CRAN Package Check Results for Package mlr3pipelines

Last updated on 2025-12-19 15:50:24 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.10.0 38.89 764.75 803.64 OK
r-devel-linux-x86_64-debian-gcc 0.10.0 22.92 498.59 521.51 OK
r-devel-linux-x86_64-fedora-clang 0.10.0 70.00 1134.20 1204.20 ERROR
r-devel-linux-x86_64-fedora-gcc 0.10.0 60.00 1035.51 1095.51 ERROR
r-devel-windows-x86_64 0.10.0 39.00 562.00 601.00 OK
r-patched-linux-x86_64 0.10.0 53.21 713.01 766.22 OK
r-release-linux-x86_64 0.10.0 36.47 698.05 734.52 OK
r-release-macos-arm64 0.10.0 OK
r-release-macos-x86_64 0.10.0 26.00 542.00 568.00 OK
r-release-windows-x86_64 0.10.0 37.00 525.00 562.00 OK
r-oldrel-macos-arm64 0.10.0 8.00 106.00 114.00 ERROR
r-oldrel-macos-x86_64 0.10.0 26.00 538.00 564.00 ERROR
r-oldrel-windows-x86_64 0.10.0 55.00 647.00 702.00 ERROR

Additional issues

noLD

Check Details

Version: 0.10.0
Check: examples
Result: ERROR Running examples in ‘mlr3pipelines-Ex.R’ failed The error most likely occurred in: > ### Name: mlr_graphs_stacking > ### Title: Create A Graph to Perform Stacking. > ### Aliases: mlr_graphs_stacking pipeline_stacking > > ### ** Examples > > ## Don't show: > if (mlr3misc::require_namespaces("rpart", quietly = TRUE)) withAutoprint({ # examplesIf + ## End(Don't show) + library(mlr3) + library(mlr3learners) + + base_learners = list( + lrn("classif.rpart", predict_type = "prob"), + lrn("classif.nnet", predict_type = "prob") + ) + super_learner = lrn("classif.log_reg") + + graph_stack = pipeline_stacking(base_learners, super_learner) + graph_learner = as_learner(graph_stack) + graph_learner$train(tsk("german_credit")) + ## Don't show: + }) # examplesIf > library(mlr3) > library(mlr3learners) > base_learners = list(lrn("classif.rpart", predict_type = "prob"), lrn("classif.nnet", + predict_type = "prob")) > super_learner = lrn("classif.log_reg") > graph_stack = pipeline_stacking(base_learners, super_learner) > graph_learner = as_learner(graph_stack) > graph_learner$train(tsk("german_credit")) INFO [08:20:50.266] [mlr3] Resampling 'cv' is being instantiated on task 'german_credit' INFO [08:20:51.997] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 1/3) INFO [08:20:52.610] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 2/3) INFO [08:20:53.035] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 3/3) Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Calls: withAutoprint ... .__ResultData__initialize -> [ -> [.data.table -> .handleSimpleError -> h Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.10.0
Check: tests
Result: ERROR Running ‘testthat.R’ [12m/18m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + library("paradox") + library("mlr3pipelines") + test_check("mlr3pipelines") + } Starting 2 test processes. > test_Graph.R: Training debug.multi with input list(input_1 = 1, input_2 = 1) > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain Saving _problems/test_conversion-143.R Saving _problems/test_conversion-165.R > test_filter_ensemble.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. Saving _problems/test_filter_ensemble-291.R Saving _problems/test_filter_ensemble-447.R Saving _problems/test_mlr_graphs_bagging-49.R Saving _problems/test_mlr_graphs_stacking-16.R > test_mlr_graphs_robustify.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_mlr_graphs_robustify.R: Use 'as(., "TsparseMatrix")' instead. > test_mlr_graphs_robustify.R: See help("Deprecated") and help("Matrix-depr > test_mlr_graphs_robustify.R: ecated"). > test_multiplicities.R: > test_multiplicities.R: > test_multiplicities.R: [[1]] > test_multiplicities.R: [1] 0 > test_multiplicities.R: > test_pipeop_blsmote.R: [1] > test_pipeop_blsmote.R: "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] > test_pipeop_blsmote.R: "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_isomap.R: 2025-12-19 08:30:40.363242: Isomap START > test_pipeop_isomap.R: 2025-12-19 08:30:40.367901: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:40.433084: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:40.512549: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 08:30:40.93849: Isomap START > test_pipeop_isomap.R: 2025-12-19 08:30:40.951917: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:41.012872: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:41.126434: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 08:30:41.305691: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 08:30:41.317077: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:41.411394: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:41.765289: embedding > test_pipeop_isomap.R: 2025-12-19 08:30:41.772305: DONE > test_pipeop_isomap.R: 2025-12-19 08:30:41.866255: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 08:30:41.867072: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:41.917246: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:42.108832: embedding > test_pipeop_isomap.R: 2025-12-19 08:30:42.119933: DONE > test_pipeop_isomap.R: 2025-12-19 08:30:42.586082: Isomap START > test_pipeop_isomap.R: 2025-12-19 08:30:42.589146: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:42.679015: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:43.052504: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 08:30:43.170314: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 08:30:43.173294: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:43.304996: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:45.435539: embedding > test_pipeop_isomap.R: 2025-12-19 08:30:45.492558: DONE > test_pipeop_isomap.R: 2025-12-19 08:30:46.685293: Isomap START > test_pipeop_isomap.R: 2025-12-19 08:30:46.691909: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:46.752692: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:46.815295: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 08:30:46.922453: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 08:30:46.92661: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:46.965697: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:47.176722: embedding > test_pipeop_isomap.R: 2025-12-19 08:30:47.187831: DONE > test_pipeop_isomap.R: 2025-12-19 08:30:48.496907: Isomap START > test_pipeop_isomap.R: 2025-12-19 08:30:48.499894: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:48.57024: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:48.734709: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 08:30:49.1143: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 08:30:49.115341: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:49.188571: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:49.393842: embedding > test_pipeop_isomap.R: 2025-12-19 08:30:49.395722: DONE > test_pipeop_isomap.R: 2025-12-19 08:30:49.851429: Isomap START > test_pipeop_isomap.R: 2025-12-19 08:30:49.854243: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:49.906646: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:50.046973: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 08:30:50.392442: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 08:30:50.393562: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:50.467753: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:50.679835: embedding > test_pipeop_isomap.R: 2025-12-19 08:30:50.681526: DONE > test_pipeop_isomap.R: 2025-12-19 08:30:51.221785: Isomap START > test_pipeop_isomap.R: 2025-12-19 08:30:51.23693: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:51.320636: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:51.469558: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 08:30:51.826498: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 08:30:51.836852: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:52.035177: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:52.312289: embedding > test_pipeop_isomap.R: 2025-12-19 08:30:52.320398: DONE > test_pipeop_isomap.R: 2025-12-19 08:30:52.965474: Isomap START > test_pipeop_isomap.R: 2025-12-19 08:30:52.973897: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:53.014302: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:53.157719: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 08:30:53.584991: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 08:30:53.586238: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:53.648466: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:53.798025: embedding > test_pipeop_isomap.R: 2025-12-19 08:30:53.805036: DONE > test_pipeop_isomap.R: 2025-12-19 08:30:54.111635: Isomap START > test_pipeop_isomap.R: 2025-12-19 08:30:54.118664: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:54.155429: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:54.270518: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 08:30:54.8991: Isomap START > test_pipeop_isomap.R: 2025-12-19 08:30:54.91191: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:54.947618: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:55.063771: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 08:30:55.22628: Isomap START > test_pipeop_isomap.R: 2025-12-19 08:30:55.23691: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 08:30:55.30114: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 08:30:55.481903: Classical Scaling Saving _problems/test_pipeop_learnercv-11.R Saving _problems/test_pipeop_learnercv-100.R Saving _problems/test_pipeop_learnercv-139.R Saving _problems/test_pipeop_learnercv-152.R Saving _problems/test_pipeop_learnercv-203.R Saving _problems/test_pipeop_learnercv-250.R Saving _problems/test_pipeop_learnercv-278.R Saving _problems/test_pipeop_learnercv-323.R Saving _problems/test_pipeop_learnercv-350.R Saving _problems/test_pipeop_learnercv-387.R Saving _problems/test_pipeop_learnercv-419.R Saving _problems/test_pipeop_learnercv-455.R Saving _problems/test_pipeop_learnercv-493.R Saving _problems/test_pipeop_learnercv-516.R Saving _problems/test_pipeop_learnercv-531.R Saving _problems/test_pipeop_learnercv-557.R Saving _problems/test_pipeop_learnercv-612.R Saving _problems/test_pipeop_learnercv-628.R Saving _problems/test_pipeop_learnercv-671.R Saving _problems/test_pipeop_learnerpicvplus-35.R Saving _problems/test_pipeop_learnerpicvplus-91.R Saving _problems/test_pipeop_learnerpicvplus-116.R Saving _problems/test_pipeop_learnerpicvplus-130.R Saving _problems/test_pipeop_learnerpicvplus-152.R > test_pipeop_nmf.R: [PipeOpNMFstate] > test_pipeop_nmf.R: [PipeOpNMFstate] > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_textvectorizer.