
F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

A step-by-step guide to analyzing CAGE data using
R/Bioconductor

Malte Thodberg1 and Albin Sandelin1

1Biotech Research and Innovation Centre and Section for Computational and RNA Biology, University of Copen-
hagen

Abstract Cap Analysis of Gene Expression (CAGE) is one of the most popular 5’-end se-
quencing methods. In a single experiment, CAGE can be used to locate and quantify the
expression of both Transcription Start Sites (TSSs) and enhancers. This workflow is a case
study on how to use the CAGEfightR package to orchestrate analysis of CAGE data within the
Bioconductor project. This workflow starts from BigWig-files and covers both basic CAGE
analyses such as identifying, quantifying and annotating TSSs and enhancers, advanced
analysis such as finding interacting TSS-enhancer pairs and enhancer clusters, to differen-
tial expression analysis and alternative TSS usage. R-code, discussion and references are
intertwined to help provide guidelines for future CAGE studies of the same kind.

Keywords

CAGE TSS Enhancer Promoter DE Motifs

Page 1 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

R version: R version 3.6.0 (2019-04-26)

Bioconductor version: 3.9

CAGEfightR version: 1.4.0

Background

Transcriptional regulation is one of the most important aspects of gene expression. Transcription Start Sites
(TSSs) are focal points of this process: The TSS act as an integration point for a wide range of molecular cues
from surrounding genomic areas to determine transcription and ultimately expression levels. These include
proximal factors such as chromatin accessibility, chromatin modification, DNA methylation and transcription
factor binding, and distal factors such as enhancer activity and chromatin confirmation [1, 2, 3, 4].

Cap Analysis of Gene Expression (CAGE) has emerged as one of the dominant high-throughput assays for
studying TSSs [5]. CAGE is based on “cap trapping”: capturing capped full-length RNAs and sequencing only
the first 20-30 nucleotides from the 5’-end, so-called CAGE tags [6]. When mapped to a reference genome, the
5’-ends of CAGE tag identify the actual TSS for respective RNA with basepair-level accuracy. Basepair-accurate
TSSs identified this way are referred to as CAGE Transcription Start Sites (CTSSs). RNA polymerase rarely
initiates from just a single nucleotide: this is manifested in CAGE data by the fact that CTSSs are mostly found
in tightly spaced groups on the same strand. The majority of CAGE studies have merged such CTSSs into
genomic blocks typically referred to as Tag Clusters (TCs), using a variety of clustering methods (see below).
TCs are often interpreted as TSSs in the more general sense, given that most genes have many CTSSs, but
only a few TCs that represent a few major transcripts with highly similar CTSSs [7, 8]. Since the number of
mapped CAGE tags in a given TC is indicative of the number of RNAs from that region, the number of CAGE
tags falling in given TC can be seen as a measure of expression [9].

As CAGE tags can be mapped to a reference genome without the need for transcript annotations, it can detect
TSSs of known mRNAs, but also mRNA from novel alternative TSSs (that might be condition or tissue depen-
dent) [7, 10]. Since CAGE captures all capped RNAs, it can also identify long non-coding RNA (lincRNA) [11]
and enhancers RNA (eRNA). It was previously shown that active enhancers are characterized by balanced
bidirectional transcription, making it possible to predict enhancer regions and quantify their expression levels
from CAGE data alone [12, 13]. Thus, CAGE data can predict the locations and activity of mRNAs, lincRNAs
and enhancers in a single assay, providing a comprehensive view of transcriptional regulation across both
inter- and intragenic regions.

Bioconductor contains a vast collection of tools for analyzing transcriptomics datasets, in particular the widely
used RNA-Seq and microarray assays[14]. Only a few packages are dedicated to analyzing 5’-end data in
general and CAGE data in particular: TSRchitect [15], icetea [16], CAGEr [17] and CAGEfightR [18], see Table
1.

CAGEr was the first package solely dedicated to the analysis of CAGE data and was recently updated to more
closely adhere to Bioconductor S4-class standards. CAGEr takes as input aligned reads in the form of BAM-
files and can identify, quantify, characterize and annotate TSSs. TSSs are found in individual samples using
either simple clustering of CTSSs (greedy or distance-based clustering) or the more advanced density-based
paraclu clustering method[19], and can be aggregated across samples to a set of consensus clusters. Several
specialized routines for CAGE data is available, such as power law normalization of CTSS counts and fine-
grained TSS shifts. Finally, CAGEr offers easy interface to the large collection of CAGE data from the FANTOM
consortium [10]. TSRchitect and icetea are two more recent additions to Bioconductor. While being less
comprehensive, they aim to be more general and handle more types of 5’-end methods that are conceptually
similar to CAGE (RAMPAGE, PEAT, PRO-Cap, etc. [5]). Both packages can identify, quantify and annotate
TSSs, with TSRchitect using an X-means algorithm and icetea using a sliding window approach. icetea
offers the unique feature of mapping reads to a reference genome by interfacing with Rsubread. Both CAGEr,
TSRchictet and icetea offers built-in capabilities for differential expression (DE) analysis via the popular
DESeq2 or edgeR packages [20, 21].

CAGEfightR is a recent addition to Bioconductor focused on analyzing CAGE data, but applicable to most
5’-end data. It aims to be general and flexible to allow for easy interfacing with the wealth of other Biocon-
ductor packages. CAGEfightR takes CTSSs stored in BigWig-files as input and uses only standard Biocon-
ductor S4-classes (GenomicRanges, SummarizedExperiment, InteractionSet[22, 23]) making it easy for users to
learn and combine CAGEfightR with functions from other Bioconductor packages (e.g. instead of providing
custom wrappers around other packages such as differential expression analysis). In addition to TSS anal-
ysis, CAGEfightR is the only package on Bioconductor to also offer functions for enhancer analysis based
on CAGE (and similarly scoped) data. This includes enhancer identification and quantification, linking en-
hancers to TSSs via correlation of expression and finding enhancer clusters, often referred to as stretch- or
super enhancers.

In this workflow, we illustrate how the CAGEfightR package can be used to orchestrate an end-to-end analysis
of CAGE data by making it easy to interface with a wide range of different Bioconductor packages. Highlights

Page 2 of 42

https://bioconductor.org/packages/3.9/TSRchitect
https://bioconductor.org/packages/3.9/icetea
https://bioconductor.org/packages/3.9/CAGEr
https://bioconductor.org/packages/3.9/CAGEfightR
https://bioconductor.org/packages/3.9/Rsubread
https://bioconductor.org/packages/3.9/DESeq2
https://bioconductor.org/packages/3.9/edgeR
https://bioconductor.org/packages/3.9/GenomicRanges
https://bioconductor.org/packages/3.9/SummarizedExperiment
https://bioconductor.org/packages/3.9/InteractionSet

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Table 1. Comparison of Bioconductor packages for CAGE data analysis.

