QC with Interactive Reports

1️⃣ Setup

After extracting epochs from your data,

eye <- eye |>
  epoch(
    events = "PROBE_START_{trial}",
    limits = c(0, 1),
    label = "probeEpochs",
    calc_baseline = TRUE,
    apply_baseline = TRUE,
    baseline_type = "sub",
    baseline_events = "DELAY_STOP_*",
    baseline_period = c(-1, 0)
  )

(for more details on extracting pupil data epochs, see the Extracting Data Epochs and Exporting Pupil Data vignette; for more details on this specific example code shown above, click here).

2️⃣ Generating the Interactive HTML Reports

When running bidsify on the previously epoched data, be sure to set html_report to TRUE (as shown below).

bidsify(
  eyeris = eye_1c,
  bids_dir = tempdir(), # Replace with preferred path, like "~/Documents/eyeris"
  participant_id = "001",
  session_num = "01",
  task_name = "assocmem",
  run_num = "01",
  save_raw = TRUE, # Also save raw timeseries
  html_report = TRUE, # Generate an interactive preproc summary report document
  report_seed = 0 # Make randomly selected plot epochs reproducible across runs
)

Which will create a directory structure like this:

eyeris
└── derivatives
    └── sub-001
        └── ses-01
            ├── eye
            │   ├── sub-001_ses-01_task-assocret_run-01_desc-timeseries_pupil.csv
            │   └── sub-001_ses-01_task-assocret_run-01_epoch-prePostProbe_desc-preproc_pupil.csv
            ├── source
            │   └── figures
            │       └── run-01
            │           ├── epoch_prePostProbe
            │           │   ├── run-01_PROBE_START_22_1.png
            │           │   ├── run-01_PROBE_START_22_2.png
            │           │   ├── run-01_PROBE_START_22_3.png
            │           │   ├── run-01_PROBE_START_22_4.png
            │           │   ├── run-01_PROBE_START_22_5.png
            │           │   ├── run-01_PROBE_START_22_6.png
            │           │   ├── ...
            │           │   ├── run-01_PROBE_STOP_22_1.png
            │           │   ├── run-01_PROBE_STOP_22_2.png
            │           │   ├── run-01_PROBE_STOP_22_3.png
            │           │   ├── run-01_PROBE_STOP_22_4.png
            │           │   ├── run-01_PROBE_STOP_22_5.png
            │           │   ├── run-01_PROBE_STOP_22_6.png
            │           │   ├── ...
            │           ├── run-01_fig-1_desc-histogram.jpg
            │           ├── run-01_fig-1_desc-timeseries.jpg
            ├── sub-001_epoch-prePostProbe_run-01.html
            └── sub-001.html

9 directories, 80 files

Here, notice specifically these two files:

3️⃣ Previewing your Entire Pupil Timeseries

sub-001.html will look something like this:

4️⃣ Data QC of Extracted Pupil Epochs with Interactive Reports

Meanwhile, sub-001_epoch-prePostProbe_run-01.html will enable you to interact with images of each extracted data epoch (for which you will see include separate images for each epoch at each sequential stage of the preprocessing pipeline). This feature was intentionally designed to make data QC a default behavior without the barriers of needing to code up a script with loops to print out images of each preprocessing step for each epoch for each participant.

As you see below, you can use your left/right arrow keys on your keyboard to quickly scan through the data from each trial, while simultaneously watching what happened to any given epoch’s signal from start to finish! We hope this intuitive feature is fun and helps you make more appropriate preprocessing decisions to optimize your signal-to-noise ratio with as little overhead as possible!

3️⃣ Gaze Heatmaps

In addition to the standard pupil timeseries plots, eyeris now includes gaze heatmaps that show the distribution of eye coordinates across the entire screen area. These heatmaps are automatically generated in the BIDS reports and can also be created manually.

Standalone Gaze Heatmaps

When you run bidsify() with html_report = TRUE, eyeris automatically creates standalone gaze heatmaps for each block of data. These heatmaps show:

Manual Gaze Heatmap Creation

You can also create gaze heatmaps manually using the plot_gaze_heatmap() function:

plot_gaze_heatmap(
  eyeris = eyeris_data$timeseries$block_1,
  screen_width = eyeris_data$info$screen.x,
  screen_height = eyeris_data$info$screen.y,
  n_bins = 50,
  col_palette = "viridis"
)

Epoch-Level Gaze Heatmaps

For epoched data, each epoch automatically generates a gaze heatmap showing the distribution of eye coordinates during that specific epoch. These are saved as separate files in the epoch directories and help you quickly assess:

The gaze heatmaps use the screen dimensions stored in the eyeris$info object to properly show the full screen area and use color-coded density to visualize gaze patterns.


📚 Citing eyeris

If you use the eyeris package in your research, please cite it!

Run the following in R to get the citation:

citation("eyeris")
#> To cite package 'eyeris' in publications use:
#> 
#>   Schwartz ST, Yang H, Xue AM, He M (2025). "eyeris: A flexible,
#>   extensible, and reproducible pupillometry preprocessing framework in
#>   R." _bioRxiv_, 1-37. doi:10.1101/2025.06.01.657312
#>   <https://doi.org/10.1101/2025.06.01.657312>.
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Article{,
#>     title = {eyeris: A flexible, extensible, and reproducible pupillometry preprocessing framework in R},
#>     author = {Shawn T Schwartz and Haopei Yang and Alice M Xue and Mingjian He},
#>     journal = {bioRxiv},
#>     year = {2025},
#>     pages = {1--37},
#>     doi = {10.1101/2025.06.01.657312},
#>   }