
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
A two-way interface between limited Systems Biology Markup
Language and R
Tomas Radivoyevitch*

Address: Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106 USA

Email: Tomas Radivoyevitch* - radivot@hal.cwru.edu

* Corresponding author

Abstract
Background: Systems Biology Markup Language (SBML) is gaining broad usage as a standard for
representing dynamical systems as data structures. The open source statistical programming
environment R is widely used by biostatisticians involved in microarray analyses. An interface
between SBML and R does not exist, though one might be useful to R users interested in SBML,
and SBML users interested in R.

Results: A model structure that parallels SBML to a limited degree is defined in R. An interface
between this structure and SBML is provided through two function definitions: write.SBML() which
maps this R model structure to SBML level 2, and read.SBML() which maps a limited range of SBML
level 2 files back to R. A published model of purine metabolism is provided in this SBML-like format
and used to test the interface. The model reproduces published time course responses before and
after its mapping through SBML.

Conclusions: List infrastructure preexisting in R makes it well-suited for manipulating SBML
models. Further developments of this SBML-R interface seem to be warranted.

Background
Systems biology markup language (SBML) is a standard
for representing dynamical systems of biological interest
[1,2]. Interfaces between SBML and high level computa-
tional environments are currently being developed for
Mathematica [3] and Matlab [4], but to the author's
knowledge, no such efforts are being carried forth for R/S-
plus. This brief paper presents the author's initial develop-
ments toward a two-way SBML-R interface. The interface
is currently limited in the range of SBML input files that it
can handle. For example, it only handles SBML level 2 and
does not handle "Events" and "FunctionDefinitions." The
interface can nevertheless be used for some models, exam-
ples [5,6] of which are included under "demo" in the
SBMLR package [7]. This paper provides an explicit exam-

ple of one approach to an SBML-R interface. It is assumed
throughout that the reader is already quite familiar with
both SBML [8] and R [9].

Implementation
The software exists completely in R. It is comprised of four
functions and is currently being distributed as a develop-
mental package called "SBMLR" through Bioconductor
[10]. The software was written subject to two constraints:
1) models expressed in SBML-like R must be exchangeable
with a range of SBML models; and 2) models must be
amenable to simulation in R. The first subsection that fol-
lows defines an SBML-like R model structure, the second
illustrates how it can be used in simulations, and the third
describes its conversions into and out of SBML.

Published: 07 December 2004

BMC Bioinformatics 2004, 5:190 doi:10.1186/1471-2105-5-190

Received: 03 June 2004
Accepted: 07 December 2004

This article is available from: http://www.biomedcentral.com/1471-2105/5/190

© 2004 Radivoyevitch; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15585059
http://www.biomedcentral.com/1471-2105/5/190
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2004, 5:190 http://www.biomedcentral.com/1471-2105/5/190
An SBML-Like Model Structure in R
To facilitate mappings between SBML and R, an SBML-like
list structure is defined in this subsection using the purine
metabolism model of Curto et al. [6] as a specific example
(Figure 1). In this figure and elsewhere, ellipses (...) indi-
cate missing code not critical to current discussions; com-
plete source codes are available through the SBMLR
package [7]. The essential components of an SBML model,
namely, its compartments, species and reactions, are all
present in this R analog of an SBML model. In the model
of Curto et al. [4], there is one compartment, be it the cell

or the entire human body, and 18 species: 2 boundary
conditions (bc = True) and 16 state variables (bc = False),
each with an initial condition (ic) or value. Each reaction
is a list that includes a reaction id, the names of species
that are reactants (reacts), the names of species that are
reaction rate modulators (mods), the names of species
that are produced by the reaction (prods), parameter val-
ues (params), and the reaction rate law (law) function def-
inition. In this framework, only state variables need be
listed as products, boundary condition reactants can
equivalently be listed as modulators, and missing terms

The model of Curto et al. implemented as an SBMLR structureFigure 1
The model of Curto et al. implemented as an SBMLR structure

Curto's purine model (curto.r)

model=list(

notes=c("This is a purine metabolism model that is geared toward studies of gout.",

"The model is fully described in Curto et al., MBSC 151 (1998) pp 1-49",

"The model uses Generalized Mass Action (power law) descriptions of reaction rate laws.",

"Such descriptions are local approximations that assume independent substrate binding."),

comps=list(list(id= "cell",vol=1)),

species=list(

PRPP =list(id="PRPP", ic=5, comp="cell", bc=F),

IMP =list(id="IMP", ic=100, comp="cell", bc=F),

…

UA =list(id="UA", ic=100, comp="cell", bc=F),

R5P =list(id="R5P", ic=18, comp="cell", bc=T),

Pi =list(id="Pi", ic=1400, comp="cell", bc=T)

),

rxns=list(

list(id="ada", rever=F, # v1

 reacts=c("ATP"),

 prods =c("HX"),

 params=c(aada =0.001062, fada4 =0.97),

 law = function(r,p)