Analysis icetea TSRchitect CAGEr CAGEfightR

Simplest input FASTQ BAM BAM BigWig

TSS calling sliding window X-means distance or paraclu slice-reduce

TSS shapes - + + +

Differential Expression + + + -

Enhancer calling - - - +

TSS-enhancer correlation - - - +

Super enhancers - - - +

include TSS and enhancer candidate identification, differential expression, alternative TSS usage, enrichment
of motifs, GO/KEGG terms and calculating TSS-enhancer correlations.

Materials and methods

Dataset

This workflow uses data from “Identification of Gene Transcription Start Sites and Enhancers Responding to
Pulmonary Carbon Nanotube Exposure in Vivo” by Bornholdt et al [24]. This study uses mouse as a model
system to investigate how nanotubes affect lung tissue when inhaled. Inhaled nanotubes were previously
found to produce a similar response to asbestos, potentially triggering an inflammatory response in the lung
tissue leading to drastic changes in gene expression.

The dataset consists of CAGE data from mouse lung biopsies: 5 mice whose lungs were instilled with water
(Ctrl) and 6 mice wholes lungs were instilled with nanotubes (Nano), with CTSSs for each sample stored in
BigWig-files, shown in Table 2:

Table 2. Overview of samples in the nanotube exposure experiment.

Group Biological Replicates

Ctrl 5 mice

Nano 6 mice

The data is acquired via the nanotubes data package:

library(nanotubes)

R-packages

This workflow uses a large number of R-packages: Bioconductor packages are primarily used for data analysis
while packages from the tidyverse are used to wrangle and plot the results. All these packages are loaded
prior to beginning the workflow:

CRAN packages for data manipulation and plotting
library(knitr)
library(pheatmap)
library(ggseqlogo)
library(viridis)
library(magrittr)
library(ggforce)
library(ggthemes)
library(tidyverse)

CAGEfightR and related packages
library(CAGEfightR)
library(GenomicRanges)
library(SummarizedExperiment)
library(GenomicFeatures)
library(BiocParallel)
library(InteractionSet)

Page 3 of 42

https://www.tidyverse.org

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

library(Gviz)

Bioconductor packages for differential expression
library(DESeq2)
library(limma)
library(edgeR)
library(sva)

Bioconductor packages for enrichment analyses
library(TFBSTools)
library(motifmatchr)
library(pathview)

Bioconductor data packages
library(BSgenome.Mmusculus.UCSC.mm9)
library(TxDb.Mmusculus.UCSC.mm9.knownGene)
library(org.Mm.eg.db)
library(JASPAR2016)

We also set some script-wide settings for later convenience:

Rename these for easier access
bsg <- BSgenome.Mmusculus.UCSC.mm9
txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
odb <- org.Mm.eg.db

Script wide settings
register(MulticoreParam(3)) # Parallel execution when possible
theme_set(theme_light()) # White theme for ggplot2 figures

Workflow

The workflow is divided into 3 parts covering different parts of a typical CAGE data analysis:

1. Shows how to use CAGEfightR to import CTSSs and find and quantify TSS and enhancer candidates.

2. Shows examples of how to perform genomic analyses of CAGE dusters using core Bioconductor packages
such as GenomicRanges and Biostrings. This part covers typical analyses made from CAGE data, from
summarizing cluster annotation, TSS shapes and core promoter sequence analysis to more advanced
spatial analyses (finding TSS-enhancer correlation links and clusters of enhancers).

3. Shows how CAGEfightR can be used to prepare data for differential expression analysis with popular
R packages, including DESeq2, limma and edgeR [20, 25, 21]. Borrowing from RNA-Seq terminology,
differential expression can be assessed at multiple different levels: Tag cluster- and enhancer-level,
gene-level and differential TSS usage[26]. Once differential expression results have been obtained,
they can be combined with other sources of information such as motifs from JASPAR [27] and GO/KEGG
terms[Hancock2014; Gene2019; 28].

Part 1: Locating, quantifying and annotating TSSs and enhancers

CAGEfightR starts analysis from CTSSs, which is the number of CAGE tag 5’-ends mapping to each basepair
(bp) in the genome. CTSSs are normally stored as either BED-files or BigWig-files. CAGEfightR works on
BigWig-files, since these can be efficiently imported and allow for random access.

Before starting the analysis, we recommend gathering all information (Filenames, groups, batches, preparation
data, etc.) about the samples to be analyzed in a single data.frame, sometimes called the design matrix.
CAGEfightR can keep track of the design matrix throughout the analysis:

data(nanotubes)
kable(nanotubes,

caption = "The initial design matrix for the nanotubes experiment")

Page 4 of 42

https://bioconductor.org/packages/3.9/GenomicRanges
https://bioconductor.org/packages/3.9/Biostrings
https://bioconductor.org/packages/3.9/DESeq2
https://bioconductor.org/packages/3.9/limma
https://bioconductor.org/packages/3.9/edgeR

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Table 3. The initial design matrix for the nanotubes experiment

Class Name BigWigPlus BigWigMinus
C547 Ctrl C547 mm9.CAGE_7J7P_NANO_KON_547.plus.bw mm9.CAGE_7J7P_NANO_KON_547.minus.bw
C548 Ctrl C548 mm9.CAGE_ULAC_NANO_KON_548.plus.bw mm9.CAGE_ULAC_NANO_KON_548.minus.bw
C549 Ctrl C549 mm9.CAGE_YM4F_Nano_KON_549.plus.bw mm9.CAGE_YM4F_Nano_KON_549.minus.bw
C559 Ctrl C559 mm9.CAGE_RSAM_NANO_559.plus.bw mm9.CAGE_RSAM_NANO_559.minus.bw
C560 Ctrl C560 mm9.CAGE_CCLF_NANO_560.plus.bw mm9.CAGE_CCLF_NANO_560.minus.bw
N13 Nano N13 mm9.CAGE_KTRA_Nano_13.plus.bw mm9.CAGE_KTRA_Nano_13.minus.bw
N14 Nano N14 mm9.CAGE_RSAM_NANO_14.plus.bw mm9.CAGE_RSAM_NANO_14.minus.bw
N15 Nano N15 mm9.CAGE_RFQS_Nano_15.plus.bw mm9.CAGE_RFQS_Nano_15.minus.bw
N16 Nano N16 mm9.CAGE_CCLF_NANO_16.plus.bw mm9.CAGE_CCLF_NANO_16.minus.bw
N17 Nano N17 mm9.CAGE_RSAM_NANO_17.plus.bw mm9.CAGE_RSAM_NANO_17.minus.bw
N18 Nano N18 mm9.CAGE_CCLF_NANO_18.plus.bw mm9.CAGE_CCLF_NANO_18.minus.bw

Importing CTSSs

We need to tell CAGEfightR where to find the BigWig-files containing CTSSs on the hard drive. Normally,
one would supply the paths to each file (e.g. /CAGEdata/BigWigFiles/Sample1_plus.bw), but here we
will use data from the nanotubes data package:

Setup paths to file on hard drive
bw_plus <- system.file("extdata", nanotubes$BigWigPlus,

package = "nanotubes",
mustWork = TRUE)

bw_minus <- system.file("extdata", nanotubes$BigWigMinus,
package = "nanotubes",
mustWork = TRUE)

Save as named BigWigFileList
bw_plus <- BigWigFileList(bw_plus)
bw_minus <- BigWigFileList(bw_minus)
names(bw_plus) <- names(bw_minus) <- nanotubes$Name

The first step is quantifying CTSS usage across all samples. This is often one of the most time consuming
step in a CAGEfightR analysis, but it can be speed up by using multiple cores (if available, see Materials and
Methods). We also need to specify the genome, which we can get from the BSgenome.Mmusculus.UCSC.mm9
genome package:

CTSSs <- quantifyCTSSs(plusStrand = bw_plus,
minusStrand = bw_minus,
genome = seqinfo(bsg),
design = nanotubes)

Checking supplied genome compatibility...