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_pipeop_textvectorizer.R: Use 'as(., "TsparseMatrix")' instead. > test_pipeop_textvectorizer.R: See help("Deprecated") and help("Matrix-deprecated"). > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols Saving _problems/test_pipeop_tunethreshold-7.R Saving _problems/test_pipeop_tunethreshold-38.R Saving _problems/test_pipeop_tunethreshold-73.R Saving _problems/test_pipeop_tunethreshold-101.R Saving _problems/test_pipeop_tunethreshold-260.R Saving _problems/test_resample-13.R Saving _problems/test_usecases-153.R Saving _problems/test_ppl-73.R [ FAIL 38 | WARN 2 | SKIP 98 | PASS 12316 ] ══ Skipped tests (98) ══════════════════════════════════════════════════════════ • On CRAN (95): 'test_CnfFormula_simplify.R:6:3', 'test_CnfFormula.R:591:3', 'test_Graph.R:283:3', 'test_PipeOp.R:32:1', 'test_GraphLearner.R:5:3', 'test_GraphLearner.R:221:3', 'test_GraphLearner.R:343:3', 'test_GraphLearner.R:408:3', 'test_GraphLearner.R:571:3', 'test_dictionary.R:7:3', 'test_learner_weightedaverage.R:5:3', 'test_learner_weightedaverage.R:57:3', 'test_learner_weightedaverage.R:105:3', 'test_learner_weightedaverage.R:152:3', 'test_meta.R:39:3', 'test_mlr_graphs_bagging.R:6:3', 'test_mlr_graphs_branching.R:26:3', 'test_mlr_graphs_robustify.R:5:3', 'test_pipeop_adas.R:8:3', 'test_pipeop_blsmote.R:8:3', 'test_pipeop_branch.R:4:3', 'test_pipeop_chunk.R:4:3', 'test_pipeop_boxcox.R:7:3', 'test_pipeop_classbalancing.R:7:3', 'test_pipeop_classweights.R:10:3', 'test_pipeop_collapsefactors.R:6:3', 'test_pipeop_colapply.R:9:3', 'test_pipeop_copy.R:5:3', 'test_pipeop_colroles.R:6:3', 'test_pipeop_datefeatures.R:10:3', 'test_pipeop_decode.R:14:3', 'test_pipeop_encode.R:21:3', 'test_pipeop_encodeimpact.R:11:3', 'test_pipeop_encodelmer.R:15:3', 'test_pipeop_encodelmer.R:37:3', 'test_pipeop_encodelmer.R:80:3', 'test_pipeop_encodepl.R:5:3', 'test_pipeop_encodepl.R:72:3', 'test_pipeop_featureunion.R:9:3', 'test_pipeop_featureunion.R:134:3', 'test_pipeop_filter.R:7:3', 'test_pipeop_fixfactors.R:9:3', 'test_pipeop_histbin.R:7:3', 'test_pipeop_ica.R:7:3', 'test_pipeop_ensemble.R:6:3', 'test_pipeop_impute.R:4:3', 'test_pipeop_imputelearner.R:43:3', 'test_pipeop_isomap.R:10:3', 'test_pipeop_kernelpca.R:9:3', 'test_pipeop_learner.R:17:3', 'test_pipeop_info.R:6:3', 'test_pipeop_learnerpicvplus.R:163:3', 'test_pipeop_missind.R:6:3', 'test_pipeop_modelmatrix.R:7:3', 'test_pipeop_multiplicityexply.R:9:3', 'test_pipeop_mutate.R:9:3', 'test_pipeop_nearmiss.R:7:3', 'test_pipeop_multiplicityimply.R:9:3', 'test_pipeop_ovr.R:9:3', 'test_pipeop_ovr.R:48:3', 'test_pipeop_pca.R:8:3', 'test_pipeop_proxy.R:14:3', 'test_pipeop_quantilebin.R:5:3', 'test_pipeop_randomprojection.R:6:3', 'test_pipeop_randomresponse.R:5:3', 'test_pipeop_removeconstants.R:6:3', 'test_pipeop_renamecolumns.R:6:3', 'test_pipeop_replicate.R:9:3', 'test_pipeop_rowapply.R:6:3', 'test_pipeop_scale.R:6:3', 'test_pipeop_scale.R:10:3', 'test_pipeop_scalemaxabs.R:6:3', 'test_pipeop_scalerange.R:7:3', 'test_pipeop_select.R:9:3', 'test_pipeop_smote.R:10:3', 'test_pipeop_smotenc.R:8:3', 'test_pipeop_spatialsign.R:6:3', 'test_pipeop_nmf.R:6:3', 'test_pipeop_targetinvert.R:4:3', 'test_pipeop_targetmutate.R:5:3', 'test_pipeop_targettrafo.R:4:3', 'test_pipeop_targettrafoscalerange.R:5:3', 'test_pipeop_subsample.R:6:3', 'test_pipeop_task_preproc.R:4:3', 'test_pipeop_task_preproc.R:14:3', 'test_pipeop_tomek.R:7:3', 'test_pipeop_tunethreshold.R:111:3', 'test_pipeop_tunethreshold.R:191:3', 'test_pipeop_unbranch.R:10:3', 'test_pipeop_textvectorizer.R:37:3', 'test_pipeop_textvectorizer.R:186:3', 'test_pipeop_updatetarget.R:89:3', 'test_pipeop_yeojohnson.R:7:3', 'test_pipeop_vtreat.R:9:3', 'test_typecheck.R:188:3' • Skipping (1): 'test_GraphLearner.R:1278:3' • empty test (2): 'test_pipeop_isomap.R:111:1', 'test_pipeop_missind.R:101:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_conversion.R:143:3'): Graph to GraphLearner ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, glrn1, cv) at test_conversion.R:143:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_conversion.R:165:3'): PipeOp to GraphLearner ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, glrn1, cv) at test_conversion.R:165:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_filter_ensemble.R:291:3'): FilterEnsemble ignores NA scores from wrapped filters ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─permutation_filter$calculate(task) at test_filter_ensemble.R:291:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPermutation__.calculate(...) 5. └─mlr3::resample(task, self$learner, self$resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_filter_ensemble.R:447:7'): FilterEnsemble weight search space works with bbotk ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_filter_ensemble.R:463:3 2. └─bbotk:::.__OptimizerBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 10. └─inst$eval_batch(design$data) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss) 19. └─bbotk:::.__Objective__.eval_many(...) 20. └─mlr3misc::map_dtr(...) 21. ├─data.table::rbindlist(...) 22. ├─base::unname(map(.x, .f, ...)) 23. └─mlr3misc::map(.x, .f, ...) 24. └─base::lapply(.x, .f, ...) 25. └─bbotk (local) FUN(X[[i]], ...) 26. └─self$eval(xs) 27. └─bbotk:::.__ObjectiveRFun__eval(...) 28. ├─mlr3misc::invoke(private$.fun, xs, .args = self$constants$values) 29. │ └─base::eval.parent(expr, n = 1L) 30. │ └─base::eval(expr, p) 31. │ └─base::eval(expr, p) 32. └─private$.fun(xs) 33. └─mlr3::resample(task, learner, resampling) at test_filter_ensemble.R:447:7 34. └─ResultData$new(data, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_graphs_bagging.R:49:3'): Bagging with replacement ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk, GraphLearner$new(p), rsmp("holdout")) at test_mlr_graphs_bagging.R:49:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_graphs_stacking.R:16:3'): Stacking Pipeline ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp base.rpart's $train() Backtrace: ▆ 1. ├─graph_learner$train(tsk("iris")) at test_mlr_graphs_stacking.R:16:3 2. │ └─mlr3:::.__Learner__train(...) 3. │ └─mlr3:::learner_train(...) 4. │ └─mlr3misc::encapsulate(...) 5. │ ├─mlr3misc::invoke(...) 6. │ │ └─base::eval.parent(expr, n = 1L) 7. │ │ └─base::eval(expr, p) 8. │ │ └─base::eval(expr, p) 9. │ └─mlr3 (local) .f(learner = `<GrphLrnr>`, task = `<TskClssf>`) 10. │ └─get_private(learner)$.train(task) 11. │ └─mlr3pipelines:::.__GraphLearner__.train(...) 12. │ └─self$graph$train(task) 13. │ └─mlr3pipelines:::.__Graph__train(...) 14. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 15. │ └─op[[fun]](input) 16. │ └─mlr3pipelines:::.__PipeOp__train(...) 17. │ ├─base::withCallingHandlers(...) 18. │ └─private$.train(input) 19. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 20. │ └─private$.train_task(intask) 21. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 22. │ └─mlr3::resample(...) 23. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 24. │ └─mlr3 (local) initialize(...) 25. │ └─mlr3:::.__ResultData__initialize(...) 26. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. │ └─data.table:::`[.data.table`(...) 28. └─base::.handleSimpleError(...) 29. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:11:3'): PipeOpLearnerCV - basic properties ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─global train_pipeop(po, list(task = task)) at test_pipeop_learnercv.R:11:3 2. │ └─po$train(inputs) 3. │ └─mlr3pipelines:::.__PipeOp__train(...) 4. │ ├─base::withCallingHandlers(...) 5. │ └─private$.train(input) 6. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 7. │ └─private$.train_task(intask) 8. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 9. │ └─mlr3::resample(...) 10. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 11. │ └─mlr3 (local) initialize(...) 12. │ └─mlr3:::.__ResultData__initialize(...) 13. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. │ └─data.table:::`[.data.table`(...) 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:100:3'): PipeOpLearnerCV - cv ensemble averages fold learners ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:100:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:139:3'): PipeOpLearnerCV - cv ensemble drops response when requested ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:139:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:152:3'): PipeOpLearnerCV - cv ensemble averages classif responses ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:152:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:203:3'): PipeOpLearnerCV - cv ensemble log prob aggregation ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:203:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:250:3'): PipeOpLearnerCV - log aggregation with zeros uses epsilon ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:250:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:278:3'): PipeOpLearnerCV - log aggregation epsilon controls shrinkage ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:278:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:323:3'): PipeOpLearnerCV - cv ensemble averages regression predictions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:323:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:350:3'): PipeOpLearnerCV - cv ensemble handles multiplicity ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(tasks)) at test_pipeop_learnercv.R:350:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:387:3'): PipeOpLearnerCV - learner_model returns averaged ensemble ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:387:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:419:3'): PipeOpLearnerCV - cv ensemble with predict_type = 'se' ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.lm's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:419:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:455:3'): PipeOpLearnerCV - within resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), gr, rsmp("holdout")) at test_pipeop_learnercv.R:455:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_pipeop_learnercv.R:493:3'): PipeOpLearnerCV - model active binding to state ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:493:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:516:3'): predict_type ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─global expect_equal(...) at test_pipeop_learnercv.R:516:3 2. │ ├─testthat::expect_true(...) 3. │ │ └─testthat::quasi_label(enquo(object), label) 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─base::all.equal(...) 6. ├─lcv$train(list(tsk("iris"))) 7. │ └─mlr3pipelines:::.__PipeOp__train(...) 8. │ ├─base::withCallingHandlers(...) 9. │ └─private$.train(input) 10. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 11. │ └─private$.train_task(intask) 12. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 13. │ └─mlr3::resample(...) 14. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 15. │ └─mlr3 (local) initialize(...) 16. │ └─mlr3:::.__ResultData__initialize(...) 17. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 18. │ └─data.table:::`[.data.table`(...) 19. └─base::.handleSimpleError(...) 20. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:531:3'): marshal ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po_lrn$train(list(task)) at test_pipeop_learnercv.R:531:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:557:3'): marshal multiplicity ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(tsk("iris"), tsk("sonar")))) at test_pipeop_learnercv.R:557:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:612:3'): marshal with cv ensemble ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:612:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:628:3'): state class and multiplicity ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(tsk("iris")))) at test_pipeop_learnercv.R:628:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:671:5'): PipeOpLearnerCV cv ensemble aggregates SE like PipeOpRegrAvg ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:671:5 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:35:3'): PipeOpLearnerPICVPlus - basic properties ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.featureless's $train() Backtrace: ▆ 1. ├─global train_pipeop(po, list(task)) at test_pipeop_learnerpicvplus.R:35:3 2. │ └─po$train(inputs) 3. │ └─mlr3pipelines:::.__PipeOp__train(...) 4. │ ├─base::withCallingHandlers(...) 5. │ └─private$.train(input) 6. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 7. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 8. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 9. │ └─mlr3 (local) initialize(...) 10. │ └─mlr3:::.__ResultData__initialize(...) 11. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 12. │ └─data.table:::`[.data.table`(...) 13. └─base::.handleSimpleError(...) 14. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:91:3'): PipeOpLearnerPICVPlus - model active binding to state ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnerpicvplus.R:91:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 6. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 7. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 8. │ └─mlr3 (local) initialize(...) 9. │ └─mlr3:::.__ResultData__initialize(...) 10. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. │ └─data.table:::`[.data.table`(...) 