 {aada=p["aada"];fada4=p["fada4"]

 ATP=r["ATP"]

 aada*ATP^fada4 }),

…

list(id="PRPPS", rever=F, # v28

 reacts=c("R5P"),

 mods=c("ATP","GTP","Pi","PRPP"),

 prods =c("PRPP"),

 params=c(aprpps=0.9, fprpps1 =-.03, fprpps4 =-.45, fprpps8 =-.04, fprpps17=0.65,fprpps18 =0.7),

 law = function(r,p)

 {aprpps=p["aprpps"];fprpps1=p["fprpps1"];fprpps4=p["fprpps4"];fprpps8=p["fprpps8"];

fprpps17=p["fprpps17"];fprpps18=p["fprpps18"]

 PRPP=r["PRPP"];ATP=r["ATP"];GTP=r["GTP"];R5P=r["R5P"];Pi=r["Pi"]

 aprpps * PRPP^fprpps1 * ATP^fprpps4 * GTP^fprpps8 * R5P^fprpps17 * Pi^fprpps18}),

…

list(id="Vxd", rever=F, # v37

 reacts=c("Xa"),

 prods =c("UA"),

 params=c(axd =0.949,fxd14 =0.55),

 law = function(r,p)

 {axd=p["axd"];fxd14=p["fxd14"]

 Xa=r["Xa"]

 axd * Xa^fxd14})),

units=c("micromolar","minutes")

) # end model list
Page 2 of 9
(page number not for citation purposes)

BMC Bioinformatics 2004, 5:190 http://www.biomedcentral.com/1471-2105/5/190
(e.g. mods in reactions 1 and 37) are equivalent to a NULL
assignment. The rate law function has as its input argu-
ments two vectors, one carrying the concentrations of
reactants and modulators (r), the other carrying reaction
parameter values (p). If the body of the rate law function
contains n statements, the first n-1 trivially convert input
vector components into variables with the same names.
The nth statement then contains the complete reaction
rate law. It can occupy multiple lines, but it must be a sin-
gle statement, i.e. it cannot depend on substitution varia-
bles temporarily defined in preceding statements.

SBML-like Model Execution in R
Model definition codes such as that given in Figure 1,
when placed in a separate file (e.g. Curto.r), can be
sourced into a parent script to become globally available
for simulations. For example, the purine metabolism
model of Curto et al. [6] can be simulated using the exe-
cution code shown in Figure 2.

This code simulates the response to a 10-fold increase in
phosphoribosylpyrophosphate (PRPP) at time t = 0 and
plots the responses of inosine monophosphate (IMP) and

hypoxanthine (HX) as shown in Figure 3. Two functions
called by this script are defined in the SBMLR package and
shown in Figure 4. They are, getIncidenceMatrix(), which
computes the incidence/stoichiometry matrix used by the
second function, fderiv(), which computes state deriva-
tives for integration by the function lsoda() of the "odes-
olve" package. In getIncidenceMatrix(), the incidence
matrix is generated automatically using an i loop over the
rows (i.e. state variables) and a j loop over the columns
(i.e. reactions). If a state is a product of a reaction, the cor-
responding matrix element becomes a positive integer
equal to its stoichiometry [factor() converts string names
to factors so that summary() can count them], and simi-
larly for reactants, though with negative numbers entering
the matrix in this case (or possibly zero, if a reactant of a
reaction happens to also be a product of the same
reaction).

The function fderiv() creates the current species vector by
overriding initial states with current states clipped to pos-
itive values, and by overriding any time varying boundary
conditions defined by rules (SBML rules are not needed
for the purine model, but are needed to implement other

The purine metabolism model of Curto et al. represented in SBMLR Figure 1) simulated to respond to a 10-fold increase (5 µM to 50 µM) in phosphoribosylpyrophosphate (PRPP) at time t = 0Figure 2
The purine metabolism model of Curto et al. represented in SBMLR Figure 1) simulated to respond to a 10-fold increase (5 µM
to 50 µM) in phosphoribosylpyrophosphate (PRPP) at time t = 0

library(SBMLR) # install SBMLR from Bioconductor’s developmental packages repository

library(odesolve) # this provides lsoda, an ODE solver which does NOT handle events

The file Curto.r defines Curto et al.'s model as an SBML-R model structure

source(file.path(.path.package("SBMLR"), "demo/Curto.r"))

nrxns=length(model$rxns);nspcs=length(model$species); # number of reactions and species

S0=NULL;BC=NULL;rIDs=NULL # initialize before assignments

for (j in 1:nrxns) rIDs[j]<-model$rxns[[j]]$id

for (i in 1:nspcs){BC[i]=model$species[[i]]$bc; S0[i]=model$species[[i]]$ic}

names(S0)<-names(model$species)

y0=S0[BC==FALSE]

nStates=length(y0)

my.atol <- rep(1e-4,nStates)

finalT=70

incid=getIncidenceMatrix(model,BC,y0,nStates,nrxns,nspcs)