Iterating over 28 genomic tiles in 11 samples using 3 worker(s)...

Importing CTSSs from plus strand...

Registered S3 method overwritten by 'pryr':
method from
print.bytes Rcpp

Importing CTSSs from minus strand...

Merging strands...

CTSS summary

Number of samples: 11

Page 5 of 42

https://bioconductor.org/packages/3.9/BSgenome.Mmusculus.UCSC.mm9

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Number of CTSSs: 9.339 millions

Sparsity: 81.68 %

Final object size: 282 MB

The circa 9 million CTSSs are stored as RangedSummarizedExperiment, which is the standard representa-
tion of high-throughput experiments in Bioconductor. We can inspect both the ranges and the CTSS counts:

Get a summary
CTSSs

class: RangedSummarizedExperiment
dim: 9338802 11
metadata(0):
assays(1): counts
rownames: NULL
rowData names(0):
colnames(11): C547 C548 ... N17 N18
colData names(4): Class Name BigWigPlus BigWigMinus

Extract CTSS positions
rowRanges(CTSSs)

GPos object with 9338802 positions and 0 metadata columns:
seqnames pos strand
<Rle> <integer> <Rle>
[1] chr1 3024556 +
[2] chr1 3025704 +
[3] chr1 3025705 +
[4] chr1 3028283 +
[5] chr1 3146133 +
...
[9338798] chrUn_random 5810899 -
[9338799] chrUn_random 5813784 -
[9338800] chrUn_random 5880838 -
[9338801] chrUn_random 5893536 -
[9338802] chrUn_random 5894263 -

seqinfo: 35 sequences (1 circular) from mm9 genome

Extract CTSS counts
assay(CTSSs, "counts") %>%

head

6 x 11 sparse Matrix of class "dgCMatrix"

[[suppressing 11 column names 'C547', 'C548', 'C549' ...]]

##
[1,] . . 1
[2,] . . . 1
[3,] 1
[4,] 1
[5,] 1
[6,] . 1

Unidirectional and bidirectional clustering for finding TSS and enhancer candidates:

CAGEfightR finds clusters by calculating the pooled CTSS signal across all samples: We first normalize CTSSs
count in each sample to Tags-Per-Million (TPM) values, and them sum TPM values across samples:

Page 6 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

CTSSs <- CTSSs %>%
calcTPM() %>%
calcPooled()

Calculating library sizes...

Calculating TPM...

This will add several new pieces of information to CTSSs: The total number of tags in each library, a new
assay called TPM, and the pooled signal for each CTSS.

We can use unidirectional clustering to locate unidirectional clusters, often simply called Tag Clusters (TCs),
which are candidates for TSSs. The quickTSSs will both locate and quantify TCs in a single function call:

TCs <- quickTSSs(CTSSs)

Using existing score column!

##
- Running clusterUnidirectionally:

Splitting by strand...

Slice-reduce to find clusters...

Calculating statistics...

Preparing output...

Tag clustering summary:

Width Count Percent
Total 3602099 1e+02 %
>=1 2983433 8e+01 %
>=10 577786 2e+01 %
>=100 40842 1e+00 %
>=1000 38 1e-03 %

##
- Running quantifyClusters:

Finding overlaps...

Aggregating within clusters...

Note: quickTSSs runs CAGEfightR with default settings. If you have larger or more noisy datasets you
most likely want to do a more robust analysis with different settings. See the CAGEfightR vignette for more
information.

Many of the identified TCs will only be very lowly expressed. To obtain likely biologically relevant TSSs, we
keep only TSSs expressed at more than 1 TPM in at least 5 samples (5 samples being the size of the smallest
experimental group):

TSSs <- TCs %>%
calcTPM() %>%
subsetBySupport(inputAssay="TPM",

unexpressed=1,
minSamples=4)

Calculating library sizes...

Page 7 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Warning in calcTotalTags(object = object, inputAssay = inputAssay,
outputColumn = outputColumn): object already has a column named totalTags
in colData: It will be overwritten!

Calculating TPM...

Calculating support...

Subsetting...

Removed 3573214 out of 3602099 regions (99.2%)

This removed a large number of very lowly expressed TCs, leaving us with almost 30.000 TSSs candidates for
analysis.

Then we turn to bidirectional clustering for identifying bidirectional clusters (BCs), which are candidate for
enhancers. Similarly, we can use quickEnhancers to locate and quantify BCs:

BCs <- quickEnhancers(CTSSs)

Using existing score column!

##
- Running clusterBidirectionally:

Pre-filtering bidirectional candidate regions...

Retaining for analysis: 68.3%

Splitting by strand...

Calculating windowed coverage on plus strand...

Calculating windowed coverage on minus strand...

Calculating balance score...

Slice-reduce to find bidirectional clusters...

Calculating statistics...

Preparing output...

Bidirectional clustering summary:

Number of bidirectional clusters: 106779

Maximum balance score: 1

Minimum balance score: 0.950001090872574

Maximum width: 1866

Minimum width: 401

##
- Running subsetByBidirectionality:

Calculating bidirectionality...

Page 8 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Subsetting...

Removed 73250 out of 106779 regions (68.6%)

##
- Running quantifyClusters:

Finding overlaps...

Aggregating within clusters...

Note: quickEnhancers runs CAGEfightR with default settings. If you have larger or more noisy datasets
you most likely want to do a more robust analysis with different settings. See the CAGEfightR vignette for
more information.

Again, we are not usually interested in very lowly expressed BCs. As they are overall lowly expressed, we will
simply filter out BCs without at least 1 count in 5 samples:

BCs <- subsetBySupport(BCs, inputAssay="counts", unexpressed=0, minSamples=4)

Calculating support...

Subsetting...