12. └─base::.handleSimpleError(...) 13. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:116:3'): PipeOpLearnerPICVPlus - integration with larger graph ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.rpart's $train() Backtrace: ▆ 1. ├─graph$train(task) at test_pipeop_learnerpicvplus.R:116:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 9. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 10. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 11. │ └─mlr3 (local) initialize(...) 12. │ └─mlr3:::.__ResultData__initialize(...) 13. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. │ └─data.table:::`[.data.table`(...) 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:130:3'): marshal ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnerpicvplus.R:130:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 6. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 7. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 8. │ └─mlr3 (local) initialize(...) 9. │ └─mlr3:::.__ResultData__initialize(...) 10. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. │ └─data.table:::`[.data.table`(...) 12. └─base::.handleSimpleError(...) 13. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:152:3'): marshal multiplicity ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(task1, task2))) at test_pipeop_learnerpicvplus.R:152:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 14. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 15. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 16. │ └─mlr3 (local) initialize(...) 17. │ └─mlr3:::.__ResultData__initialize(...) 18. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. │ └─data.table:::`[.data.table`(...) 20. └─base::.handleSimpleError(...) 21. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:7:3'): threshold works for multiclass ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po_cv$train(list(t)) at test_pipeop_tunethreshold.R:7:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:38:3'): threshold works for binary ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po_cv$train(list(t)) at test_pipeop_tunethreshold.R:38:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:73:3'): tunethreshold graph works ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─graph$train(tsk("pima")) at test_pipeop_tunethreshold.R:73:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:101:3'): threshold works for classes that are not valid R names ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─ppl$train(testtask) at test_pipeop_tunethreshold.R:101:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:260:3'): threshold graph transparency ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─lrn_prob$train(t) at test_pipeop_tunethreshold.R:260:3 2. │ └─mlr3:::.__Learner__train(...) 3. │ └─mlr3:::learner_train(...) 4. │ └─mlr3misc::encapsulate(...) 5. │ ├─mlr3misc::invoke(...) 6. │ │ └─base::eval.parent(expr, n = 1L) 7. │ │ └─base::eval(expr, p) 8. │ │ └─base::eval(expr, p) 9. │ └─mlr3 (local) .f(learner = `<GrphLrnr>`, task = `<TskClssf>`) 10. │ └─get_private(learner)$.train(task) 11. │ └─mlr3pipelines:::.__GraphLearner__.train(...) 12. │ └─self$graph$train(task) 13. │ └─mlr3pipelines:::.__Graph__train(...) 14. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 15. │ └─op[[fun]](input) 16. │ └─mlr3pipelines:::.__PipeOp__train(...) 17. │ ├─base::withCallingHandlers(...) 18. │ └─private$.train(input) 19. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 20. │ └─private$.train_task(intask) 21. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 22. │ └─mlr3::resample(...) 23. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 24. │ └─mlr3 (local) initialize(...) 25. │ └─mlr3:::.__ResultData__initialize(...) 26. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. │ └─data.table:::`[.data.table`(...) 28. └─base::.handleSimpleError(...) 29. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_resample.R:13:3'): PipeOp - Resample ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, pp, resa) at test_resample.R:13:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_usecases.R:153:3'): stacking ─────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─pipe$train(task) at test_usecases.R:153:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_ppl.R:73:3'): mlr3book authors don't sleepwalk through life ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart.classif.rpart's $train() Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(tasks, learners, rsmp("cv", folds = 2))) at test_ppl.R:73:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) [ FAIL 38 | WARN 2 | SKIP 98 | PASS 12316 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.10.0
Check: examples
Result: ERROR Running examples in ‘mlr3pipelines-Ex.R’ failed The error most likely occurred in: > ### Name: mlr_graphs_stacking > ### Title: Create A Graph to Perform Stacking. > ### Aliases: mlr_graphs_stacking pipeline_stacking > > ### ** Examples > > ## Don't show: > if (mlr3misc::require_namespaces("rpart", quietly = TRUE)) withAutoprint({ # examplesIf + ## End(Don't show) + library(mlr3) + library(mlr3learners) + + base_learners = list( + lrn("classif.rpart", predict_type = "prob"), + lrn("classif.nnet", predict_type = "prob") + ) + super_learner = lrn("classif.log_reg") + + graph_stack = pipeline_stacking(base_learners, super_learner) + graph_learner = as_learner(graph_stack) + graph_learner$train(tsk("german_credit")) + ## Don't show: + }) # examplesIf > library(mlr3) > library(mlr3learners) > base_learners = list(lrn("classif.rpart", predict_type = "prob"), lrn("classif.nnet", + predict_type = "prob")) > super_learner = lrn("classif.log_reg") > graph_stack = pipeline_stacking(base_learners, super_learner) > graph_learner = as_learner(graph_stack) > graph_learner$train(tsk("german_credit")) INFO [12:35:59.250] [mlr3] Resampling 'cv' is being instantiated on task 'german_credit' INFO [12:35:59.762] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 1/3) INFO [12:35:59.962] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 2/3) INFO [12:36:00.073] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 3/3) Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Calls: withAutoprint ... .__ResultData__initialize -> [ -> [.data.table -> .handleSimpleError -> h Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.10.0
Check: tests
Result: ERROR Running ‘testthat.R’ [10m/10m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + library("paradox") + library("mlr3pipelines") + test_check("mlr3pipelines") + } Starting 2 test processes. > test_Graph.R: Training debug.multi with input list(input_1 = 1, input_2 = 1) > test_Graph.R: > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain Saving _problems/test_conversion-143.R Saving _problems/test_conversion-165.R > test_filter_ensemble.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. Saving _problems/test_filter_ensemble-291.R Saving _problems/test_filter_ensemble-447.R Saving _problems/test_mlr_graphs_bagging-49.R Saving _problems/test_mlr_graphs_stacking-16.R > test_mlr_graphs_robustify.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_mlr_graphs_robustify.R: Use 'as(., "TsparseMatrix")' instead. > test_mlr_graphs_robustify.R: See help("Deprecated") and help("Matrix-deprecated"). > test_multiplicities.R: > test_multiplicities.R: [[1]] > test_multiplicities.R: [1] 0 > test_multiplicities.R: > test_multiplicities.R: > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] > test_pipeop_blsmote.R: "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] > test_pipeop_blsmote.R: "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] > test_pipeop_blsmote.R: "Borderline-SMOTE done" > test_pipeop_isomap.R: 2025-12-19 12:40:40.810455: Isomap START > test_pipeop_isomap.R: 2025-12-19 12:40:40.811509: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:40.839367: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:40.87009: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 12:40:41.029903: Isomap START > test_pipeop_isomap.R: 2025-12-19 12:40:41.03606: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:41.063067: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:41.134463: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 12:40:41.233111: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 12:40:41.234192: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:41.308376: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:41.442257: embedding > test_pipeop_isomap.R: 2025-12-19 12:40:41.448256: DONE > test_pipeop_isomap.R: 2025-12-19 12:40:41.524493: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 12:40:41.529293: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:41.578926: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:41.719571: embedding > test_pipeop_isomap.R: 2025-12-19 12:40:41.721557: DONE > test_pipeop_isomap.R: 2025-12-19 12:40:41.983984: Isomap START > test_pipeop_isomap.R: 2025-12-19 12:40:41.984677: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:42.101086: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:42.512402: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 12:40:42.626629: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 12:40:42.633308: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:42.723963: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:43.462029: embedding > test_pipeop_isomap.R: 2025-12-19 12:40:43.471896: DONE > test_pipeop_isomap.R: 2025-12-19 12:40:43.985367: Isomap START > test_pipeop_isomap.R: 2025-12-19 12:40:43.991899: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:44.013667: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:44.089733: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 12:40:44.223707: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 12:40:44.224686: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:44.27414: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:44.468682: embedding > test_pipeop_isomap.R: 2025-12-19 12:40:44.470539: DONE > test_pipeop_isomap.R: 2025-12-19 12:40:44.958345: Isomap START > test_pipeop_isomap.R: 2025-12-19 12:40:44.95904: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:44.995049: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:45.079285: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 12:40:45.160857: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 12:40:45.16432: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:45.246153: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:45.373753: embedding > test_pipeop_isomap.R: 2025-12-19 12:40:45.379883: DONE > test_pipeop_isomap.R: 2025-12-19 12:40:45.640641: Isomap START > test_pipeop_isomap.R: 2025-12-19 12:40:45.641471: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:45.667388: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:45.727318: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 12:40:45.879744: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 12:40:45.886705: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:45.940945: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:46.080362: embedding > test_pipeop_isomap.R: 2025-12-19 12:40:46.088764: DONE > test_pipeop_isomap.R: 2025-12-19 12:40:46.573868: Isomap START > test_pipeop_isomap.R: 2025-12-19 12:40:46.574545: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:46.604222: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:46.691745: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 12:40:46.862719: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 12:40:46.863737: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:46.914001: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:47.055884: embedding > test_pipeop_isomap.R: 2025-12-19 12:40:47.057964: DONE > test_pipeop_isomap.R: 2025-12-19 12:40:47.376329: Isomap START > test_pipeop_isomap.R: 2025-12-19 