NOTE: model,incid, nStates, nrxns, rIDs, S0 and BC are all passed globally to fderiv

out1=lsoda(y=y0,times=seq(-20,0,1),fderiv, parms=c(test1=1), rtol=1e-4, atol= my.atol)

ny0=out1[nrow(out1),2:(nStates+1)]

ny0["PRPP"]=50 # step response to PRPP change from 5 uM to 50 uM

out2=lsoda(y=ny0,times=seq(0,finalT,1),fderiv, parms=c(test1=1), rtol=1e-4, atol= my.atol)

outs=data.frame(rbind(out1,out2));#outs

the next block plots the dynamic responses in fig. 2 of Curto et al (1998) Math Biosci

attach(outs)

par(mfrow=c(2,1))

plot(time,IMP,type="l")

plot(time,HX,type="l")

par(mfrow=c(1,1))

detach(outs)
Page 3 of 9
(page number not for citation purposes)

BMC Bioinformatics 2004, 5:190 http://www.biomedcentral.com/1471-2105/5/190
models [5]). The function fderiv() then computes the
reaction rate flux vector (v) based on the current species
vector (St) and multiplies it by the incidence matrix to
produce the current state derivative vector (xp). The
names of xp and v are reset at the end of each function call
to override the problem of variables gaining new compos-
ite names from the names of their expression arguments.

A Two-Way Interface between SBML and R
Two functions comprise the SBML-R interface:
write.SBML() converts SBML-like R models (e.g. Curto.r)
into SBML models (e.g. Curto.xml), and read.SBML()
converts SBML models (e.g. Curto.xml) into an SBML-like
R model (e.g. CurtoX.r). A key component of these two
interface functions is a locally defined recursive function
named recurs(). This function converts arbitrary R expres-
sions into arbitrary MathML expressions, and vice-versa; it
is defined differently, locally, in each of the two functions.
In write.SBML(), shown in Figure 5, recurs() initially takes
as its input argument the last component of the body of
the kinetic rate law function definition, which is the entire
rate law expression (as mentioned above, rate laws
involving multiple R statements are not supported). In R,
expressions are LISP like in that they contain a first ele-
ment, the operator, and the remaining elements, the argu-

ments, any of which can be an expression. If the operator
is the parentheses operator, the action taken is that of a
unary identity operator, and we simply skip it and move
on to its argument since parentheses are not needed in
MathML. Each nested call to the function recurs() sends
"<apply>" and the converted operator to the output file
on its way in, and a matching "</apply>" on its way out.
Nested calling continues until all nodes of the expression
tree are of class "name" or "numeric," i.e. when all found
objects are leaves of the tree rather than "expressions" that
require further parsing. Leaves are then sent to the output
file bracketed by <ci> and </ci>.

The second of the two SBML-R interface functions,
read.SBML(), maps a limited range of SBML level 2 files
(function definitions and events are not handled) into
SBML-like R model files. Portions of read.SBML() are
given in Figure 6. The main difference between this func-
tion, read.SBML(), and the previous function,
write.SBML(), is that here, rather than using parse() to
decompose the list-of-lists structure of the model defined
in R, the SBML model is instead decomposed as an XML
object using xmlTreeParse() of the XML package available
to R [11]. In read.SBML(), the locally defined recursive
function recurs() uses an overkill of parentheses to avoid
operator precedence issues. This recursive function is
passed a MathML reaction rate law which it parses recur-
sively until the leaves of the tree (the "ci") are all found.
During the recursion a corresponding R expression is built
as a vector of character strings which, upon exit from the
last of the recursive calls, is collapsed into a single string
and sent to the output file as the last line of the current
rate law function definition.

Results
The function write.SBML() was applied to Curto.r to gen-
erate Curto.xml and the function read.SBML() was then
applied to Curto.xml to generate CurtoX.r. Execution of
the script given in Figure 2 with line 4 of the execution
code changed to act on CurtoX.r instead of Curto.r gener-
ated the same plots as before (Figure 3). This shows that
the R model was successfully converted into an SBML file
that can be reconverted back into a properly functioning
R model. The intermediate file Curto.xml was successfully
validated as an SBML level 2 file [12]. The SBML file could
thus be imported into visualization packages such as JDe-
signer [13].

Discussion
If the model of Curto et al. [4] were implemented in R
without any knowledge of SBML, a form that it might take
is that given in Appendix B (Figure 7). Compared to its
SBML-like counterparts, this code is more compact and
easier to understand, e.g. the system's network connectiv-
ity is clearly visible. The disadvantage of such code is that

The purine metabolism model of Curto et al. responding to a 10-fold increase in phosphoribosylpyrophosphate (PRPP) at time t = 0 (see Figure 2)Figure 3
The purine metabolism model of Curto et al. responding to a
10-fold increase in phosphoribosylpyrophosphate (PRPP) at
time t = 0 (see Figure 2). IMP is inosine monophosphate, HX
is hypoxanthine, time is in minutes, and concentration is in
µM.