Removed 20017 out of 33529 regions (59.7%)

Annotating clusters with transcript models

After having located unidirectional and bidirectional clusters, we can annotate them according to known
transcript and gene models. These types of annotation are store via TxDb-objects in Bioconductor. Here we
will simply use UCSC transcripts included in the TxDb.Mmusculus.UCSC.mm9.knownGene package, but the
CAGEfightR vignette includes examples of how to obtain a TxDb object from other sources (GFF/GTF files,
AnnotationHub, etc.).

Starting with the TSS candidates, we can not only annotate a TSS with overlapping transcripts, but also in
what part of a transcript a TSS lies by using a hierarchical annotation scheme. As some TSSs might be very
wide, we only use the TSS peak for annotation purposes:

Annotate with transcript IDs
TSSs <- assignTxID(TSSs, txModels = txdb, swap="thick")

Extracting transcripts...

Finding hierachical overlaps...

Overlap Summary:

Features overlapping transcripts: 87.65 %

Number of unique transcripts: 31898

Annotate with transcript context
TSSs <- assignTxType(TSSs, txModels = txdb, swap="thick")

Finding hierachical overlaps with swapped ranges...

Overlap summary:

Page 9 of 42

https://bioconductor.org/packages/3.9/TxDb.Mmusculus.UCSC.mm9.knownGene

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

txType count percentage
1 promoter 13395 46.4
2 proximal 2246 7.8
3 fiveUTR 2112 7.3
4 threeUTR 1200 4.2
5 CDS 3356 11.6
6 exon 161 0.6
7 intron 2810 9.7
8 antisense 1294 4.5
9 intergenic 2311 8.0

Almost half of TSSs were found at annotated promoters, while the other half is novel compared to the UCSC
known transcripts.

Transcript annotation is particularly useful for enhancer candidates, as bidirectional clustering might also
detect bidirectional promoters. Therefore, a commonly used filtering approached is to only consider BCs in
intergenic or intronic regions as enhancer candidates:

Annotate with transcript context
BCs <- assignTxType(BCs, txModels = txdb, swap="thick")

Finding hierachical overlaps with swapped ranges...

Overlap summary:

txType count percentage
1 promoter 766 5.7
2 proximal 1649 12.2
3 fiveUTR 67 0.5
4 threeUTR 596 4.4
5 CDS 420 3.1
6 exon 71 0.5
7 intron 6815 50.4
8 antisense 0 0.0
9 intergenic 3128 23.1

Keep only non-exonic BCs as enhancer candidates
Enhancers <- subset(BCs, txType %in% c("intergenic", "intron"))

This leaves almost 10000 enhancer candidates for analysis.

Merging into a single dataset

For many downstream analyses, in particular normalization and differential expression, it is useful to combine
both TSS and enhancers candidates into a single dataset. This ensures that TSSs and enhancers do not overlap,
so each CAGE tag is only counted once.

We must first ensure that the enhancer and TSS candidates have the same information attached to them, since
CAGEfightR will only allow merging of clusters if they have the same sample and cluster information:

Clean colData
TSSs$totalTags <- NULL
Enhancers$totalTags <- NULL

Clean rowData
rowData(TSSs)$balance <- NA
rowData(TSSs)$bidirectionality <- NA
rowData(Enhancers)$txID <- NA

Add labels for making later retrieval easy
rowData(TSSs)$clusterType <- "TSS"
rowData(Enhancers)$clusterType <- "Enhancer"

Page 10 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Then the clusters can be merged: As enhancers are the most complicated type, we keep only enhancers if a
TSS and enhancer overlaps:

RSE <- combineClusters(object1=TSSs,
object2 = Enhancers,
removeIfOverlapping="object1")

Removing overlapping features from object1: 374

Keeping assays: counts

Keeping columns: score, thick, support, txID, txType, balance, bidirectionality, clusterType

Merging metadata...

Stacking and re-sorting...

We finally calculate the total number of tags and TPM-scaled counts for the final merged dataset:

RSE <- calcTPM(RSE)

Calculating library sizes...

Calculating TPM...

Part 2: Genomic analysis of TSSs and enhancers

Genome-browser figures of TSSs and enhancers

First we can simply plot some examples of TSSs and enhancers in a genome browser style figure using the
Gviz package [29]. It takes a bit of code to setup, but the resulting tracks can be reused for later examples:

Genome track
axis_track <- GenomeAxisTrack()

Annotation track
tx_track <- GeneRegionTrack(txdb,

name = "Gene Models",
col = NA,
fill = "bisque4",
shape = "arrow",
showId = TRUE)

A good general strategy for quickly generating genome browser plots is to first define a region of interest, and
then only plotting data within that region using subsetByOverlaps. The following code demonstrates this
using the first TSS:

Extract 100 bp around the first TSS.
plot_region <- RSE %>%

rowRanges %>%
subset(clusterType == "TSS") %>%
.[1] %>%
add(100) %>%
unstrand()

CTSSs track
ctss_track <- CTSSs %>%

rowRanges %>%
subsetByOverlaps(plot_region) %>%
trackCTSS(name = "CTSSs")

Splitting pooled signal by strand...

Preparing track...

Page 11 of 42

https://bioconductor.org/packages/3.9/Gviz

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

4.7979 mb

4.798 mb

4.7981 mb

0

20

40

60
C

T
S

S
s

minus plus

C
lu

st
er

s

chr1:4797893−4798045;+

G
en

e
M

od
el

s uc007afg.1

uc007afh.1

Figure 1. Genome browser example of TSS candidate

Cluster track
cluster_track <- RSE %>%

subsetByOverlaps(plot_region) %>%
trackClusters(name = "Clusters",

col = NA,
showId=TRUE)

Setting thick and thin features...

Merging and sorting...

Preparing track...

Plot at tracks together
plotTracks(list(axis_track,

ctss_track,
cluster_track,
tx_track),

from = start(plot_region),
to=end(plot_region),
chromosome = seqnames(plot_region))

The top track shows the pooled CTSS signal and the middle track shows the identified TC with the thick bar
indicating the TSS peak (the overall most used CTSSs within the TC). The bottom track shows the known
transcript model at this genomic location. In this case, the CAGE-defined TSS corresponds well to the anno-
tation.

We can also plot the first enhancer:

Page 12 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Make plotting region
plot_region <- RSE %>%

rowRanges %>%
subset(clusterType == "Enhancer") %>%
.[1] %>%
add(100) %>%
unstrand()

CTSSs track
ctss_track <- CTSSs %>%

rowRanges %>%
subsetByOverlaps(plot_region) %>%
trackCTSS(name = "CTSSs")

Splitting pooled signal by strand...

Preparing track...

Cluster track
cluster_track <- RSE %>%

rowRanges %>%
subsetByOverlaps(plot_region) %>%
trackClusters(name = "Clusters",

col = NA,
showId=TRUE)

Setting thick and thin features...

Merging and sorting...

Preparing track...

