which
signal channels / samples are compared in a comparison and establishes the linkage to the
regulation values.
The annotation of features can be stored into the annotation table. Annotation should be
inserted / updated / mantained using the dbUpdateAnnotation. Some annotation columns
are required, other can be added dynamically (depending on the annotation table submitted
to the dbUpdateAnnotation function).

2 Storing a microarray experiment into the database

To establish a connection to a running PostgreSQL backend database the dbConnect function
from the RPostgreSQL package has to be used, the function dbSendQuery can be used to send
SQL commands to the database backend (the fetch function allows to fetch results back to
R; alternatively the dbGetQuery can be used to directly retrieve data from the database).
In the code below first the database that should be used by maDB is created (using the
CREATE DATABASE SQL command), and then a connection to the newly generated database

2

Figure 1: The maDB database model. A short description is given in the main text.

is created. Setting maDBs logging level log.level to ”ERROR” avoids that maDB logs every
SQL call into the log file (which can become huge).

> library(maDB)

> con.su <- dbConnect(PostgreSQL(), host = "localhost", user = "postgres",

+ dbname = "template1")

> result <- dbGetQuery(con.su, "SELECT datname FROM pg_database")

> if (any(result[, "datname"] == "madb")) {

+ dbSendQuery(con.su, "DROP DATABASE madb")

+ }

> dbSendQuery(con.su, "CREATE DATABASE madb")

> dbDisconnect(con.su)

> con <- dbConnect(PostgreSQL(), host = "localhost", user = "postgres",

+ dbname = "madb")

> log.level <- "ERROR"

In real life connections should not be established as user postgres, and the PostgreSQL
database should be configured to require password veryfication.
All database tables are automatically created by the publishToDB function upon insertion
of a first data set. As an example the smallALL dataset of the maDB package is used. This
dataset contains already preprocessed (gcrma) data from 8 Affymetrix CEL files (samples
from 4 children with ALL (acute lymphoblastic leukemia, 2 children with B-ALL, 2 with
T-ALL), two peripheral blood samples per children, one sample before and one after 6 hours
in vivo treatment with glucocorticoids (GC), dataset is reduced to 1000 probesets). The pre-
processing was performed using the gcrma function which returns an ExpressionSet object

3

(like all functions from the affy package). This object is first casted into a MadbSet object,
which directly extends the ExpressionSet object from the Biobase package. Also objects
from the limma package (RGList, MAList) for two color microarrays can be transformed into
a MadbSet by using the newMadbSet function.
MadbSet objects inherit all functionality from the ExpressionSet and provide some addi-
tional methods like the database storage/retrieval functions or some plotting functions.

> data("smallALL")

> class(NormChips)

[1] "ExpressionSet"

attr(,"package")

[1] "Biobase"

> NormChips <- newMadbSet(NormChips)

> class(NormChips)

[1] "MadbSet"

attr(,"package")

[1] "maDB"

Before storing the experiment into the database it is useful to describe the samples that
were hybridized onto the chips. This information can be stored into a list of Samples objects
that can be added to the @samples slot of the MadbSet object. The linkage between signal
channel and samples (i.e. which sample was hybridized on which signal channel/ array) has
to be established with SignalChannel objects.
The publishToDB method finally stores the data set into the database.

> Sample1 <- new("Sample", name = "B-ALL-13", individual = "13KKI",

+ tissue = "PB", species = "hs", exposure.time = "0h")

> Sample2 <- new("Sample", name = "B-ALL-13", individual = "13KKI",

+ in.vivo.treatments = "GC", tissue = "PB", species = "hs",

+ exposure.time = "6h")

> Sample3 <- new("Sample", name = "B-ALL-17", individual = "17KKI",

+ tissue = "PB", species = "hs", exposure.time = "0h")

> Sample4 <- new("Sample", name = "B-ALL-17", individual = "13KKI",

+ in.vivo.treatments = "GC", tissue = "PB", species = "hs",

+ exposure.time = "6h")

> Sample5 <- new("Sample", name = "T-ALL-20", individual = "20KKI",

+ tissue = "PB", species = "hs", exposure.time = "0h")