-20 0 20 40 60

1
0

0
1

0
5

1
1

0
1

1
5

time

IM
P

-20 0 20 40 60

7
8

9
1
0

1
1

time

H
X

Page 4 of 9
(page number not for citation purposes)

BMC Bioinformatics 2004, 5:190 http://www.biomedcentral.com/1471-2105/5/190
it is not readily converted into SBML. Since the benefits of
SBML are compelling, this disadvantage alone warrants
the use of SBML-like model structures.

As SBML evolves to handle a broader range of dynamical
systems, it will become more and more challenging for
simulation packages to handle all possible SBML models.
It is envisioned here that the development of this SBML-R
interface will be driven by its users, and not by the model
representation capabilities of SBML, i.e. it is expected that
the users of this interface will be programmers who are
capable of modifying it as their needs require.

Conclusions
Compared to Matlab, which may be better equipped than
R to simulate arbitrarily complex dynamical systems, R
has the advantage of list handling infrastructure in parse()
and xmlTreeParse(), and it also has the advantage of
indexing by names instead of numbers. A further advan-
tage, though not exploited here, is that R is object-ori-
ented; in future versions of this interface, a print() method
might be defined for objects of class SBMLR (i.e. models)
to generate more readable renderings of models in R.
Another advantage of R over Matlab is that it provides
access to a much broader collection of microarray analysis
tools, e.g. see Bioconductor [10]. This aspect is important

for those individuals who are interested in biochemical
systems analyses of microarray data [14,15]. For statisti-
cians already familiar with R, there are also the obvious
economies of maintaining system familiarity. Finally,
perhaps the biggest advantage of R over Matlab is that it is
freely available. On balance, there seems to be ample
motivation for further developments of this interface
between SBML and R.

Availability and requirements
Project name: SBMLR

Project home page: http://www.bioconductor.org/reposi
tory/devel/package/html/SBMLR.html

Operating system(s): Windows XP

Programming language: R 2.0

Other requirements: R packages: XML and ODESOLVE

License: GNU GPL

Any restrictions to use by non-academics: no restrictions

R codes for the functions getIncidenceMatrix() and fderiv()Figure 4
R codes for the functions getIncidenceMatrix() and fderiv().

getIncidenceMatrix<-function(model,BC,y0,nStates,nrxns,nspcs)

{incid=matrix(rep(0,nStates*nrxns),nrow=nStates)

indx=(1:nspcs)[BC==F]

for (i in 1:nStates)

 for (j in 1:nrxns)

 {if (is.element(model$species[[indx[i]]]$id, model$rxns[[j]]$prods))

 incid[i,j] = summary(factor(model$rxns[[j]]$prods))[[model$species[[indx[i]]]$id]]

 if (is.element(model$species[[indx[i]]]$id, model$rxns[[j]]$reacts))

 incid[i,j] = incid[i,j]-summary(factor(model$rxns[[j]]$reacts))[[model$species[[indx[i]]]$id]]}

rownames(incid)<-names(y0)

incid}

fderiv <- function(times, X, p) # state derivative function sent to ODEsolve

NOTE: much is passed to fderiv globally since p cannot be a list.

{v=rep(0,nrxns)

xp=rep(0,nStates)

St=S0

X[X<0]=0

St[BC==F]=X

nrules=length(model$rules)

if (nrules>0) for (j in 1:nrules)

 St[model$rules[[j]]$output]=model$rules[[j]]$law(St[model$rule[[j]]$inputs])

for (j in 1:nrxns) if (model$rxns[[j]]$rever==F)

 v[j]=model$rxns[[j]]$law(St[c(model$rxns[[j]]$reacts,model$rxns[[j]]$mods)],model$rxns[[j]]$params)

xp=incid%*%v

names(xp)<-names(y0)

names(v)<-rIDs

aux=c(v,St[BC==T])

list(xp,aux)}
Page 5 of 9
(page number not for citation purposes)

http://www.bioconductor.org/repository/devel/package/html/SBMLR.html
http://www.bioconductor.org/repository/devel/package/html/SBMLR.html

BMC Bioinformatics 2004, 5:190 http://www.biomedcentral.com/1471-2105/5/190
R code for the function write.SBML()Figure 5
R code for the function write.SBML().

write.SBML<-function(filename)

{ # takes R model in filename.r and maps it to an SBML model in filename.xml

r2ml<- function(type) # maps R operator symbols into MathML

 switch(type,

 "*" = "<times/>",

 "/" = "<divide/>",

 "+" = "<plus/>",

 "-" = "<minus/>",

 "^" = "<power/>",

 "exp" = "<exp/>",

 "log" = "<ln/>",

 "not found") # end of r2ml sub-function definition.

fid <- file(paste(filename,".xml",sep=""), "w") # open the output file connection

recurs<-function(last)