12:40:47.385907: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:47.412987: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:47.489905: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 12:40:47.738713: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 12:40:47.73972: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:47.803509: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:47.982624: embedding > test_pipeop_isomap.R: 2025-12-19 12:40:47.990171: DONE > test_pipeop_isomap.R: 2025-12-19 12:40:48.318157: Isomap START > test_pipeop_isomap.R: 2025-12-19 12:40:48.318858: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:48.344776: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:48.40859: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 12:40:48.695255: Isomap START > test_pipeop_isomap.R: 2025-12-19 12:40:48.695925: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:48.731643: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:48.797391: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 12:40:48.888212: Isomap START > test_pipeop_isomap.R: 2025-12-19 12:40:48.894901: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 12:40:48.916525: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 12:40:48.980285: Classical Scaling Saving _problems/test_pipeop_learnerpicvplus-35.R Saving _problems/test_pipeop_learnerpicvplus-91.R Saving _problems/test_pipeop_learnerpicvplus-116.R Saving _problems/test_pipeop_learnerpicvplus-130.R Saving _problems/test_pipeop_learnerpicvplus-152.R Saving _problems/test_pipeop_learnercv-11.R Saving _problems/test_pipeop_learnercv-100.R Saving _problems/test_pipeop_learnercv-139.R Saving _problems/test_pipeop_learnercv-152.R Saving _problems/test_pipeop_learnercv-203.R Saving _problems/test_pipeop_learnercv-250.R Saving _problems/test_pipeop_learnercv-278.R Saving _problems/test_pipeop_learnercv-323.R Saving _problems/test_pipeop_learnercv-350.R Saving _problems/test_pipeop_learnercv-387.R Saving _problems/test_pipeop_learnercv-419.R Saving _problems/test_pipeop_learnercv-455.R Saving _problems/test_pipeop_learnercv-493.R Saving _problems/test_pipeop_learnercv-516.R Saving _problems/test_pipeop_learnercv-531.R Saving _problems/test_pipeop_learnercv-557.R Saving _problems/test_pipeop_learnercv-612.R Saving _problems/test_pipeop_learnercv-628.R Saving _problems/test_pipeop_learnercv-671.R > test_pipeop_nmf.R: [PipeOpNMFstate] > test_pipeop_nmf.R: [PipeOpNMFstate] > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols Saving _problems/test_pipeop_tunethreshold-7.R Saving _problems/test_pipeop_tunethreshold-38.R Saving _problems/test_pipeop_tunethreshold-73.R Saving _problems/test_pipeop_tunethreshold-101.R Saving _problems/test_pipeop_tunethreshold-260.R Saving _problems/test_resample-13.R Saving _problems/test_usecases-153.R Saving _problems/test_ppl-73.R [ FAIL 38 | WARN 2 | SKIP 98 | PASS 12316 ] ══ Skipped tests (98) ══════════════════════════════════════════════════════════ • On CRAN (95): 'test_CnfFormula_simplify.R:6:3', 'test_CnfFormula.R:591:3', 'test_Graph.R:283:3', 'test_PipeOp.R:32:1', 'test_GraphLearner.R:5:3', 'test_GraphLearner.R:221:3', 'test_GraphLearner.R:343:3', 'test_GraphLearner.R:408:3', 'test_GraphLearner.R:571:3', 'test_dictionary.R:7:3', 'test_learner_weightedaverage.R:5:3', 'test_learner_weightedaverage.R:57:3', 'test_learner_weightedaverage.R:105:3', 'test_learner_weightedaverage.R:152:3', 'test_meta.R:39:3', 'test_mlr_graphs_bagging.R:6:3', 'test_mlr_graphs_branching.R:26:3', 'test_mlr_graphs_robustify.R:5:3', 'test_pipeop_adas.R:8:3', 'test_pipeop_blsmote.R:8:3', 'test_pipeop_branch.R:4:3', 'test_pipeop_chunk.R:4:3', 'test_pipeop_classbalancing.R:7:3', 'test_pipeop_boxcox.R:7:3', 'test_pipeop_classweights.R:10:3', 'test_pipeop_collapsefactors.R:6:3', 'test_pipeop_colapply.R:9:3', 'test_pipeop_copy.R:5:3', 'test_pipeop_colroles.R:6:3', 'test_pipeop_decode.R:14:3', 'test_pipeop_encode.R:21:3', 'test_pipeop_encodeimpact.R:11:3', 'test_pipeop_datefeatures.R:10:3', 'test_pipeop_encodepl.R:5:3', 'test_pipeop_encodepl.R:72:3', 'test_pipeop_encodelmer.R:15:3', 'test_pipeop_encodelmer.R:37:3', 'test_pipeop_encodelmer.R:80:3', 'test_pipeop_featureunion.R:9:3', 'test_pipeop_featureunion.R:134:3', 'test_pipeop_filter.R:7:3', 'test_pipeop_fixfactors.R:9:3', 'test_pipeop_histbin.R:7:3', 'test_pipeop_ica.R:7:3', 'test_pipeop_ensemble.R:6:3', 'test_pipeop_impute.R:4:3', 'test_pipeop_imputelearner.R:43:3', 'test_pipeop_isomap.R:10:3', 'test_pipeop_kernelpca.R:9:3', 'test_pipeop_learner.R:17:3', 'test_pipeop_info.R:6:3', 'test_pipeop_learnerpicvplus.R:163:3', 'test_pipeop_missind.R:6:3', 'test_pipeop_modelmatrix.R:7:3', 'test_pipeop_multiplicityexply.R:9:3', 'test_pipeop_multiplicityimply.R:9:3', 'test_pipeop_mutate.R:9:3', 'test_pipeop_nearmiss.R:7:3', 'test_pipeop_ovr.R:9:3', 'test_pipeop_ovr.R:48:3', 'test_pipeop_pca.R:8:3', 'test_pipeop_proxy.R:14:3', 'test_pipeop_quantilebin.R:5:3', 'test_pipeop_randomprojection.R:6:3', 'test_pipeop_randomresponse.R:5:3', 'test_pipeop_removeconstants.R:6:3', 'test_pipeop_renamecolumns.R:6:3', 'test_pipeop_replicate.R:9:3', 'test_pipeop_rowapply.R:6:3', 'test_pipeop_scale.R:6:3', 'test_pipeop_scale.R:10:3', 'test_pipeop_scalemaxabs.R:6:3', 'test_pipeop_scalerange.R:7:3', 'test_pipeop_select.R:9:3', 'test_pipeop_smote.R:10:3', 'test_pipeop_smotenc.R:8:3', 'test_pipeop_spatialsign.R:6:3', 'test_pipeop_nmf.R:6:3', 'test_pipeop_targetinvert.R:4:3', 'test_pipeop_targetmutate.R:5:3', 'test_pipeop_targettrafo.R:4:3', 'test_pipeop_targettrafoscalerange.R:5:3', 'test_pipeop_subsample.R:6:3', 'test_pipeop_task_preproc.R:4:3', 'test_pipeop_task_preproc.R:14:3', 'test_pipeop_tomek.R:7:3', 'test_pipeop_tunethreshold.R:111:3', 'test_pipeop_tunethreshold.R:191:3', 'test_pipeop_unbranch.R:10:3', 'test_pipeop_textvectorizer.R:37:3', 'test_pipeop_textvectorizer.R:186:3', 'test_pipeop_updatetarget.R:89:3', 'test_pipeop_vtreat.R:9:3', 'test_pipeop_yeojohnson.R:7:3', 'test_typecheck.R:188:3' • Skipping (1): 'test_GraphLearner.R:1278:3' • empty test (2): 'test_pipeop_isomap.R:111:1', 'test_pipeop_missind.R:101:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_conversion.R:143:3'): Graph to GraphLearner ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, glrn1, cv) at test_conversion.R:143:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_conversion.R:165:3'): PipeOp to GraphLearner ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, glrn1, cv) at test_conversion.R:165:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_filter_ensemble.R:291:3'): FilterEnsemble ignores NA scores from wrapped filters ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─permutation_filter$calculate(task) at test_filter_ensemble.R:291:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPermutation__.calculate(...) 5. └─mlr3::resample(task, self$learner, self$resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_filter_ensemble.R:447:7'): FilterEnsemble weight search space works with bbotk ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_filter_ensemble.R:463:3 2. └─bbotk:::.__OptimizerBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 10. └─inst$eval_batch(design$data) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss) 19. └─bbotk:::.__Objective__.eval_many(...) 20. └─mlr3misc::map_dtr(...) 21. ├─data.table::rbindlist(...) 22. ├─base::unname(map(.x, .f, ...)) 23. └─mlr3misc::map(.x, .f, ...) 24. └─base::lapply(.x, .f, ...) 25. └─bbotk (local) FUN(X[[i]], ...) 26. └─self$eval(xs) 27. └─bbotk:::.__ObjectiveRFun__eval(...) 28. ├─mlr3misc::invoke(private$.fun, xs, .args = self$constants$values) 29. │ └─base::eval.parent(expr, n = 1L) 30. │ └─base::eval(expr, p) 31. │ └─base::eval(expr, p) 32. └─private$.fun(xs) 33. └─mlr3::resample(task, learner, resampling) at test_filter_ensemble.R:447:7 34. └─ResultData$new(data, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_graphs_bagging.R:49:3'): Bagging with replacement ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk, GraphLearner$new(p), rsmp("holdout")) at test_mlr_graphs_bagging.R:49:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_graphs_stacking.R:16:3'): Stacking Pipeline ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp base.rpart's $train() Backtrace: ▆ 1. ├─graph_learner$train(tsk("iris")) at test_mlr_graphs_stacking.R:16:3 2. │ └─mlr3:::.__Learner__train(...) 3. │ └─mlr3:::learner_train(...) 4. │ └─mlr3misc::encapsulate(...) 5. │ ├─mlr3misc::invoke(...) 6. │ │ └─base::eval.parent(expr, n = 1L) 7. │ │ └─base::eval(expr, p) 8. │ │ └─base::eval(expr, p) 9. │ └─mlr3 (local) .f(learner = `<GrphLrnr>`, task = `<TskClssf>`) 10. │ └─get_private(learner)$.train(task) 11. │ └─mlr3pipelines:::.__GraphLearner__.train(...) 12. │ └─self$graph$train(task) 13. │ └─mlr3pipelines:::.__Graph__train(...) 14. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 15. │ └─op[[fun]](input) 16. │ └─mlr3pipelines:::.__PipeOp__train(...) 17. │ ├─base::withCallingHandlers(...) 18. │ └─private$.train(input) 19. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 20. │ └─private$.train_task(intask) 21. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 22. │ └─mlr3::resample(...) 23. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 24. │ └─mlr3 (local) initialize(...) 25. │ └─mlr3:::.__ResultData__initialize(...) 26. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. │ └─data.table:::`[.data.table`(...) 28. └─base::.handleSimpleError(...) 29. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:35:3'): PipeOpLearnerPICVPlus - basic properties ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.featureless's $train() Backtrace: ▆ 1. ├─global train_pipeop(po, list(task)) at test_pipeop_learnerpicvplus.R:35:3 2. │ └─po$train(inputs) 3. │ └─mlr3pipelines:::.__PipeOp__train(...) 4. │ ├─base::withCallingHandlers(...) 5. │ └─private$.train(input) 6. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 7. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 8. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 9. │ └─mlr3 (local) initialize(...) 10. │ └─mlr3:::.__ResultData__initialize(...) 11. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 12. │ └─data.table:::`[.data.table`(...) 13. └─base::.handleSimpleError(...) 14. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:91:3'): PipeOpLearnerPICVPlus - model active binding to state ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnerpicvplus.R:91:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 6. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 7. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 8. │ └─mlr3 (local) initialize(...) 9. │ └─mlr3:::.__ResultData__initialize(...) 10. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. │ └─data.table:::`[.data.table`(...) 12. └─base::.handleSimpleError(...) 13. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:116:3'): PipeOpLearnerPICVPlus - integration with larger graph ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.rpart's $train() Backtrace: ▆ 1. ├─graph$train(task) at test_pipeop_learnerpicvplus.R:116:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 9. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 10. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 11. │ └─mlr3 (local) initialize(...) 12. │ └─mlr3:::.__ResultData__initialize(...) 13. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. │ └─data.table:::`[.data.table`(...) 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:130:3'): marshal ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnerpicvplus.R:130:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 6. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 7. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 8. │ └─mlr3 (local) initialize(...) 9. │ └─mlr3:::.__ResultData__initialize(...) 10. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. │ └─data.table:::`[.data.table`(...) 12. └─base::.handleSimpleError(...) 13. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:152:3'): marshal multiplicity ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(task1, task2))) at test_pipeop_learnerpicvplus.R:152:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 14. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 15. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 16. │ └─mlr3 (local) initialize(...) 17. │ └─mlr3:::.__ResultData__initialize(...) 18. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. │ └─data.table:::`[.data.table`(...) 20. └─base::.handleSimpleError(...) 21. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:11:3'): PipeOpLearnerCV - basic properties ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─global train_pipeop(po, list(task = task)) at test_pipeop_learnercv.R:11:3 2. │ └─po$train(inputs) 3. │ └─mlr3pipelines:::.__PipeOp__train(...) 4. │ ├─base::withCallingHandlers(...) 5. │ └─private$.train(input) 6. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 7. │ └─private$.train_task(intask) 8. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 9. │ └─mlr3::resample(...) 10. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 11. │ └─mlr3 (local) initialize(...) 12. │ └─mlr3:::.__ResultData__initialize(...) 13. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. │ └─data.table:::`[.data.table`(...) 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:100:3'): PipeOpLearnerCV - cv ensemble averages fold learners ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:100:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:139:3'): PipeOpLearnerCV - cv ensemble drops response when requested ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:139:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:152:3'): PipeOpLearnerCV - cv ensemble averages classif responses ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:152:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:203:3'): PipeOpLearnerCV - cv ensemble log prob aggregation ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:203:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:250:3'): PipeOpLearnerCV - log aggregation with zeros uses epsilon ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:250:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:278:3'): PipeOpLearnerCV - log aggregation epsilon controls shrinkage ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:278:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:323:3'): PipeOpLearnerCV - cv ensemble averages regression predictions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:323:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:350:3'): PipeOpLearnerCV - cv ensemble handles multiplicity ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(tasks)) at test_pipeop_learnercv.R:350:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:387:3'): PipeOpLearnerCV - learner_model returns averaged ensemble ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:387:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:419:3'): PipeOpLearnerCV - cv ensemble with predict_type = 'se' ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.lm's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:419:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:455:3'): PipeOpLearnerCV - within resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), gr, rsmp("holdout")) at test_pipeop_learnercv.R:455:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_pipeop_learnercv.R:493:3'): PipeOpLearnerCV - model active binding to state ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:493:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:516:3'): predict_type ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─global expect_equal(...) at test_pipeop_learnercv.R:516:3 2. │ ├─testthat::expect_true(...) 3. │ │ └─testthat::quasi_label(enquo(object), label) 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─base::all.equal(...) 6. ├─lcv$train(list(tsk("iris"))) 7. │ └─mlr3pipelines:::.__PipeOp__train(...) 8. │ ├─base::withCallingHandlers(...) 9. │ └─private$.train(input) 10. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 11. │ └─private$.train_task(intask) 12. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 13. │ └─mlr3::resample(...) 14. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 15. │ └─mlr3 (local) initialize(...) 16. │ └─mlr3:::.__ResultData__initialize(...) 17. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 18. │ └─data.table:::`[.data.table`(...) 19. └─base::.handleSimpleError(...) 20. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:531:3'): marshal ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po_lrn$train(list(task)) at test_pipeop_learnercv.R:531:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:557:3'): marshal multiplicity ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(tsk("iris"), tsk("sonar")))) at test_pipeop_learnercv.R:557:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:612:3'): marshal with cv ensemble ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:612:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:628:3'): state class and multiplicity ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(tsk("iris")))) at test_pipeop_learnercv.R:628:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:671:5'): PipeOpLearnerCV cv ensemble aggregates SE like PipeOpRegrAvg ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:671:5 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:7:3'): threshold works for multiclass ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po_cv$train(list(t)) at test_pipeop_tunethreshold.R:7:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:38:3'): threshold works for binary ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po_cv$train(list(t)) at test_pipeop_tunethreshold.R:38:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:73:3'): tunethreshold graph works ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─graph$train(tsk("pima")) at test_pipeop_tunethreshold.R:73:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:101:3'): threshold works for classes that are not valid R names ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─ppl$train(testtask) at test_pipeop_tunethreshold.R:101:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:260:3'): threshold graph transparency ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─lrn_prob$train(t) at test_pipeop_tunethreshold.R:260:3 2. │ └─mlr3:::.__Learner__train(...) 3. │ └─mlr3:::learner_train(...) 4. │ └─mlr3misc::encapsulate(...) 5. │ ├─mlr3misc::invoke(...) 6. │ │ └─base::eval.parent(expr, n = 1L) 7. │ │ └─base::eval(expr, p) 8. │ │ └─base::eval(expr, p) 9. │ └─mlr3 (local) .f(learner = `<GrphLrnr>`, task = `<TskClssf>`) 10. │ └─get_private(learner)$.train(task) 11. │ └─mlr3pipelines:::.__GraphLearner__.train(...) 12. │ └─self$graph$train(task) 13. │ └─mlr3pipelines:::.__Graph__train(...) 14. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 15. │ └─op[[fun]](input) 16. │ └─mlr3pipelines:::.__PipeOp__train(...) 17. │ ├─base::withCallingHandlers(...) 18. │ └─private$.train(input) 19. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 20. │ └─private$.train_task(intask) 21. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 22. │ └─mlr3::resample(...) 23. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 24. │ └─mlr3 (local) initialize(...) 25. │ └─mlr3:::.__ResultData__initialize(...) 26. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. │ └─data.table:::`[.data.table`(...) 28. └─base::.handleSimpleError(...) 29. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_resample.R:13:3'): PipeOp - Resample ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, pp, resa) at test_resample.R:13:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_usecases.R:153:3'): stacking ─────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─pipe$train(task) at test_usecases.R:153:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_ppl.R:73:3'): mlr3book authors don't sleepwalk through life ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart.classif.rpart's $train() Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(tasks, learners, rsmp("cv", folds = 2))) at test_ppl.R:73:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) [ FAIL 38 | WARN 2 | SKIP 98 | PASS 12316 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.10.0
Check: examples
Result: ERROR Running examples in ‘mlr3pipelines-Ex.R’ failed The error most likely occurred in: > ### Name: mlr_pipeops_nmf > ### Title: Non-negative Matrix Factorization > ### Aliases: mlr_pipeops_nmf PipeOpNMF > > ### ** Examples > > ## Don't show: > if (mlr3misc::require_namespaces(c("NMF", "MASS"), quietly = TRUE)) withAutoprint({ # examplesIf + ## End(Don't show) + ## Don't show: + # NMF attaches these packages to search path on load, #929 + lapply(c("package:Biobase", "package:BiocGenerics", "package:generics"), detach, character.only = TRUE) + ## End(Don't show) + library("mlr3") + + task = tsk("iris") + pop = po("nmf") + + task$data() + pop$train(list(task))[[1]]$data() + + pop$state + ## Don't show: + # BiocGenerics overwrites printer for our tables mlr-org/mlr3#1112 + # Necessary as detaching packages does not remove registered S3 methods + suppressWarnings(try(rm("format.list", envir = .BaseNamespaceEnv$.__S3MethodsTable__.), silent = TRUE)) + ## End(Don't show) + ## Don't show: + }) # examplesIf > lapply(c("package:Biobase", "package:BiocGenerics", "package:generics"), + detach, character.only = TRUE) Error in FUN(X[[i]], ...) : invalid 'name' argument Calls: withAutoprint ... withVisible -> eval -> eval -> lapply -> lapply -> FUN Execution halted Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Version: 0.10.0
Check: tests
Result: ERROR Running ‘testthat.R’ [99s/48s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + library("paradox") + library("mlr3pipelines") + test_check("mlr3pipelines") + } Starting 2 test processes. > test_Graph.R: Training debug.multi with input list(input_1 = 1, input_2 = 1) > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_filter_ensemble.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_mlr_graphs_robustify.