Plot at tracks together
plotTracks(list(axis_track,

ctss_track,
cluster_track,
tx_track),

from = start(plot_region),
to=end(plot_region),
chromosome = as.character(seqnames(plot_region)))

Here we see the bidirectional pattern characteristic of active enhancers. The bidirectional cluster is seen in
the middle track, with the midpoint in thick marking the maximally balanced point within the bidirectional
cluster.

Location and expression of TSSs and enhancers

In addition to looking at single examples of TSSs and enhancers, we also want to get an overview of the
number and expression of clusters in relation to transcript annotation. First we extract all of the necessary
data from the RangedSummarizedExperiment into an ordinary data.frame:

cluster_info <- RSE %>%
rowData() %>%
as.data.frame()

Then we use ggplot2 to plot the number and expression levels of clusters in each annotation category:

Number of clusters
ggplot(cluster_info, aes(x=txType, fill=clusterType)) +

geom_bar(alpha=0.75, position="dodge", color="black") +
scale_fill_colorblind("Cluster type") +
labs(x="Cluster annotation", y="Frequency") +
theme(axis.text.x = element_text(angle = 90, hjust = 1))

Page 13 of 42

https://CRAN.R-project.org/package=ggplot2

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

4.5617 mb

4.5618 mb

4.5619 mb

4.562 mb

4.5621 mb

4.5622 mb

−0.2

−0.1

0

0.1

C
T

S
S

s

minus plus

C
lu

st
er

s

chr1:4561685−4562164

G
en

e
M

od
el

s

Figure 2. Genome browser example of enhancer candidate

0

5000

10000

pr
om

ot
er

pr
ox

im
al

fiv
eU

T
R

th
re

eU
T

R

C
D

S

ex
on

in
tr

on

an
tis

en
se

in
te

rg
en

ic

Cluster annotation

F
re

qu
en

cy Cluster type

Enhancer

TSS

Figure 3. Number of clusters within each annotation category

Page 14 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

−5

0

5

10

15

pr
om

ot
er

pr
ox

im
al

fiv
eU

T
R

th
re

eU
T

R

C
D

S

ex
on

in
tr

on

an
tis

en
se

in
te

rg
en

ic

Cluster annotation

lo
g2

(T
P

M
) Cluster type

Enhancer

TSS

Figure 4. Expression of clusters within each annotation category

Expression of clusters
ggplot(cluster_info, aes(x=txType,

y=log2(score/ncol(RSE)),
fill=clusterType)) +

geom_violin(alpha=0.75, draw_quantiles = c(0.25, 0.50, 0.75)) +
scale_fill_colorblind("Cluster type") +
labs(x="Cluster annotation", y="log2(TPM)") +
theme(axis.text.x = element_text(angle = 90, hjust = 1))

Warning in regularize.values(x, y, ties, missing(ties)): collapsing to
unique 'x' values

We find that TSSs at annotated promoters are generally highly expressed. Most novel TSSs are expressed at
lower levels, except for some TSSs in 5’-UTRs. Enhancers are expressed at much lower levels than TSSs.

Analysing TSS shapes and sequences

A classic analysis of CAGE data is to divide TSSs into Sharp and Broad classes, which show different core
promoter regions and different expression patterns across tissues[7].

CAGEfightR can calculate several shape statistics that summarizes the shape of a TSS. The Interquartile Range
(IQR) can be used to find sharp and broad TSSs. As lowly expressed TSSs cannot show much variation in shape
due to their low width and number of tags, we here focused on highly expressed TSSs (average TPM >= 10):

Select highly expressed TSSs
highTSSs <- subset(RSE, clusterType == 'TSS' & score / ncol(RSE) >= 10)

Calculate IQR as 10%-90% interval
highTSSs <- calcShape(highTSSs,

pooled=CTSSs,
shapeFunction=shapeIQR,
lower = 0.10,
upper = 0.90)

Splitting by strand...

Applying function to each cluster...

Preparing output output...

Page 15 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

0 500 1000 1500
0

50
100
150

0 25 50 75 100
0

50

100

150

10−90% IQR

F
re

qu
en

cy

Figure 5. Bimodal distribution of Interquartile Ranges (IQRs) of highly expressed TSSs

We can then plot the bimodal distribution of IQRs. We use a zoom-in panel to highlight the distinction between
the two classes:

highTSSs %>%
rowData %>%
as.data.frame %>%
ggplot(aes(x=IQR)) +
geom_histogram(binwidth=1, fill="hotpink", alpha=0.75) +
geom_vline(xintercept = 10, linetype="dashed", alpha=0.75, color="black") +
facet_zoom(xlim = c(0,100)) +
labs(x="10-90% IQR", y="Frequency")

We see most TSSs are either below or above 10 bp IQR (dashed line), so we use this cutoff to classify TSSs
into Sharp and Broad:

Divide into groups
rowData(highTSSs)$shape <- ifelse(rowData(highTSSs)$IQR < 10, "Sharp", "Broad")

Count group sizes
table(rowData(highTSSs)$shape)

##
Broad Sharp
9555 812

We can now investigate the core promoters sequences of the two classes of TSSs. We first need to extract
the sequences for each TSS: We define this as the TSS peak -40/+10 bp and extract them from using the
BSgenome.Mmusculus.UCSC.mm10 genome package:

promoter_seqs <- highTSSs %>%
rowRanges() %>%
swapRanges() %>%
promoters(upstream=40, downstream=10) %>%
getSeq(bsg, .)

This returns a DNAStringSet-object which we can plot as a sequence logo [30] via the ggseqlogo package[31]:

promoter_seqs %>%
as.character %>%
split(rowData(highTSSs)$shape) %>%
ggseqlogo(data=., ncol=2, nrow=1) +

Page 16 of 42

https://bioconductor.org/packages/3.9/BSgenome.Mmusculus.UCSC.mm10
https://CRAN.R-project.org/package=ggseqlogo

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Broad Sharp

0.00

0.25

0.50

0.75

B
its

Figure 6. Sequence logos of core promoter regions of Sharp and Broad classes of TSSs

theme_logo() +
theme(axis.title.x=element_blank(),

axis.text.x=element_blank(),
axis.ticks.x=element_blank())

As expected, we observe that Sharp TSSs tend to have a stronger TATA-box upstream of the TSS compared to
Broad TSSs.

Finding candidates for interacting TSSs and enhancers

In addition to simply identifying enhancers, it is also interesting to try infer what genes they might be regulat-
ing. CAGE data can itself not provide direct evidence that an enhancer is physically interacting with a TSSs,
which would requires specialized chromatin confirmation capture assays such as HiC, 4C, 5C, etc. However,
previous studies have shown that TSSs and enhancers that are close to each other and have highly correlated
expression are more likely to be interacting. We can therefore use distance and correlation of expression
between TSSs and enhancers to identify TSSs-enhancer links as candidates for physical interactions[13].