{ if(last[[1]]=="(") {last=last[[2]]} # remove parentheses

 cat(" <apply>", file=fid, sep="\n")

 cat(sprintf(" %s",r2ml(as.character(last[[1]]))), file=fid, sep="\n")

 for (j in 2:length(last))

 if ((class(last[[j]])=="name")|(class(last[[j]])=="numeric"))

 cat(sprintf(" <ci>%s</ci>",as.character(last[[j]])) , file=fid, sep="\n") else

 Recall(last[[j]])

 cat(" </apply>", file=fid, sep="\n")

} # End of locally defined recursive function

e=parse(file=paste(filename,".r",sep=""),n=-1) # parses the whole file into a list of lists

notes=e[[1]][[3]][["notes"]]

comps=e[[1]][[3]][["comps"]]

species=e[[1]][[3]][["species"]]

parameters=e[[1]][[3]][["parameters"]]

rules=e[[1]][[3]][["rules"]]

rxns=e[[1]][[3]][["rxns"]]

…

cat(" <kineticLaw>", file=fid, sep="\n")

fcn=rxns[[i]][["law"]][[3]] # the third component is the body of the function

last=fcn[[length(fcn)]]

cat(" <math xmlns=\"http://www.w3.org/1998/Math/MathML\">", file=fid, sep="\n")

recurs(last)

cat(" </math>", file=fid, sep="\n")

cat(" <listOfParameters>", file=fid, sep="\n")

params=rxns[[i]][["params"]]

for (j in 2:length(params))

if (length(params[[j]])==1)

cat(sprintf(" <parameter id = \"%s\" value = \"%g\"/>",

names(params)[j],params[[j]]), file=fid, sep="\n") else

cat(sprintf(" <parameter id = \"%s\" value = \"%g\"/>",

names(params)[j],-params[[j]][[2]]), file=fid, sep="\n")

cat(" </listOfParameters>", file=fid, sep="\n")

cat(" </kineticLaw>", file=fid, sep="\n")

cat(" </reaction>", file=fid, sep="\n")

}

cat("</listOfReactions>", file=fid, sep="\n")

cat("</model>", file=fid, sep="\n")

cat("</sbml>", file=fid, sep="\n")

close(fid)

} # end write.sbml function defition
Page 6 of 9
(page number not for citation purposes)

BMC Bioinformatics 2004, 5:190 http://www.biomedcentral.com/1471-2105/5/190
List of abbreviations
SBML = Systems Biology Markup Language; XML = exten-
sible markup language; MathML = Mathematical Markup
Language; ODE = ordinary differential equation.

Authors' contributions
TR is the sole contributor.

Appendix A
The SBMLR package is available through Bioconductor as
a developmental package [7]. It has been developed and
tested only under Windows XP. To install, do NOT unzip

the file SBMLR.zip after downloading to a local directory,
rather, within the R GUI, click packages and install from
local zip. The XML package installs similarly [11]. Note
that an error message from library(XML) can be resolved
by copying the *.dll files of the XML package libs directory
into the "C:\windows" directory. The ODESOLVE package
must be installed before running simulations. This pack-
age is installed from the R GUI by clicking packages and
install from CRAN.

R code for the function read.SBML()Figure 6
R code for the function read.SBML().

read.SBML<-function(filename)

{ # takes SBML in filename.xml and maps it to a model definition in filenameX.r

if(!require(XML)) print("Please install the XML package from http://www.omegahat.org/RSXML")

ML2R<- function(type) # map MathML operator symbols into R symbols

 switch(type,

 "times" = "*",

 "divide" = "/",

 "plus" = "+",

 "minus" = "-",

 "power" = "^",

 "exp" = "exp",

 "ln" = "log",

 "not found") # end definition of ML2R

recurs<-function(math)

{ n=length(math)

 S=c("(")

 op=ML2R(xmlName(math[[1]]))

 for (j in 2:n)

 if (xmlName(math[[j]])=="ci") S=c(S,as.character(xmlValue(math[[j]])), ifelse(j==n,"",op)) else

 S=c(S,Recall(math[[j]]), ifelse(j==n,"",op))

S=c(S,")")

S

} # end recursive function definition

start main part of read.SBML functino definition

fid <- file(paste(filename,"X.r",sep=""), "w") # open the output file connection

cat("#",filename,"X.r\n", file=fid, sep="") # X indicates R via XML

cat("model=list(", file=fid, sep="\n")

now read in a SBML file

doc <- xmlTreeParse(paste(filename,".xml",sep=""),getDTD=F)

cat("notes=c(", file=fid, sep="\n")

notes=doc$children$sbml[["model"]][["notes"]][["body"]]

n=length(xmlChildren(notes))

for (i in 1:n)

cat(sprintf("\"%s\"%s", xmlValue(xmlChildren(notes)[[i]]),ifelse(i==n,"\n),\n",",")),file=fid, sep="\n")

…

cat("rxns=list(", file=fid, sep="\n")

rxns=xmlChildren(doc$children$sbml[["model"]][["listOfReactions"]]); n=length(rxns)

for (i in 1:n)