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_mlr_graphs_robustify.R: Use 'as(., "TsparseMatrix")' instead. > test_mlr_graphs_robustify.R: See help("Deprecated") and help("Matrix-deprecated"). > test_multiplicities.R: > test_multiplicities.R: [[1]] > test_multiplicities.R: [1] 0 > test_multiplicities.R: > test_multiplicities.R: > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" Saving _problems/test_pipeop_datefeatures-7.R Saving _problems/test_pipeop_datefeatures-17.R > test_pipeop_isomap.R: 2025-12-19 21:19:35.911659: Isomap START > test_pipeop_isomap.R: 2025-12-19 21:19:35.911948: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:35.91494: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:35.921081: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 21:19:35.93169: Isomap START > test_pipeop_isomap.R: 2025-12-19 21:19:35.931813: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:35.934013: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:35.939944: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 21:19:35.947109: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 21:19:35.947258: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:35.951705: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:35.966403: embedding > test_pipeop_isomap.R: 2025-12-19 21:19:35.966743: DONE > test_pipeop_isomap.R: 2025-12-19 21:19:35.97162: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 21:19:35.971755: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:35.975963: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:35.990659: embedding > test_pipeop_isomap.R: 2025-12-19 21:19:35.991019: DONE > test_pipeop_isomap.R: 2025-12-19 21:19:36.009116: Isomap START > test_pipeop_isomap.R: 2025-12-19 21:19:36.009239: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.013663: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.046672: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 21:19:36.054747: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 21:19:36.054962: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.063529: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.139986: embedding > test_pipeop_isomap.R: 2025-12-19 21:19:36.14119: DONE > test_pipeop_isomap.R: 2025-12-19 21:19:36.179638: Isomap START > test_pipeop_isomap.R: 2025-12-19 21:19:36.179755: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.18159: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.187387: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 21:19:36.193788: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 21:19:36.193957: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.199124: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.214714: embedding > test_pipeop_isomap.R: 2025-12-19 21:19:36.215241: DONE > test_pipeop_isomap.R: 2025-12-19 21:19:36.245952: Isomap START > test_pipeop_isomap.R: 2025-12-19 21:19:36.246105: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.248463: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.254648: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 21:19:36.264979: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 21:19:36.265164: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.269644: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.28446: embedding > test_pipeop_isomap.R: 2025-12-19 21:19:36.284807: DONE > test_pipeop_isomap.R: 2025-12-19 21:19:36.302118: Isomap START > test_pipeop_isomap.R: 2025-12-19 21:19:36.30224: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.304594: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.310604: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 21:19:36.32045: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 21:19:36.320627: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.325034: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.339206: embedding > test_pipeop_isomap.R: 2025-12-19 21:19:36.339549: DONE > test_pipeop_isomap.R: 2025-12-19 21:19:36.355152: Isomap START > test_pipeop_isomap.R: 2025-12-19 21:19:36.355294: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.357721: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.363551: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 21:19:36.404645: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 21:19:36.404849: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.409609: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.424721: embedding > test_pipeop_isomap.R: 2025-12-19 21:19:36.42511: DONE > test_pipeop_isomap.R: 2025-12-19 21:19:36.441397: Isomap START > test_pipeop_isomap.R: 2025-12-19 21:19:36.441525: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.443713: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.449857: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 21:19:36.459773: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 21:19:36.459934: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.464663: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.479576: embedding > test_pipeop_isomap.R: 2025-12-19 21:19:36.479942: DONE > test_pipeop_isomap.R: 2025-12-19 21:19:36.497536: Isomap START > test_pipeop_isomap.R: 2025-12-19 21:19:36.497663: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.499727: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.505833: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 21:19:36.522571: Isomap START > test_pipeop_isomap.R: 2025-12-19 21:19:36.52271: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.525017: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.531261: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 21:19:36.536585: Isomap START > test_pipeop_isomap.R: 2025-12-19 21:19:36.536715: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 21:19:36.538962: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 21:19:36.545261: Classical Scaling Saving _problems/test_pipeop_nmf-45.R Saving _problems/test_pipeop_nmf-73.R Saving _problems/test_pipeop_nmf-93.R Saving _problems/test_pipeop_nmf-98.R > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_textvectorizer.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_pipeop_textvectorizer.R: Use 'as(., "TsparseMatrix")' instead. > test_pipeop_textvectorizer.R: See help("Deprecated") and help("Matrix-deprecated"). > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. [ FAIL 6 | WARN 0 | SKIP 99 | PASS 13006 ] ══ Skipped tests (99) ══════════════════════════════════════════════════════════ • On CRAN (95): 'test_CnfFormula_simplify.R:6:3', 'test_CnfFormula.R:591:3', 'test_Graph.R:283:3', 'test_PipeOp.R:32:1', 'test_GraphLearner.R:5:3', 'test_GraphLearner.R:221:3', 'test_GraphLearner.R:343:3', 'test_GraphLearner.R:408:3', 'test_GraphLearner.R:571:3', 'test_dictionary.R:7:3', 'test_learner_weightedaverage.R:5:3', 'test_learner_weightedaverage.R:57:3', 'test_learner_weightedaverage.R:105:3', 'test_learner_weightedaverage.R:152:3', 'test_meta.R:39:3', 'test_mlr_graphs_branching.R:26:3', 'test_mlr_graphs_bagging.R:6:3', 'test_mlr_graphs_robustify.R:5:3', 'test_pipeop_adas.R:8:3', 'test_pipeop_blsmote.R:8:3', 'test_pipeop_branch.R:4:3', 'test_pipeop_chunk.R:4:3', 'test_pipeop_classbalancing.R:7:3', 'test_pipeop_boxcox.R:7:3', 'test_pipeop_classweights.R:10:3', 'test_pipeop_collapsefactors.R:6:3', 'test_pipeop_colapply.R:9:3', 'test_pipeop_copy.R:5:3', 'test_pipeop_colroles.R:6:3', 'test_pipeop_decode.R:14:3', 'test_pipeop_encode.R:21:3', 'test_pipeop_encodeimpact.R:11:3', 'test_pipeop_encodepl.R:5:3', 'test_pipeop_encodepl.R:72:3', 'test_pipeop_encodelmer.R:15:3', 'test_pipeop_encodelmer.R:37:3', 'test_pipeop_encodelmer.R:80:3', 'test_pipeop_featureunion.R:9:3', 'test_pipeop_featureunion.R:134:3', 'test_pipeop_filter.R:7:3', 'test_pipeop_fixfactors.R:9:3', 'test_pipeop_ensemble.R:6:3', 'test_pipeop_histbin.R:7:3', 'test_pipeop_ica.R:7:3', 'test_pipeop_imputelearner.R:43:3', 'test_pipeop_impute.R:4:3', 'test_pipeop_isomap.R:10:3', 'test_pipeop_kernelpca.R:9:3', 'test_pipeop_learner.R:17:3', 'test_pipeop_info.R:6:3', 'test_pipeop_learnerpicvplus.R:163:3', 'test_pipeop_missind.R:6:3', 'test_pipeop_modelmatrix.R:7:3', 'test_pipeop_multiplicityexply.R:9:3', 'test_pipeop_multiplicityimply.R:9:3', 'test_pipeop_mutate.R:9:3', 'test_pipeop_nearmiss.R:7:3', 'test_pipeop_learnercv.R:31:3', 'test_pipeop_ovr.R:9:3', 'test_pipeop_ovr.R:48:3', 'test_pipeop_pca.R:8:3', 'test_pipeop_proxy.R:14:3', 'test_pipeop_quantilebin.R:5:3', 'test_pipeop_randomprojection.R:6:3', 'test_pipeop_randomresponse.R:5:3', 'test_pipeop_removeconstants.R:6:3', 'test_pipeop_renamecolumns.R:6:3', 'test_pipeop_replicate.R:9:3', 'test_pipeop_nmf.R:6:3', 'test_pipeop_scale.R:6:3', 'test_pipeop_scale.R:10:3', 'test_pipeop_scalemaxabs.R:6:3', 'test_pipeop_scalerange.R:7:3', 'test_pipeop_select.R:9:3', 'test_pipeop_smote.R:10:3', 'test_pipeop_rowapply.R:6:3', 'test_pipeop_smotenc.R:8:3', 'test_pipeop_subsample.R:6:3', 'test_pipeop_targetinvert.R:4:3', 'test_pipeop_targetmutate.R:5:3', 'test_pipeop_targettrafo.R:4:3', 'test_pipeop_targettrafoscalerange.R:5:3', 'test_pipeop_task_preproc.R:4:3', 'test_pipeop_task_preproc.R:14:3', 'test_pipeop_spatialsign.R:6:3', 'test_pipeop_tomek.R:7:3', 'test_pipeop_textvectorizer.R:37:3', 'test_pipeop_textvectorizer.R:186:3', 'test_pipeop_unbranch.R:10:3', 'test_pipeop_updatetarget.R:89:3', 'test_pipeop_vtreat.R:9:3', 'test_pipeop_yeojohnson.R:7:3', 'test_pipeop_tunethreshold.R:111:3', 'test_pipeop_tunethreshold.R:191:3', 'test_typecheck.R:188:3' • Skipping (1): 'test_GraphLearner.R:1278:3' • empty test (3): 'test_pipeop_isomap.R:111:1', 'test_pipeop_missind.R:101:1', 'test_ppl.R:61:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_pipeop_datefeatures.R:7:3'): PipeOpDateFeatures - basic properties ── Error in `seq.Date(as.Date("2020-01-31"), length.out = 150L)`: exactly two of 'to', 'by' and 'length.out' / 'along.with' must be specified Backtrace: ▆ 1. ├─base::seq(as.Date("2020-01-31"), length.out = 150L) at test_pipeop_datefeatures.R:7:3 2. └─base::seq.Date(as.Date("2020-01-31"), length.out = 150L) ── Error ('test_pipeop_datefeatures.R:17:3'): PipeOpDateFeatures - finds POSIXct column ── Error in `seq.Date(as.Date("2020-01-31"), length.out = 150L)`: exactly two of 'to', 'by' and 'length.out' / 'along.with' must be specified Backtrace: ▆ 1. ├─base::seq(as.Date("2020-01-31"), length.out = 150L) at test_pipeop_datefeatures.R:17:3 2. └─base::seq.Date(as.Date("2020-01-31"), length.out = 150L) ── Error ('test_pipeop_nmf.R:45:3'): PipeOpNMF - does not modify search path when NMF is not loaded, fix for #929 ── Error in `detach(package:generics)`: invalid 'name' argument Backtrace: ▆ 1. └─base::detach(package:generics) at test_pipeop_nmf.R:45:3 ── Failure ('test_pipeop_nmf.R:73:3'): PipeOpNMF - does not modify search path when NMF is loaded, fix for #929 ── Expected `all(...)` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Failure ('test_pipeop_nmf.R:93:3'): PipeOpNMF - does not modify search path when some of NMF's dependencies are loaded, fix for #929 ── Expected `all(paste0("package:", c("BiocGenerics", "generics")) %in% search())` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Error ('test_pipeop_nmf.R:98:3'): PipeOpNMF - does not modify search path when some of NMF's dependencies are loaded, fix for #929 ── Error in `FUN(X[[i]], ...)`: invalid 'name' argument This happened in PipeOp nmf's $train() Backtrace: ▆ 1. ├─op$train(list(tsk("iris"))) at test_pipeop_nmf.R:98:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train_task(...) 8. │ ├─data.table::as.data.table(...) 9. │ └─private$.train_dt(dt, task$levels(cols), task$truth()) 10. │ └─mlr3pipelines:::.__PipeOpNMF__.train_dt(...) 11. │ └─mlr3misc::map(to_be_detached, detach, character.only = TRUE) 12. │ └─base::lapply(.x, .f, ...) 13. │ └─base (local) FUN(X[[i]], ...) 14. │ └─base::stop("invalid 'name' argument") 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) [ FAIL 6 | WARN 0 | SKIP 99 | PASS 13006 ] Error: ! Test failures. Execution halted Flavor: r-oldrel-macos-arm64

Version: 0.10.0
Check: tests