To do this with CAGEfightR, we first need to indicate the two types of clusters as a factor with two levels:

rowData(RSE)$clusterType <- RSE %>%
rowData() %>%
use_series("clusterType") %>%
as_factor() %>%
fct_relevel("TSS")

We can then calculate all pairwise correlations between TSSs and enhancer within a distance of 50 bp. Here we
use the non-parametric Kendall’s tau as a measure of correlation, but other functions for calculating correlation
can be supplied (e.g. one could calculate Pearson’s r on log-transformed TPM values to only capture linear
relationships):

all_links <- RSE %>%
swapRanges %>%
findLinks(maxDist = 5e4L,

directional="clusterType",
inputAssay="TPM",
method="kendall")

Finding directional links from TSS to Enhancer...

Calculating 41311 pairwise correlations...

Preparing output...

Link summary:

Page 17 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Number of links: 41311

Summary of pairwise distance:

Min. 1st Qu. Median Mean 3rd Qu. Max.

205 8832 21307 22341 35060 50000

all_links

GInteractions object with 41311 interactions and 4 metadata columns:
seqnames1 ranges1 seqnames2 ranges2 | orientation
<Rle> <IRanges> <Rle> <IRanges> | <character>
[1] chr1 6204746 --- chr1 6226837 | downstream
[2] chr1 7079251 --- chr1 7083527 | downstream
[3] chr1 9535519 --- chr1 9554735 | downstream
[4] chr1 9538162 --- chr1 9554735 | downstream
[5] chr1 20941781 --- chr1 20990601 | downstream
...
[41307] chr9_random 193165 --- chr9_random 217926 | upstream
[41308] chr9_random 193165 --- chr9_random 242951 | upstream
[41309] chr9_random 223641 --- chr9_random 217926 | downstream
[41310] chr9_random 223641 --- chr9_random 242951 | upstream
[41311] chrUn_random 3714359 --- chrUn_random 3718258 | upstream
distance estimate p.value
<integer> <numeric> <numeric>
[1] 22090 -0.0603022689155527 0.805433562909099
[2] 4275 0.365994211051474 0.128612838399956
[3] 19215 -0.21320071635561 0.392330339776564
[4] 16572 0.341121146168977 0.17111237306132
[5] 48819 0.14070529413629 0.565460671338501
...
[41307] 24760 0.477084298221423 0.0423302291213607
[41308] 49785 0.180906806746658 0.459929012970529
[41309] 5714 -0.0366987921708787 0.875896057922941
[41310] 19309 -0.261309831967395 0.28579482541369
[41311] 3898 -0.170560573084488 0.493773664508106

regions: 38454 ranges and 8 metadata columns
seqinfo: 35 sequences (1 circular) from mm9 genome

The output is a GInteractions-object from the InteractionSet package[23]: For each TSS-enhancer both the
distance and orientation (upstream/downstream relative to TSS) is calculated in addition to the correlation
estimate and p-value. For now, we are only interested in positive correlations, so we subset and sort the links:

Subset to only positive correlation
cor_links <- subset(all_links, estimate > 0)

Sort based on correlation
cor_links <- cor_links[order(cor_links$estimate, decreasing = TRUE)]

We can then visualize the correlation patterns across a genomic region, here using the most correlated TSS-
enhancer link:

Make plotting region
plot_region <- cor_links[1] %>%

anchors %>%
GRangesList() %>%
unlist() %>%
reduce(ignore.strand=TRUE,

min.gapwidth=1e5) %>%
add(1000)

Page 18 of 42

https://bioconductor.org/packages/3.9/InteractionSet

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Cluster track
cluster_track <- RSE %>%

subsetByOverlaps(plot_region) %>%
trackClusters(name = "Clusters",

col = NA,
showId=TRUE)

Setting thick and thin features...

Merging and sorting...

Preparing track...

Cluster track
link_track <- cor_links %>%

subsetByOverlaps(plot_region) %>%
trackLinks(name="Links",

interaction.measure = "p.value",
interaction.dimension.transform = "log",
col.outside="grey",
plot.anchors=FALSE,
col.interactions="black")

Plot at tracks together
plotTracks(list(axis_track,

link_track,
cluster_track,
tx_track),

from = start(plot_region),
to=end(plot_region),
chromosome = as.character(seqnames(plot_region)))

The top track shows the strength of correlations between 3 TSSs around the Atp1b1 gene. The highest corre-
lation is seen between the upstream TSS and the most distal enhancer.

Finding stretches of enhancers

Several studies have found that groups or stretches of closely spaced enhancers tend to show different chro-
matin characteristics and functions compared to singleton enhancers. Such groups of are often referred to as
“super enhancers” or “stretch enhancers”[32].

CAGEfightR can detect such enhancer stretches based on CAGE data. CAGEfightR groups nearby enhancers
into groups and calculates the average pairwise correlation between them, shown below (again using Kendall’s
tau):

Subset to only enhancers
Enhancers <- subset(RSE, clusterType == "Enhancer")

Find stretches
stretches <- findStretches(Enhancers,

inputAssay = "TPM",
mergeDist = 12500L,
minSize = 5,
method = "kendall")

Finding stretches...

Calculating correlations...

Stretch summary:

Number of stretches: 95

Page 19 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

166.389 mb

166.39 mb

166.391 mb

166.392 mb

Li
nk

s
C

lu
st

er
s

chr1:166387911−166388540;−

chr1:166388566−166388725;+

chr1:166388783−166389004;−

chr1:166389597−166390100

chr1:166391008−166391468

chr1:166391849−166392322

G
en

e
M

od
el

s

Figure 7. Genome browser example of TSS-enhancer link candidates

Page 20 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Total number of clusters inside stretches: 587 / 9943

Minimum clusters: 5

Maximum clusters: 15

Minimum width: 7147

Maximum width: 92531

Summary of average pairwise correlations:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.10038 0.01351 0.08107 0.09097 0.16171 0.37105

Similarly to TSSs and enhancers, we can also annotate stretches based on their relation with known transcripts:

Annotate
stretches <- assignTxType(stretches, txModels=txdb)

Finding hierachical overlaps...