{

cat(sprintf("list(id=\"%s\", rever=%s,",xmlAttrs(rxns[[i]])[["id"]],ifelse(xmlAttrs(rxns[[i]])[["reversible"]]=="true","T","F")),

file=fid, sep="\n")

law=rxns[[i]]["kineticLaw"][[1]]

params=law[["listOfParameters"]]

math=law[["math"]][[1]]

reacts=rxns[[i]]["listOfReactants"][[1]]

…

nr=length(reacts)

if (nr>0){cat("reacts=c(", file=fid, sep="")

for (k in 1:nr) cat(sprintf("\"%s\"%s",xmlAttrs(reacts[[k]]), ifelse(k==nr,"),\n",",")), file=fid, sep="")}

…

npa=length(params)

if (npa>0){cat("params=c(", file=fid, sep="")

for (k in 1:npa) cat(sprintf("%s = %g%s",xmlAttrs(params[[k]])[["id"]], as.numeric(xmlAttrs(params[[k]])[["value"]]), ifelse(k==npa,"),\n",",")),

file=fid, sep="")}

always have a law

cat("law=function(r,p){", file=fid, sep="\n")

if (npa>0) for (k in 1:npa) cat(sprintf("%s = p[\"%s\"];",xmlAttrs(params[[k]])[["id"]],xmlAttrs(params[[k]])[["id"]]), file=fid, sep="")

cat(" ", file=fid, sep="\n")

if (nr>0) for (k in 1:nr) cat(sprintf("%s = r[\"%s\"];",xmlAttrs(reacts[[k]]),xmlAttrs(reacts[[k]])), file=fid, sep="")

if (nm>0) for (k in 1:nm) cat(sprintf("%s = r[\"%s\"];",xmlAttrs(mods[[k]]),xmlAttrs(mods[[k]])), file=fid, sep="")

cat(" ", file=fid, sep="\n")

cat(paste(recurs(math),collapse=""), file=fid, sep="")

cat(sprintf("} \n %s",ifelse(i==n,"))) \n","),")), file=fid, sep="\n")

} # end for loop on reactions

close(fid)

} # end read.SBML function definition
Page 7 of 9
(page number not for citation purposes)

BMC Bioinformatics 2004, 5:190 http://www.biomedcentral.com/1471-2105/5/190
The purine metabolism model of Curto et al. implemented in "natural R"Figure 7
The purine metabolism model of Curto et al. implemented in "natural R".

library(odesolve)

fada4 =0.97; fade6 =0.55; fadrnr4 =0.1; fadrnr9 =-0.3;fadrnr10=0.87; fampd4 =0.8; fampd8 =-0.03; fampd18 =-0.1;

faprt1 =0.5; faprt4 =-0.8; faprt6 =0.75; fasuc2 =0.4;fasuc4 =-.24; fasuc8 =0.2; fasuc18 =-.05; fasli3 =0.99;

fasli4 =-.95; fdada9 =1; fden1 =2; fden2 =-.06;fden4 =-.25; fden8 =-.2; fden18 =-.08; fdgnuc10=1;

fdnan12=1; fdnap9 =0.42; fdnap10 =0.33; fgdrnr8 =0.4;fgdrnr9 =-1.2; fgdrnr10=-.39; fgmpr2 =-.15; fgmpr4 =-.07;

fgmpr7 =-.76; fgmpr8 =0.7; fgmps4 =0.12; fgmps7 =0.16;fgnuc8 =0.9; fgnuc18 =-.34; fgprt1 =1.2; fgprt8 =-1.2;

fgprt15 =0.42; fgua15 =0.5; fhprt1 =1.1; fhprt2 =-.89;fhprt13 =0.48; fhx13 =1.12; fhxd13 =0.65; fimpd2 =0.15;

fimpd7 =-.09; fimpd8 =-.03; finuc2 =0.8; finuc18 =-.36;fmat4=0.2; fmat5=-.6; fpolyam5=0.9; fprpps1 =-.03;

fprpps4 =-.45; fprpps8 =-.04; fprpps17=0.65; fprpps18 =0.7;fpyr1 =1.27; frnan11 =1; frnap4 =0.05; frnap8 =0.13;

ftrans5 =0.33; fua16 =2.21; fx14 =2.0; fxd14 =0.55;

aada =0.001062; aade =0.01; aadna=3.2789; aadrnr =0.0602;aampd =0.02688; aaprt =233.8; aarna =614.5; aasuc =3.5932;

aasli =66544; adada =0.03333; aden =5.2728; adgnuc=0.03333;adnaa =0.001938; adnag =0.001318; agdna=2.2296; agdrnr =0.1199;

agmpr =0.3005; agmps=0.3738; agnuc=0.2511; agprt =361.69;agrna =409.6; agua =0.4919; ahprt =12.569; ahx =0.003793;

ahxd =0.2754; aimpd =1.2823; ainuc =0.9135; amat =7.2067;apolyam=0.29; aprpps=0.9; apyr =1.2951; arnaa =0.06923;

arnag =0.04615; atrans =8.8539; aua =0.00008744; ax =0.0012;axd =0.949;