> Sample6 <- new("Sample", name = "T-ALL-20", individual = "20KKI",

+ in.vivo.treatments = "GC", tissue = "PB", species = "hs",

+ exposure.time = "6h")

> Sample7 <- new("Sample", name = "T-ALL-25", individual = "25KKI",

+ tissue = "PB", species = "hs", exposure.time = "0h")

> Sample8 <- new("Sample", name = "T-ALL-25", individual = "25KKI",

+ in.vivo.treatments = "GC", tissue = "PB", species = "hs",

+ exposure.time = "6h")

> TheSamples <- list(Sample1, Sample2, Sample3, Sample4, Sample5,

+ Sample6, Sample7, Sample8)

> SigChannels <- getSignalChannels(NormChips)

> for (i in 1:length(SigChannels)) {

+ SigChannels[[i]]@sample.index <- i

+ }

> publishToDB(NormChips, con, exp.name = "maDB_Vignette", signal.channels = SigChannels,

+ samples = TheSamples, preprocessing = "gcRMA", v = FALSE)

4

Regulation values (M values) between signal channels (samples) in the database can
be calculated using the dbCalculateRegulations functions, that takes the name of the
dataset/experiment in the database and the indizes of the signal channels that should be
compared as input parameters, calculates the M and A values and inserts them into the
database. These regulation values are then available for further analyses, or for later export
from the database.
The function dbGetExperimentInfo can be used to get a list of available experiments that
are stored in the database, or to retrieve further informations like the arrays, signal channels
and samples from a specific experiment. This information can then be used to decide which
experiments/subset of a experiment should be fetched from the database, or, just like in the
code below, for which comparisons between samples regulation (M and A) values should be
generated.

> dbGetExperimentInfo(con)

You have not submitted an experiment title, please submit one of the following that are available in the database:

experiments_pk title description exp_date preprocessing pubmed_id

1 1 maDB_Vignette 18011977 gcRMA

publish_date

1 Thu Mar 24 14:53:58 2011

> info <- dbGetExperimentInfo(con, "maDB_Vignette")

> colnames(info)

[1] "arrays_pk" "chip" "arrays_fk"

[4] "signal_channels_pk" "array_name" "samples_fk"

[7] "name" "individual" "line"

[10] "tissue" "treatment" "in_vivo_treatments"

[13] "exposure_time"

> info[, c("name", "in_vivo_treatments", "exposure_time")]

name in_vivo_treatments exposure_time

1 B-ALL-13 <NA> 0h

2 B-ALL-13 GC 6h

3 B-ALL-17 <NA> 0h

4 B-ALL-17 GC 6h

5 T-ALL-20 <NA> 0h

6 T-ALL-20 GC 6h

7 T-ALL-25 <NA> 0h

8 T-ALL-25 GC 6h

Below regulation values are calculated by comparing the expression values from the 1000
probesets of the chips after 6 hours GC-treatment with those before treatment. These
regulation values are stored into the regulation_values database table.

> dbCalculateRegulations(con, "maDB_Vignette", comparisons = list(c(2,

+ 1), c(4, 3), c(6, 5), c(8, 7)), v = TRUE)

To get an information of the comparisons that are available for a microarray experiment,
the dbGetComparisons can be used.

> Comparisons <- dbGetComparisons(con, "maDB_Vignette")

> Comparisons[, c("name.red", "exposure_time.red", "name.green",

+ "exposure_time.green")]

name.red exposure_time.red name.green exposure_time.green

[1,] "B-ALL-13" "6h" "B-ALL-13" "0h"

[2,] "B-ALL-17" "6h" "B-ALL-17" "0h"

[3,] "T-ALL-20" "6h" "T-ALL-20" "0h"

[4,] "T-ALL-25" "6h" "T-ALL-25" "0h"

5

3 Reloading a set of arrays from the database

The function loadFromDB can be used to load a dataset (microarray experiment) or data from
a subset of arrays from the database. In the example below only the arrays with samples from
patient T-ALL-25 are fetched from the database (with loadFromDB(newMadbSet(),con,”maDB Vignette”)
the whole dataset would be loaded).