Overlap summary:

txType count percentage
1 promoter 50 52.6
2 proximal 0 0.0
3 fiveUTR 6 6.3
4 threeUTR 5 5.3
5 CDS 3 3.2
6 exon 2 2.1
7 intron 15 15.8
8 antisense 0 0.0
9 intergenic 14 14.7

Sort by correlation
stretches <- stretches[order(stretches$aveCor, decreasing=TRUE)]

Inspect
stretches

GRanges object with 95 ranges and 4 metadata columns:
seqnames ranges strand |
<Rle> <IRanges> <Rle> |
chr11:98628005-98647506 chr11 98628005-98647506 * |
chr7:139979437-140003112 chr7 139979437-140003112 * |
chr15:31261340-31279984 chr15 31261340-31279984 * |
chr11:117733009-117752208 chr11 117733009-117752208 * |
chr7:97167988-97188451 chr7 97167988-97188451 * |
...
chr15:101076561-101093429 chr15 101076561-101093429 * |
chr16:91373912-91399202 chr16 91373912-91399202 * |
chr7:132619265-132644381 chr7 132619265-132644381 * |
chr15:79181690-79208915 chr15 79181690-79208915 * |
chr10:94708643-94729408 chr10 94708643-94729408 * |
revmap nClusters
<IntegerList> <integer>
chr11:98628005-98647506 6600,6601,6602,... 6
chr7:139979437-140003112 4220,4221,4222,... 5
chr15:31261340-31279984 7962,7963,7964,... 5
chr11:117733009-117752208 6785,6786,6787,... 6

Page 21 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

chr7:97167988-97188451 4022,4023,4024,... 6
...
chr15:101076561-101093429 8320,8321,8322,... 5
chr16:91373912-91399202 8643,8644,8645,... 7
chr7:132619265-132644381 4160,4161,4162,... 5
chr15:79181690-79208915 8144,8145,8146,... 5
chr10:94708643-94729408 5823,5824,5825,... 5
aveCor txType
<numeric> <factor>
chr11:98628005-98647506 0.371052840516797 promoter
chr7:139979437-140003112 0.328630841442886 promoter
chr15:31261340-31279984 0.301603791540209 intron
chr11:117733009-117752208 0.284399425439616 promoter
chr7:97167988-97188451 0.262199740521045 promoter
...
chr15:101076561-101093429 -0.0549688493223916 intergenic
chr16:91373912-91399202 -0.0598361076236999 fiveUTR
chr7:132619265-132644381 -0.0626248504104628 promoter
chr15:79181690-79208915 -0.0981772309926707 promoter
chr10:94708643-94729408 -0.100380656957041 intron

seqinfo: 35 sequences (1 circular) from mm9 genome

The returned GRanges contains the the location, number of enhancers and average correlation for each
stretch. Stretches are found in a variety of context, some being intergenic and other spanning various parts of
genes. Let us plot one of the top intergenic stretches:

Make plotting region
plot_region <- stretches["chr17:26666593-26675486"] + 1000

Cluster track
cluster_track <- RSE %>%

subsetByOverlaps(plot_region) %>%
trackClusters(name = "Clusters",

col = NA,
showId=TRUE)

Setting thick and thin features...

Merging and sorting...

Preparing track...

CTSS track
ctss_track <- CTSSs %>%

subsetByOverlaps(plot_region) %>%
trackCTSS(name="CTSSs")

Splitting pooled signal by strand...
Preparing track...

SE track
stretch_track <- stretches %>%

subsetByOverlaps(plot_region) %>%
AnnotationTrack(name="Stretches", fill="hotpink", col=NULL)

Plot at tracks together
plotTracks(list(axis_track,

stretch_track,
cluster_track,
ctss_track),

from = start(plot_region),
to=end(plot_region),
chromosome = as.character(seqnames(plot_region)))

This stretch is composed of at least 5 enhancers, each of which shows bidirectional transcription.

Page 22 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

26.667 mb

26.668 mb

26.669 mb

26.67 mb

26.671 mb

26.672 mb

26.673 mb

26.674 mb

26.675 mb

C
lu

st
er

s

chr17:26666593−26667029

chr17:26668611−26669043

chr17:26669470−26669928

chr17:26670652−26671202

chr17:26674968−26675486

0

0.5

1

C
T

S
S

s

minus plus

Figure 8. Genome browser example of enhancer stretch

Page 23 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

−20

−10

0

10

20

−20 0 20

PC1: 62% variance

P
C

2:
 1

7%
 v

ar
ia

nc
e

group

Ctrl

Nano

Figure 9. PCA-plot of variance stabilized expression.

Part 3: Differential Expression analysis of TSSs, enhancers and genes

Normalization of expression and EDA

Before performing statistical tests for various measures of Differential Expression (DE), it is important to first
conduct a thorough Exploratory Data Analysis (EDA) to identify what factor we need to include in the final
model.

Here we will use DESeq2 [20] for normalization and EDA since it offers easy to use functions for performing
basic analyses. Other popular tools such as edgeR [21] and limma [25] offer similar functionality, as well as
more specialized packages for EDA such as EDASeq.

DESeq2 offers sophisticated normalization and transformation of count data in the form of the variance sta-
bilized transformation: this adds a dynamic pseudo-count to normalized expression values before log trans-
forming to dampen the inherent mean-variance relationship of count data. This is particularly useful for CAGE
data, as CAGE can detect even very lowly expressed TSSs and enhancers.

First, we fit a “blind” version of the variance-stabilizing transformation, since we do not yet know what design
is appropriate for this particular study:

Create DESeq2 object with blank design
dds_blind <- DESeqDataSet(RSE, design = ~ 1)

Normalize and log transform
vst_blind <- vst(dds_blind, blind = TRUE)

A very useful first representation is a Principal Components Analysis (PCA) plot summarizing variance across
the entire experiment:

plotPCA(vst_blind, "Class")

We observe that PC2 separates the samples according to the experimental group (control vs nano). However,
PC1 also separates samples into two groups. This is suggestive of an unwanted yet systematic effect on ex-
pression, often referred as a batch effect. We do not want to mistake this unwanted variation for biological
variation when we test for differential expression. To prevent this, we can include the batch information as a
factor in the final model. Let first define the batch variable:

Extract pca results
pca_res <- plotPCA(vst_blind, "Class", returnData=TRUE)

Define a new variable using PC1
batch_var <- ifelse(pca_res$PC1 > 0, "A", "B")

Attach the batch variable as a factor to the experiment
RSE$Batch <- factor(batch_var)

Show the new design
RSE %>%

colData() %>%

Page 24 of 42

https://bioconductor.org/packages/3.9/DESeq2
https://bioconductor.org/packages/3.9/edgeR
https://bioconductor.org/packages/3.9/limma
https://bioconductor.org/packages/3.9/EDASeq

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Table 4. Design matrix after adding new batch covariate.

Class Batch
C547 Ctrl B
C548 Ctrl B
C549 Ctrl B
C559 Ctrl A
C560 Ctrl A
N13 Nano B
N14 Nano A
N15 Nano B
N16 Nano A
N17 Nano A
N18 Nano A

subset(select=c(Class, Batch)) %>%
kable(caption = "Design matrix after adding new batch covariate.")

An alternative to manually defining the batch variable, tools such as sva and RUVSeq can be used to estimate
unknown batch effects from the data.