R5P=18; Pi=1400;

fpur <- function(t, X, p)

{vada =aada * X[4]^fada4;

vade =aade * X[6]^fade6;

vadna =aadna * X[9]^fdnap9 * X[10]^fdnap10;

vadrnr =aadrnr * X[4]^fadrnr4 * X[9]^fadrnr9 * X[10]^fadrnr10;

vampd =aampd * X[4]^fampd4 * X[8]^fampd8 * Pi^fampd18;

vaprt =aaprt * X[1]^faprt1 * X[4]^faprt4 * X[6]^faprt6;

varna =aarna * X[4]^frnap4* X[8]^frnap8;

vasuc =aasuc * X[2]^fasuc2 * X[4]^fasuc4 * X[8]^fasuc8 * Pi^fasuc18;

vasli =aasli * X[3]^fasli3 * X[4]^fasli4;

vdada =adada * X[9]^fdada9;

vden =aden * X[1]^fden1 * X[2]^fden2 * X[4]^fden4 * X[8]^fden8 * Pi^fden18;

vdgnuc =adgnuc * X[10]^fdgnuc10;

vdnaa =adnaa * X[12]^fdnan12;

vdnag =adnag * X[12]^fdnan12;

vgdna =agdna * X[9]^fdnap9 * X[10]^fdnap10;

vgdrnr =agdrnr * X[8]^fgdrnr8 * X[9]^fgdrnr9 * X[10]^fgdrnr10;

vgmpr =agmpr * X[2]^fgmpr2 * X[4]^fgmpr4 * X[7]^fgmpr7 * X[8]^fgmpr8;

vgmps =agmps * X[4]^fgmps4 * X[7]^fgmps7;

vgnuc =agnuc * X[8]^fgnuc8 * Pi^fgnuc18;

vgprt =agprt * X[1]^fgprt1 * X[8]^fgprt8* X[15]^fgprt15;

vgrna =agrna * X[8]^frnap8* X[4]^frnap4;

vgua =agua * X[15]^fgua15;

vhprt =ahprt * X[1]^fhprt1 * X[2]^fhprt2 * X[13]^fhprt13;

vhx =ahx * X[13]^fhx13;

vhxd =ahxd * X[13]^fhxd13;

vimpd =aimpd * X[2]^fimpd2 * X[7]^fimpd7 * X[8]^fimpd8;

vinuc =ainuc * X[2]^finuc2 * Pi^finuc18;

vmat =amat * X[4]^fmat4 * X[5]^fmat5;

vpolyam=apolyam* X[5]^fpolyam5;

vprpps =aprpps * X[1]^fprpps1 * X[4]^fprpps4 * X[8]^fprpps8 * R5P^fprpps17 * Pi^fprpps18;

vpyr =apyr * X[1]^fpyr1;

vrnaa =arnaa * X[11]^frnan11;

vrnag =arnag * X[11]^frnan11;

vtrans =atrans * X[5]^ftrans5;

vua =aua * X[16]^fua16;

vx =ax * X[14]^fx14;

vxd =axd * X[14]^fxd14;

X1p = vprpps-vgprt-vhprt-vaprt-vden-vpyr;

X2p = vden+vgmpr+vhprt+vampd-vimpd-vasuc-vinuc;

X3p = vasuc-vasli;

X4p = vaprt+vasli+vtrans+vrnaa-vmat-vampd-varna-vadrnr-vada;

X5p = vmat-vtrans-vpolyam;

X6p = vpolyam-vaprt-vade;

X7p = vimpd-vgmps;

X8p = vgmps+vrnag+vgprt-vgmpr-vgrna-vgdrnr-vgnuc;

X9p = vadrnr+vdnaa-vadna-vdada;

X10p= vgdrnr+vdnag-vgdna-vdgnuc;

X11p= varna+vgrna-vrnaa-vrnag;

X12p= vgdna+vadna-vdnaa-vdnag;

X13p= vdada+vada+vinuc-vhprt-vhxd-vhx;

X14p= vhxd+vgua-vxd-vx;

X15p= vgnuc+vdgnuc-vgua-vgprt;

X16p= vxd-vua;

XP = c(X1p, X2p, X3p, X4p, X5p, X6p, X7p, X8p, X9p, X10p, X11p, X12p, X13p, X14p, X15p, X16p);

V=c(vada,vade,vadna,vadrnr,vampd,vaprt,varna,vasuc,vasli,vdada,vden,vdgnuc,vdnaa,vdnag,vgdna,vgdrnr,vgmpr,vgmps,vgnuc,

vgprt,vgrna,vgua,vhprt,vhx,vhxd,vimpd,vinuc,vmat,vpolyam,vprpps,vpyr,vrnaa,vrnag,vtrans,vua,vx,vxd)

names(V)<-c("vada","vade","vadna","vadrnr","vampd","vaprt","varna","vasuc","vasli","vdada","vden","vdgnuc",