> info <- dbGetExperimentInfo(con, "maDB_Vignette")

> info.reduced <- info[info[, "name"] == "T-ALL-25",]

> TALL25 <- loadFromDB(newMadbSet(), con, "maDB_Vignette", pk = info.reduced[,

+ "signal_channels_pk"], v = FALSE)

> TALL25

MadbSet (storageMode: lockedEnvironment)

assayData: 1000 features, 2 samples

element names: exprs

protocolData: none

phenoData

rowNames: T-ALL-25-0h.CEL T-ALL-25-6h.CEL

varLabels: sample

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation: hgu133plus2

3.1 Loading expression values for a set of genes from the database

The function getEDB can be used to fetch the expression values from a set of features (in a
set of samples) from the database. The code below loads the expression values for the first
5 probe sets in the samples of patient B-ALL-13 from the database. To load the data from
the correct signal channels/arrays, the primary keys of the appropriate signal channels have
to be submitted.

> info <- dbGetExperimentInfo(con, "maDB_Vignette")

> info.reduced <- info[info[, "name"] == "B-ALL-13",]

> EValues <- getEDB(con, id = rownames(exprs(NormChips))[1:5],

+ signal.channels.pk = info.reduced[, "signal_channels_pk"],

+ v = FALSE, column.names = c("name", "exposure_time"))

> EValues

B-ALL-13 0h B-ALL-13 6h

1007_s_at 6.980063 6.609214

1053_at 6.340858 5.607547

117_at 2.811279 2.997891

121_at 3.163045 3.177225

1255_g_at 2.185753 2.200411

3.2 Loading regulation values for a set of genes from the database

The function to load regulation values for a set of genes from a set of comparisons from
the database is called getMDB and works just like the getEDB function (with the exception
that instead of the primary keys of the signal channels, those of the comparisons have to be
submitted).

6

> info <- dbGetComparisons(con)

> info.reduced <- info[info[, "name.red"] == "B-ALL-13" | info[,

+ "name.red"] == "B-ALL-17",]

> MValues <- getMDB(con, id = rownames(exprs(NormChips))[1:5],

+ comparisons.pk = info.reduced[, "comparisons_pk"], v = FALSE,

+ column.names = c("name", "exposure_time"))

> MValues

UniqueID B-ALL-13,6h B-ALL-17,6h

1007_s_at "1007_s_at" "-0.370849" "0.130771"

1053_at "1053_at" "-0.733311" "0.192474"

117_at "117_at" "0.186612" "-0.031165"

121_at "121_at" "0.01418" "-0.041603"

1255_g_at "1255_g_at" "0.014658" "-0.003137"

4 Inserting the annotation into the database

To insert the annotation for the features the function dbUpdateAnnotation can be used.
This function can also be used to update the annotation in the database (the old annotation
will be backed up automatically).
The annotation created in this example bases on the annotation of the hgu133plus2 meta
data package and the annotation table is created with the functions of the annaffy package.

> IDs <- dbGetQuery(con, "SELECT DISTINCT id FROM exp_values")[,

+ "id"]

The code above gets a unique list of IDs from the exp_values database table.

> library(annaffy)

> AnnotationTable <- matrix(ncol = 4, nrow = length(IDs))

> colnames(AnnotationTable) <- c("id", "gen_bank", "uni_gene",

+ "symbol")

> AnnotationTable[, 1] <- IDs

> AnnotationTable[, 2] <- getText(aafGenBank(IDs, "hgu133plus2.db"))

> AnnotationTable[, 3] <- getText(aafUniGene(IDs, "hgu133plus2.db"))

> AnnotationTable[, 4] <- getText(aafSymbol(IDs, "hgu133plus2.db"))

> dbUpdateAnnotation(con, data = AnnotationTable, chip = NormChips@annotation,

+ v = TRUE)

This (short) annotation table can be inserted using the dbUpdateAnnotation function.
The annotation of feature IDs using annotation information from the maDB database

can be performed with the dbGetAnnotation or getAnnotation functions.