Result: ERROR Running ‘testthat.R’ [296s/273s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + library("paradox") + library("mlr3pipelines") + test_check("mlr3pipelines") + } Starting 2 test processes. > test_Graph.R: Training debug.multi with input list(input_1 = 1, input_2 = 1) > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_filter_ensemble.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_mlr_graphs_robustify.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_mlr_graphs_robustify.R: Use 'as(., "TsparseMatrix")' instead. > test_mlr_graphs_robustify.R: See help("Deprecated") and help("Matrix-deprecated"). > test_multiplicities.R: > test_multiplicities.R: > test_multiplicities.R: [[1]] > test_multiplicities.R: [1] 0 > test_multiplicities.R: > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" Saving _problems/test_pipeop_datefeatures-7.R Saving _problems/test_pipeop_datefeatures-17.R > test_pipeop_isomap.R: 2025-12-19 06:38:40.475196: Isomap START > test_pipeop_isomap.R: 2025-12-19 06:38:40.475708: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:40.493935: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:40.527861: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 06:38:40.573195: Isomap START > test_pipeop_isomap.R: 2025-12-19 06:38:40.57348: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:40.579996: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:40.617206: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 06:38:40.65434: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 06:38:40.654775: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:40.678055: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:40.740313: embedding > test_pipeop_isomap.R: 2025-12-19 06:38:40.741434: DONE > test_pipeop_isomap.R: 2025-12-19 06:38:40.769753: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 06:38:40.770058: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:40.790494: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:40.85258: embedding > test_pipeop_isomap.R: 2025-12-19 06:38:40.85369: DONE > test_pipeop_isomap.R: 2025-12-19 06:38:40.951391: Isomap START > test_pipeop_isomap.R: 2025-12-19 06:38:40.951794: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:40.972575: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:41.166471: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 06:38:41.252463: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 06:38:41.252887: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:41.309437: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:41.729646: embedding > test_pipeop_isomap.R: 2025-12-19 06:38:41.733364: DONE > test_pipeop_isomap.R: 2025-12-19 06:38:41.887615: Isomap START > test_pipeop_isomap.R: 2025-12-19 06:38:41.8879: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:41.902853: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:41.930945: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 06:38:41.966817: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 06:38:41.967238: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:41.98542: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:42.051624: embedding > test_pipeop_isomap.R: 2025-12-19 06:38:42.052763: DONE > test_pipeop_isomap.R: 2025-12-19 06:38:42.200756: Isomap START > test_pipeop_isomap.R: 2025-12-19 06:38:42.201055: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:42.212288: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:42.238987: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 06:38:42.288246: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 06:38:42.288691: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:42.306089: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:42.364674: embedding > test_pipeop_isomap.R: 2025-12-19 06:38:42.36577: DONE > test_pipeop_isomap.R: 2025-12-19 06:38:42.455276: Isomap START > test_pipeop_isomap.R: 2025-12-19 06:38:42.455559: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:42.469849: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:42.489144: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 06:38:42.536589: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 06:38:42.536995: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:42.553253: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:42.617863: embedding > test_pipeop_isomap.R: 2025-12-19 06:38:42.618966: DONE > test_pipeop_isomap.R: 2025-12-19 06:38:42.696948: Isomap START > test_pipeop_isomap.R: 2025-12-19 06:38:42.697225: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:42.704681: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:42.734298: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 06:38:42.780751: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 06:38:42.781173: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:42.7994: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:42.868653: embedding > test_pipeop_isomap.R: 2025-12-19 06:38:42.869796: DONE > test_pipeop_isomap.R: 2025-12-19 06:38:42.94579: Isomap START > test_pipeop_isomap.R: 2025-12-19 06:38:42.946102: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:42.952904: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:42.989502: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 06:38:43.053828: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 06:38:43.054251: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:43.069968: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:43.136468: embedding > test_pipeop_isomap.R: 2025-12-19 06:38:43.137623: DONE > test_pipeop_isomap.R: 2025-12-19 06:38:43.235194: Isomap START > test_pipeop_isomap.R: 2025-12-19 06:38:43.23553: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:43.250028: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:43.280105: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 06:38:43.378309: Isomap START > test_pipeop_isomap.R: 2025-12-19 06:38:43.378589: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:43.416474: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:43.444535: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 06:38:43.486374: Isomap START > test_pipeop_isomap.R: 2025-12-19 06:38:43.486667: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 06:38:43.493327: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 06:38:43.584043: Classical Scaling Saving _problems/test_pipeop_nmf-45.R Saving _problems/test_pipeop_nmf-73.R Saving _problems/test_pipeop_nmf-93.R Saving _problems/test_pipeop_nmf-98.R > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_textvectorizer.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_pipeop_textvectorizer.R: Use 'as(., "TsparseMatrix")' instead. > test_pipeop_textvectorizer.R: See help("Deprecated") and help("Matrix-deprecated"). > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. [ FAIL 6 | WARN 0 | SKIP 99 | PASS 13006 ] ══ Skipped tests (99) ══════════════════════════════════════════════════════════ • On CRAN (95): 'test_CnfFormula_simplify.R:6:3', 'test_CnfFormula.R:591:3', 'test_Graph.R:283:3', 'test_PipeOp.R:32:1', 'test_GraphLearner.R:5:3', 'test_GraphLearner.R:221:3', 'test_GraphLearner.R:343:3', 'test_GraphLearner.R:408:3', 'test_GraphLearner.R:571:3', 'test_dictionary.R:7:3', 'test_learner_weightedaverage.R:5:3', 'test_learner_weightedaverage.R:57:3', 'test_learner_weightedaverage.R:105:3', 'test_learner_weightedaverage.R:152:3', 'test_meta.R:39:3', 'test_mlr_graphs_branching.R:26:3', 'test_mlr_graphs_bagging.R:6:3', 'test_mlr_graphs_robustify.R:5:3', 'test_pipeop_adas.R:8:3', 'test_pipeop_blsmote.R:8:3', 'test_pipeop_branch.R:4:3', 'test_pipeop_chunk.R:4:3', 'test_pipeop_classbalancing.R:7:3', 'test_pipeop_boxcox.R:7:3', 'test_pipeop_classweights.R:10:3', 'test_pipeop_collapsefactors.R:6:3', 'test_pipeop_colapply.R:9:3', 'test_pipeop_copy.R:5:3', 'test_pipeop_colroles.R:6:3', 'test_pipeop_decode.R:14:3', 'test_pipeop_encode.R:21:3', 'test_pipeop_encodeimpact.R:11:3', 'test_pipeop_encodelmer.R:15:3', 'test_pipeop_encodelmer.R:37:3', 'test_pipeop_encodelmer.R:80:3', 'test_pipeop_encodepl.R:5:3', 'test_pipeop_encodepl.R:72:3', 'test_pipeop_featureunion.R:9:3', 'test_pipeop_featureunion.R:134:3', 'test_pipeop_filter.R:7:3', 'test_pipeop_fixfactors.R:9:3', 'test_pipeop_histbin.R:7:3', 'test_pipeop_ica.R:7:3', 'test_pipeop_ensemble.R:6:3', 'test_pipeop_impute.R:4:3', 'test_pipeop_imputelearner.R:43:3', 'test_pipeop_isomap.R:10:3', 'test_pipeop_kernelpca.R:9:3', 'test_pipeop_learner.R:17:3', 'test_pipeop_info.R:6:3', 'test_pipeop_learnerpicvplus.R:163:3', 'test_pipeop_missind.R:6:3', 'test_pipeop_modelmatrix.R:7:3', 'test_pipeop_multiplicityexply.R:9:3', 'test_pipeop_multiplicityimply.R:9:3', 'test_pipeop_mutate.R:9:3', 'test_pipeop_nearmiss.R:7:3', 'test_pipeop_learnercv.R:31:3', 'test_pipeop_ovr.R:9:3', 'test_pipeop_ovr.R:48:3', 'test_pipeop_pca.R:8:3', 'test_pipeop_proxy.R:14:3', 'test_pipeop_quantilebin.R:5:3', 'test_pipeop_randomprojection.R:6:3', 'test_pipeop_nmf.R:6:3', 'test_pipeop_randomresponse.R:5:3', 'test_pipeop_renamecolumns.R:6:3', 'test_pipeop_removeconstants.R:6:3', 'test_pipeop_replicate.R:9:3', 'test_pipeop_scale.R:6:3', 'test_pipeop_scale.R:10:3', 'test_pipeop_scalemaxabs.R:6:3', 'test_pipeop_scalerange.R:7:3', 'test_pipeop_select.R:9:3', 'test_pipeop_smote.R:10:3', 'test_pipeop_rowapply.R:6:3', 'test_pipeop_smotenc.R:8:3', 'test_pipeop_subsample.R:6:3', 'test_pipeop_targetinvert.R:4:3', 'test_pipeop_targetmutate.R:5:3', 'test_pipeop_targettrafo.R:4:3', 'test_pipeop_targettrafoscalerange.R:5:3', 'test_pipeop_task_preproc.R:4:3', 'test_pipeop_task_preproc.R:14:3', 'test_pipeop_spatialsign.R:6:3', 'test_pipeop_tomek.R:7:3', 'test_pipeop_textvectorizer.R:37:3', 'test_pipeop_textvectorizer.R:186:3', 'test_pipeop_unbranch.R:10:3', 'test_pipeop_updatetarget.R:89:3', 'test_pipeop_vtreat.R:9:3', 'test_pipeop_yeojohnson.R:7:3', 'test_pipeop_tunethreshold.R:111:3', 'test_pipeop_tunethreshold.R:191:3', 'test_typecheck.R:188:3' • Skipping (1): 'test_GraphLearner.R:1278:3' • empty test (3): 'test_pipeop_isomap.R:111:1', 'test_pipeop_missind.R:101:1', 'test_ppl.R:61:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_pipeop_datefeatures.R:7:3'): PipeOpDateFeatures - basic properties ── Error in `seq.Date(as.Date("2020-01-31"), length.out = 150L)`: exactly two of 'to', 'by' and 'length.out' / 'along.with' must be specified Backtrace: ▆ 1. ├─base::seq(as.Date("2020-01-31"), length.out = 150L) at test_pipeop_datefeatures.R:7:3 2. └─base::seq.Date(as.Date("2020-01-31"), length.out = 150L) ── Error ('test_pipeop_datefeatures.R:17:3'): PipeOpDateFeatures - finds POSIXct column ── Error in `seq.Date(as.Date("2020-01-31"), length.out = 150L)`: exactly two of 'to', 'by' and 'length.out' / 'along.with' must be specified Backtrace: ▆ 1. ├─base::seq(as.Date("2020-01-31"), length.out = 150L) at test_pipeop_datefeatures.R:17:3 2. └─base::seq.Date(as.Date("2020-01-31"), length.out = 150L) ── Error ('test_pipeop_nmf.R:45:3'): PipeOpNMF - does not modify search path when NMF is not loaded, fix for #929 ── Error in `detach(package:generics)`: invalid 'name' argument Backtrace: ▆ 1. └─base::detach(package:generics) at test_pipeop_nmf.R:45:3 ── Failure ('test_pipeop_nmf.R:73:3'): PipeOpNMF - does not modify search path when NMF is loaded, fix for #929 ── Expected `all(...)` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Failure ('test_pipeop_nmf.R:93:3'): PipeOpNMF - does not modify search path when some of NMF's dependencies are loaded, fix for #929 ── Expected `all(paste0("package:", c("BiocGenerics", "generics")) %in% search())` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Error ('test_pipeop_nmf.R:98:3'): PipeOpNMF - does not modify search path when some of NMF's dependencies are loaded, fix for #929 ── Error in `FUN(X[[i]], ...)`: invalid 'name' argument This happened in PipeOp nmf's $train() Backtrace: ▆ 1. ├─op$train(list(tsk("iris"))) at test_pipeop_nmf.R:98:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train_task(...) 8. │ ├─data.table::as.data.table(...) 9. │ └─private$.train_dt(dt, task$levels(cols), task$truth()) 10. │ └─mlr3pipelines:::.__PipeOpNMF__.train_dt(...) 11. │ └─mlr3misc::map(to_be_detached, detach, character.only = TRUE) 12. │ └─base::lapply(.x, .f, ...) 13. │ └─base (local) FUN(X[[i]], ...) 14. │ └─base::stop("invalid 'name' argument") 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) [ FAIL 6 | WARN 0 | SKIP 99 | PASS 13006 ] Error: ! Test failures. Execution halted Flavor: r-oldrel-macos-x86_64

Version: 0.10.0
Check: tests