"vdnaa","vdnag","vgdna","vgdrnr","vgmpr","vgmps","vgnuc","vgprt","vgrna","vgua","vhprt","vhx","vhxd","vimpd",

"vinuc","vmat","vpolyam","vprpps","vpyr","vrnaa","vrnag","vtrans","vua","vx","vxd")

list(XP,V)}

y0=c(PRPP=5,IMP=100,SAMP=.2,Ado=2500,SAM=4,Ade=1,XMP=25,GMP=400,dAdo=6,dGMP=3,RNA=28600,DNA=5160,HX=10,Xa=5,Gua=5,UA=100);

out1=lsoda(y=y0,times=seq(-20,0,1),fpur, parms=c(test1=1), rtol=1e-4, atol= rep(1e-4,16)); ny0=out1[nrow(out1),2:17]

ny0[1]=50 # jump response to a change in PRPP from 5 uM to 50 uM as in Curto's Math Biosci paper

out2=lsoda(y=ny0,times=seq(0,70,1),fpur, parms=c(test1=1), rtol=1e-4, atol= rep(1e-4,16))

outs=data.frame(rbind(out1,out2))

attach(outs);par(mfrow=c(2,1))

plot(time,IMP,type="l");plot(time,HX,type="l")

par(mfrow=c(1,1)); detach(outs)
Page 8 of 9
(page number not for citation purposes)

BMC Bioinformatics 2004, 5:190 http://www.biomedcentral.com/1471-2105/5/190
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Appendix B
The implementation of Curto et al.'s model shown in Fig-
ure 7 is independent of any knowledge of SBML. It is
included here to illustrate what comes "naturally" when
implementing a model in R, see Discussion.

Acknowledgements
This research was supported by the Biostatistics Core Facility of the Com-
prehensive Cancer Center of Case Western Reserve University and Uni-
versity Hospitals of Cleveland (P30 CA43703), by the American Cancer
Society (IRG-91-022-09), and by the National Cancer Institute's Integrative
Cancer Biology Program (P20 CA112963-01).

References
1. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin

AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S,
Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC,
Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer
U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness
ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Sha-
piro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M,
Wagner J, Wang J: The systems biology markup language
(SBML): a medium for representation and exchange of bio-
chemical network models. Bioinformatics 2003, 19:524-531.

2. Finney A, Hucka M: Systems biology markup language: Level 2
and beyond. Biochem Soc Trans 2003, 31:1472-1473.

3. Shapiro BE, Hucka M, Finney A, Doyle J: MathSBML: a package for
manipulating SBML-based biological models. Bioinformatics
2004, 20:2829-2831.

4. Keating SM: SBMLToolbox. [http://sbml.org/software/sbmltool
box/].

5. Morrison PF, Allegra CJ: Folate cycle kinetics in human breast
cancer cells. J Biol Chem 1989, 264:10552-10566.

6. Curto R, Voit EO, Sorribas A, Cascante M: Mathematical models
of purine metabolism in man. Math Biosci 1998, 151:1-49.

7. SBMLR [http://www.bioconductor.org/repository/devel/package/
html/SBMLR.html]

8. Systems Biology Markup Language [http://sbml.org]
9. The R Project for Statistical Computing [http://www.r-

project.org/]
10. Bioconductor [http://www.bioconductor.org/]
11. XML [http://www.omegahat.org/RSXML/]
12. SBML Online Tools [http://sbml.org/tools/htdocs/sbmltools.php]
13. Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano

H: Next generation simulation tools: the Systems Biology
Workbench and BioSPICE integration. Omics 2003, 7:355-372.

14. Radivoyevitch T: Sphingoid base metabolism in yeast: Mapping
gene expression patterns into qualitative metabolite time
course predictions. Comparative & Functional Genomics 2001,
2:289-294.

15. Voit EO, Radivoyevitch T: Biochemical systems analysis of
genome-wide expression data. Bioinformatics 2000,
16:1023-1037.
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14641091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14641091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15087311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15087311
http://sbml.org/software/sbmltoolbox/
http://sbml.org/software/sbmltoolbox/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2732237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2732237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9664759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9664759
http://www.bioconductor.org/repository/devel/package/html/SBMLR.html
http://www.bioconductor.org/repository/devel/package/html/SBMLR.html
http://sbml.org
http://www.r-project.org/
http://www.r-project.org/
http://www.bioconductor.org/
http://www.omegahat.org/RSXML/
http://sbml.org/tools/htdocs/sbmltools.php
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14683609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14683609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159314
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	An SBML-Like Model Structure in R
	SBML-like Model Execution in R
	A Two-Way Interface between SBML and R

	Results
	Discussion
	Conclusions
	Availability and requirements
	List of abbreviations
	Authors' contributions
	Appendix A
	Appendix B
	Acknowledgements
	References