> dbGetAnnotation(con, id = IDs[1:5], v = FALSE, chip = "hgu133plus2")

id gen_bank description uni_gene locuslink symbol chromosome

[1,] "1007_s_at" "U48705" NA "Hs.631988" NA "DDR1" NA

[2,] "1053_at" "M87338" NA "Hs.647062" NA "RFC2" NA

[3,] "117_at" "X51757" NA "Hs.654614" NA "HSPA6" NA

[4,] "121_at" "X69699" NA "Hs.469728" NA "PAX8" NA

[5,] "1255_g_at" "L36861" NA "Hs.92858" NA "GUCA1A" NA

Another way to query the annotation table in the database is shown below, where all
probesets targetting the same gene are retrieved.

> dbGetAnnotation(con, id = "CD24", chip = "hgu133plus2", search.col = "symbol",

+ v = FALSE)

id gen_bank description uni_gene locuslink symbol chromosome

1 "208651_x_at" "M58664" NA "Hs.644105" NA "CD24" NA

2 "266_s_at" "L33930" NA "Hs.644105" NA "CD24" NA

7

5 Searching for genes with similar expression or regu-

lation pattern

The function dbSearchSimilarPattern compares expression or regulation pattern of a tem-
plate gene (or a artificial pattern) with those of all other genes in the database. The similarity
is measured (like in the HCL (hierarchical clustering) analysis) using different distance mea-
surement methods (euclidian, pearson correlation ...).
In the example below genes with a similar expression pattern like the CD19 gene (which is a
B-lymphocyte antigen) in the 8 samples stored in the database are identified. The parameter
include.by.name allows to specify the samples, that should be included in the similarity
calculation (in our case all 4 patients (and therefore all 8 samples)). The default similarity
measure is the euclidian distance, but also other similarity measurement methods can be
used.
As result a Similarity object is returned. This object contains all calculated similarity
measures.

> CD19Sim <- dbSearchSimilarPattern(con, id = "206398_s_at", include.by.name = c("T-ALL-20",

+ "T-ALL-25", "B-ALL-13", "B-ALL-17"), include.values = TRUE,

+ v = FALSE)

> dbGetAnnotation(con, id = names(CD19Sim@distances)[1:5], chip = "hgu133plus2",

+ columns = "symbol", v = FALSE)

id symbol

[1,] "206398_s_at" "CD19"

[2,] "208651_x_at" "CD24"

[3,] "1553102_a_at" "CCDC69"

[4,] "1552274_at" "PXK"

[5,] "266_s_at" "CD24"

> dbDisconnect(con)

[1] TRUE

> con <- NULL

6 Microarray data visualizations

The function drawMA can be used to draw MA plots from objects of the type MadbSet. The
parameters r and g represent the index of the signal channel in the exprs slot that should
be used as red and green signal channel. The figure 3 represents the MA plot of the 100
probe sets of the 6 hours GC treated sample of patient T-ALL-25 against the sample before
treatment.

8

> plotSimilarity(CD19Sim)

0 2 4 6 8 10

4
6

8
10

12
14

16

Index

te
m

pl
at

e

B
−

A
LL

−
13

 P
B

 0
h

B
−

A
LL

−
13

 P
B

 6
h

B
−

A
LL

−
17

 P
B

 0
h

B
−

A
LL

−
17

 P
B

 6
h

T
−

A
LL

−
20

 P
B

 0
h

T
−

A
LL

−
20

 P
B

 6
h

T
−

A
LL

−
25

 P
B

 0
h

T
−

A
LL

−
25

 P
B

 6
h

206398_s_at
206398_s_at
208651_x_at
1553102_a_at
1552274_at
266_s_at

Figure 2: Genes with similar expression pattern as CD19. (black line: expression pattern of
the probe set 206398 s at (CD19), the other lines correspond to the 5 genes with the most
similar expression patterns).

9

> drawMA(TALL25, r = 2, g = 1, colramp = topo.colors)

2 4 6 8 10 12 14

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

T−ALL−25−6h.CEL vs T−ALL−25−0h.CEL

A=1/2*log2(R*G)

M
=

lo
g2

(R
/G

)

Figure 3: MA plot of patient T-ALL-25 samples. Data points are colored according to the
local point density

10

	Introduction
	Storing a microarray experiment into the database
	Reloading a set of arrays from the database
	Loading expression values for a set of genes from the database
	Loading regulation values for a set of genes from the database

	Inserting the annotation into the database
	Searching for genes with similar expression or regulation pattern
	Microarray data visualizations