Result: ERROR Running 'testthat.R' [270s] Running the tests in 'tests/testthat.R' failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + library("paradox") + library("mlr3pipelines") + test_check("mlr3pipelines") + } Starting 2 test processes. > test_Graph.R: Training debug.multi with input list(input_1 = 1, input_2 = 1) > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_filter_ensemble.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. Saving _problems/test_filter_ensemble-294.R Saving _problems/test_filter_ensemble-307.R > test_mlr_graphs_robustify.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_mlr_graphs_robustify.R: Use 'as(., "TsparseMatrix")' instead. > test_mlr_graphs_robustify.R: See help("Deprecated") and help("Matrix-deprecated"). > test_multiplicities.R: > test_multiplicities.R: [[1]] > test_multiplicities.R: > test_multiplicities.R: [1] 0 > test_multiplicities.R: > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" Saving _problems/test_pipeop_datefeatures-7.R Saving _problems/test_pipeop_datefeatures-17.R > test_pipeop_isomap.R: 2025-12-17 17:22:39.026281: Isomap START > test_pipeop_isomap.R: 2025-12-17 17:22:39.027333: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:39.04128: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:39.064276: Classical Scaling > test_pipeop_isomap.R: 2025-12-17 17:22:39.138704: Isomap START > test_pipeop_isomap.R: 2025-12-17 17:22:39.139361: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:39.152498: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:39.175307: Classical Scaling > test_pipeop_isomap.R: 2025-12-17 17:22:39.210176: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-17 17:22:39.210884: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:39.23175: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:39.281834: embedding > test_pipeop_isomap.R: 2025-12-17 17:22:39.283832: DONE > test_pipeop_isomap.R: 2025-12-17 17:22:39.323734: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-17 17:22:39.324408: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:39.347777: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:39.397628: embedding > test_pipeop_isomap.R: 2025-12-17 17:22:39.399545: DONE > test_pipeop_isomap.R: 2025-12-17 17:22:39.506244: Isomap START > test_pipeop_isomap.R: 2025-12-17 17:22:39.506721: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:39.534621: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:39.651137: Classical Scaling > test_pipeop_isomap.R: 2025-12-17 17:22:39.705826: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-17 17:22:39.706753: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:39.751866: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:39.986242: embedding > test_pipeop_isomap.R: 2025-12-17 17:22:40.00501: DONE > test_pipeop_isomap.R: 2025-12-17 17:22:40.24437: Isomap START > test_pipeop_isomap.R: 2025-12-17 17:22:40.245102: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:40.256452: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:40.278377: Classical Scaling > test_pipeop_isomap.R: 2025-12-17 17:22:40.328408: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-17 17:22:40.3295: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:40.351394: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:40.399475: embedding > test_pipeop_isomap.R: 2025-12-17 17:22:40.401148: DONE > test_pipeop_isomap.R: 2025-12-17 17:22:40.606316: Isomap START > test_pipeop_isomap.R: 2025-12-17 17:22:40.606965: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:40.619454: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:40.636877: Classical Scaling > test_pipeop_isomap.R: 2025-12-17 17:22:40.714229: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-17 17:22:40.715082: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:40.734571: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:40.771163: embedding > test_pipeop_isomap.R: 2025-12-17 17:22:40.77228: DONE > test_pipeop_isomap.R: 2025-12-17 17:22:40.878807: Isomap START > test_pipeop_isomap.R: 2025-12-17 17:22:40.879481: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:40.890246: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:40.913591: Classical Scaling > test_pipeop_isomap.R: 2025-12-17 17:22:40.981791: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-17 17:22:40.98266: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:41.089114: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:41.140296: embedding > test_pipeop_isomap.R: 2025-12-17 17:22:41.142126: DONE > test_pipeop_isomap.R: 2025-12-17 17:22:41.248191: Isomap START > test_pipeop_isomap.R: 2025-12-17 17:22:41.248853: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:41.259827: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:41.281931: Classical Scaling > test_pipeop_isomap.R: 2025-12-17 17:22:41.340798: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-17 17:22:41.34144: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:41.35767: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:41.408111: embedding > test_pipeop_isomap.R: 2025-12-17 17:22:41.410075: DONE > test_pipeop_isomap.R: 2025-12-17 17:22:41.517665: Isomap START > test_pipeop_isomap.R: 2025-12-17 17:22:41.518297: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:41.530072: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:41.553019: Classical Scaling > test_pipeop_isomap.R: 2025-12-17 17:22:41.621117: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-17 17:22:41.621998: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:41.658708: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:41.709271: embedding > test_pipeop_isomap.R: 2025-12-17 17:22:41.711371: DONE > test_pipeop_isomap.R: 2025-12-17 17:22:41.823687: Isomap START > test_pipeop_isomap.R: 2025-12-17 17:22:41.824139: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:41.831896: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:41.849182: Classical Scaling > test_pipeop_isomap.R: 2025-12-17 17:22:41.951894: Isomap START > test_pipeop_isomap.R: 2025-12-17 17:22:41.952538: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:41.965427: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:41.987903: Classical Scaling > test_pipeop_isomap.R: 2025-12-17 17:22:42.02184: Isomap START > test_pipeop_isomap.R: 2025-12-17 17:22:42.0225: constructing knn graph > test_pipeop_isomap.R: 2025-12-17 17:22:42.035506: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-17 17:22:42.058043: Classical Scaling Saving _problems/test_pipeop_nmf-45.R Saving _problems/test_pipeop_nmf-73.R Saving _problems/test_pipeop_nmf-93.R Saving _problems/test_pipeop_nmf-98.R > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. [ FAIL 8 | WARN 0 | SKIP 99 | PASS 13004 ] ══ Skipped tests (99) ══════════════════════════════════════════════════════════ • On CRAN (95): 'test_CnfFormula_simplify.R:6:3', 'test_CnfFormula.R:591:3', 'test_Graph.R:283:3', 'test_PipeOp.R:32:1', 'test_GraphLearner.R:5:3', 'test_GraphLearner.R:221:3', 'test_GraphLearner.R:343:3', 'test_GraphLearner.R:408:3', 'test_GraphLearner.R:571:3', 'test_dictionary.R:7:3', 'test_learner_weightedaverage.R:5:3', 'test_learner_weightedaverage.R:57:3', 'test_learner_weightedaverage.R:105:3', 'test_learner_weightedaverage.R:152:3', 'test_meta.R:39:3', 'test_mlr_graphs_branching.R:26:3', 'test_mlr_graphs_bagging.R:6:3', 'test_mlr_graphs_robustify.R:5:3', 'test_pipeop_adas.R:8:3', 'test_pipeop_blsmote.R:8:3', 'test_pipeop_branch.R:4:3', 'test_pipeop_chunk.R:4:3', 'test_pipeop_classbalancing.R:7:3', 'test_pipeop_boxcox.R:7:3', 'test_pipeop_classweights.R:10:3', 'test_pipeop_collapsefactors.R:6:3', 'test_pipeop_colapply.R:9:3', 'test_pipeop_copy.R:5:3', 'test_pipeop_colroles.R:6:3', 'test_pipeop_decode.R:14:3', 'test_pipeop_encode.R:21:3', 'test_pipeop_encodeimpact.R:11:3', 'test_pipeop_encodepl.R:5:3', 'test_pipeop_encodepl.R:72:3', 'test_pipeop_encodelmer.R:15:3', 'test_pipeop_encodelmer.R:37:3', 'test_pipeop_encodelmer.R:80:3', 'test_pipeop_featureunion.R:9:3', 'test_pipeop_featureunion.R:134:3', 'test_pipeop_filter.R:7:3', 'test_pipeop_fixfactors.R:9:3', 'test_pipeop_histbin.R:7:3', 'test_pipeop_ensemble.R:6:3', 'test_pipeop_ica.R:7:3', 'test_pipeop_imputelearner.R:43:3', 'test_pipeop_impute.R:4:3', 'test_pipeop_isomap.R:10:3', 'test_pipeop_kernelpca.R:9:3', 'test_pipeop_learner.R:17:3', 'test_pipeop_info.R:6:3', 'test_pipeop_learnerpicvplus.R:163:3', 'test_pipeop_missind.R:6:3', 'test_pipeop_modelmatrix.R:7:3', 'test_pipeop_multiplicityexply.R:9:3', 'test_pipeop_learnercv.R:31:3', 'test_pipeop_mutate.R:9:3', 'test_pipeop_nearmiss.R:7:3', 'test_pipeop_multiplicityimply.R:9:3', 'test_pipeop_ovr.R:9:3', 'test_pipeop_ovr.R:48:3', 'test_pipeop_pca.R:8:3', 'test_pipeop_proxy.R:14:3', 'test_pipeop_quantilebin.R:5:3', 'test_pipeop_randomprojection.R:6:3', 'test_pipeop_randomresponse.R:5:3', 'test_pipeop_removeconstants.R:6:3', 'test_pipeop_renamecolumns.R:6:3', 'test_pipeop_replicate.R:9:3', 'test_pipeop_rowapply.R:6:3', 'test_pipeop_scale.R:6:3', 'test_pipeop_scale.R:10:3', 'test_pipeop_scalemaxabs.R:6:3', 'test_pipeop_scalerange.R:7:3', 'test_pipeop_select.R:9:3', 'test_pipeop_nmf.R:6:3', 'test_pipeop_smote.R:10:3', 'test_pipeop_smotenc.R:8:3', 'test_pipeop_subsample.R:6:3', 'test_pipeop_targetinvert.R:4:3', 'test_pipeop_targetmutate.R:5:3', 'test_pipeop_targettrafo.R:4:3', 'test_pipeop_targettrafoscalerange.R:5:3', 'test_pipeop_task_preproc.R:4:3', 'test_pipeop_task_preproc.R:14:3', 'test_pipeop_spatialsign.R:6:3', 'test_pipeop_tomek.R:7:3', 'test_pipeop_textvectorizer.R:37:3', 'test_pipeop_textvectorizer.R:186:3', 'test_pipeop_unbranch.R:10:3', 'test_pipeop_updatetarget.R:89:3', 'test_pipeop_vtreat.R:9:3', 'test_pipeop_yeojohnson.R:7:3', 'test_pipeop_tunethreshold.R:111:3', 'test_pipeop_tunethreshold.R:191:3', 'test_typecheck.R:188:3' • Skipping (1): 'test_GraphLearner.R:1278:3' • empty test (3): 'test_pipeop_isomap.R:111:1', 'test_pipeop_missind.R:101:1', 'test_ppl.R:61:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test_filter_ensemble.R:294:3'): FilterEnsemble ignores NA scores from wrapped filters ── Expected `all(is.nan(permutation_filter$scores[task$feature_names]))` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Failure ('test_filter_ensemble.R:307:3'): FilterEnsemble ignores NA scores from wrapped filters ── Expected `all.equal(object, expected, check.environment = FALSE, ...)` to be TRUE. Differences: `actual` is a character vector ('Mean relative difference: 0.6750536') `expected` is a logical vector (TRUE) Backtrace: ▆ 1. └─global expect_equal(combined_scores, variance_scores * weights[["variance"]]) at test_filter_ensemble.R:307:3 2. └─testthat::expect_true(...) ── Error ('test_pipeop_datefeatures.R:7:3'): PipeOpDateFeatures - basic properties ── Error in `seq.Date(as.Date("2020-01-31"), length.out = 150L)`: exactly two of 'to', 'by' and 'length.out' / 'along.with' must be specified Backtrace: ▆ 1. ├─base::seq(as.Date("2020-01-31"), length.out = 150L) at test_pipeop_datefeatures.R:7:3 2. └─base::seq.Date(as.Date("2020-01-31"), length.out = 150L) ── Error ('test_pipeop_datefeatures.R:17:3'): PipeOpDateFeatures - finds POSIXct column ── Error in `seq.Date(as.Date("2020-01-31"), length.out = 150L)`: exactly two of 'to', 'by' and 'length.out' / 'along.with' must be specified Backtrace: ▆ 1. ├─base::seq(as.Date("2020-01-31"), length.out = 150L) at test_pipeop_datefeatures.R:17:3 2. └─base::seq.Date(as.Date("2020-01-31"), length.out = 150L) ── Error ('test_pipeop_nmf.R:45:3'): PipeOpNMF - does not modify search path when NMF is not loaded, fix for #929 ── Error in `detach(package:generics)`: invalid 'name' argument Backtrace: ▆ 1. └─base::detach(package:generics) at test_pipeop_nmf.R:45:3 ── Failure ('test_pipeop_nmf.R:73:3'): PipeOpNMF - does not modify search path when NMF is loaded, fix for #929 ── Expected `all(...)` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Failure ('test_pipeop_nmf.R:93:3'): PipeOpNMF - does not modify search path when some of NMF's dependencies are loaded, fix for #929 ── Expected `all(paste0("package:", c("BiocGenerics", "generics")) %in% search())` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Error ('test_pipeop_nmf.R:98:3'): PipeOpNMF - does not modify search path when some of NMF's dependencies are loaded, fix for #929 ── Error in `FUN(X[[i]], ...)`: invalid 'name' argument This happened in PipeOp nmf's $train() Backtrace: ▆ 1. ├─op$train(list(tsk("iris"))) at test_pipeop_nmf.R:98:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train_task(...) 8. │ ├─data.table::as.data.table(...) 9. │ └─private$.train_dt(dt, task$levels(cols), task$truth()) 10. │ └─mlr3pipelines:::.__PipeOpNMF__.train_dt(...) 11. │ └─mlr3misc::map(to_be_detached, detach, character.only = TRUE) 12. │ └─base::lapply(.x, .f, ...) 13. │ └─base (local) FUN(X[[i]], ...) 14. │ └─base::stop("invalid 'name' argument") 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) [ FAIL 8 | WARN 0 | SKIP 99 | PASS 13004 ] Error: ! Test failures. Execution halted Flavor: r-oldrel-windows-x86_64