Cluster-level differential expression

Following our short EDA above, we are ready to specify the final design for the experiment: We want to take
into account both the Class and Batch of samples:

Specify design
dds <- DESeqDataSet(RSE, design = ~ Batch + Class)

Fit DESeq2 model
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

We can now extract estimated effects (log fold changes) and statistical significance (p-values) for the Nano-
vs-Ctrl comparison, implicitly correcting for the batch effect:

Extract results
res <- results(dds,

contrast=c("Class", "Nano", "Ctrl"),
alpha=0.05,
independentFiltering=TRUE,
tidy = TRUE) %>%

bind_cols(as.data.frame(rowData(RSE))) %>%
as_tibble

Show the top hits
res %>%

top_n(-10, padj) %>%
dplyr::select(cluster=row,

Page 25 of 42

https://bioconductor.org/packages/3.9/sva
https://bioconductor.org/packages/3.9/RUVSeq

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Table 5. Top differentially expressed TSS and enhancer candidates

cluster clusterType txType baseMean log2FoldChange padj
chr1:73977049-73977548;- TSS intron 1183.3740 2.838367 0
chr2:32243097-32243468;- TSS promoter 30799.5953 3.741789 0
chr3:144423689-144423778;- TSS promoter 191.0431 3.709530 0
chr4:125840648-125840820;- TSS proximal 1063.4328 3.867574 0
chr4:137325466-137325712;- TSS intron 176.7636 3.912592 0
chr7:53971039-53971170;- TSS promoter 8720.5204 6.696838 0
chr9:120212846-120213294;+ TSS promoter 316.0582 2.404706 0
chr11:83222553-83222887;+ TSS proximal 228.5560 6.098838 0
chr12:105649334-105649472;+ TSS CDS 175.1364 3.345411 0
chr19:56668148-56668332;+ TSS CDS 103.8795 -2.254371 0

clusterType,
txType,
baseMean,
log2FoldChange,
padj) %>%

kable(caption = "Top differentially expressed TSS and enhancer candidates")

It always a good idea to inspect a few diagnostics plot to make sure the DESeq2 analysis was successful. One
such example is an MA-plot (another useful plot is p-value histogram):

ggplot(res, aes(x=log2(baseMean), y=log2FoldChange, color=padj < 0.05)) +
geom_point(alpha=0.25) +
geom_hline(yintercept = 0, linetype="dashed", alpha=0.75) +
facet_grid(clusterType~.)

We can see that we overall find more differentially expressed TSSs compared to enhancers, which is expected
since they are also more highly expressed. Many enhancers are filtered away for the final DESeq2 analysis
(The “Independent Filtering” Step), as their expression level is too low to detect any DE: This increases power
for detecting DE at higher expression levels.

We can tabulate the total number of DE TSSs and enhancers:

table(clusterType=rowRanges(RSE)$clusterType, DE=res$padj<0.05)

DE
clusterType FALSE TRUE
TSS 22071 6385
Enhancer 3034 199

Correcting expression estimates for batch effects

In addition to looking at estimates and significance for each cluster, we might also want to look at individual
expression values for some top hits. However, we then need to also correct the expression estimates themselves
for batch effects, just like we did for log fold changes and p-values (using the same model of course).

Here we use ComBat[33] from the sva package which is suitable for removing simple batch effects from small
experiments. For more advanced setups, removeBatchEffect from limma can remove arbitrarily complex
batch effects. The RUVSeq package and fsva from sva can be used to remove unknown batch effects.

We again use the variance-stabilizing transformation to prepare the data for ComBat (this makes count data
resemble expression estimates obtained from microarrays, as ComBat was originally developed for microar-
rays).

Guided variance stabilizing transformation
vst_guided <- varianceStabilizingTransformation(dds, blind=FALSE)

To run ComBat we need two additional pieces of information: i) A design matrix describing the biological or
wanted effects and ii) the known but unwanted batch effect. We first specify the design matrix, and then run
ComBat:

Page 26 of 42

https://bioconductor.org/packages/3.9/sva
https://bioconductor.org/packages/3.9/RUVSeq

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

T
S

S
E

nhancer

0 5 10 15 20

−5

0

5

10

−5

0

5

10

log2(baseMean)

lo
g2

F
ol

dC
ha

ng
e

padj < 0.05

FALSE

TRUE

NA

Figure 10. Diagnostic MA plot of the differential expression analysis

Page 27 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

−10

0

10

20

−20 −10 0 10 20

PC1: 57% variance

P
C

2:
 2

0%
 v

ar
ia

nc
e

group

Ctrl

Nano

Figure 11. PCA-plot of batch corrected expression.

Design matrix of wanted effects
bio_effects <- model.matrix(~Class, data=colData(RSE))

Run ComBat =
assay(RSE, "ComBat") <- ComBat(dat=assay(vst_guided),

batch=RSE$Batch, # Unwanted batch
mod=bio_effects)

Found2batches

Adjusting for1covariate(s) or covariate level(s)

Standardizing Data across genes

Fitting L/S model and finding priors

Finding parametric adjustments

Adjusting the Data

Let us redo the PCA-plot, to see the global effect of the batch effect correction:

Overwrite assay
assay(vst_guided) <- assay(RSE, "ComBat")

Plot as before
plotPCA(vst_guided, "Class")

Now Nano and Ctrl are separated along the first principal component (compared to the second principle
component before correction).

Then we extract the top 10 DE enhancers using the following tidyverse code:

Find top 10 DE enhancers
top10 <- res %>%

filter(clusterType == "Enhancer", padj < 0.05) %>%
group_by(log2FoldChange >= 0) %>%
top_n(5, wt=abs(log2FoldChange)) %>%
pull(row)

Extract expression values in tidy format
tidyEnhancers <- assay(RSE, "ComBat")[top10,] %>%

t %>%
as.data.frame %>%
rownames_to_column("Sample") %>%

Page 28 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

chr14:15897731−15898157 chr16:38389925−38390458

chr10:127033653−127034066 chr11:98635108−98635536

chr5:136934341−136934783 chr8:110029690−110030156

chr3:107655664−107656187 chr5:5588594−5589016

chr1:74213750−74214180 chr2:121375271−121375789

Ctrl Nano Ctrl Nano

4.50
4.75
5.00
5.25

4.50
4.75
5.00
5.25

4.8
5.2
5.6
6.0
6.4

4.8
5.0
5.2
5.4

4.8
5.2
5.6

4.6
4.8
5.0
5.2

4.5
4.8
5.1
5.4
5.7

4.5
4.8
5.1
5.4

4.5
4.8
5.1
5.4
5.7

4.5
4.8
5.1
5.4

Class

E
xp

re
ss

io
n Class

Ctrl

Nano

Figure 12. Expression profile of top 10 differentially expressed enhancer candidates.

mutate(Class=RSE$Class) %>%
gather(key="Enhancer",

value="Expression",
-Sample, -Class,
factor_key=TRUE)

Finally, we can plot the batch-corrected expression profiles of each individual enhancer:

ggplot(tidyEnhancers, aes(x=Class, y=Expression, fill=Class)) +
geom_dotplot(stackdir="center", binaxis="y", dotsize=3) +
facet_wrap(~Enhancer, ncol=2, scales="free_y")

`stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

Enrichment of DNA-binding motifs

A typical question following identification of differentially expressed TSSs and enhancers, is what TFs might
be involved in their regulation. To shed light on this question we can annotate TSSs and enhancers with
DNA-binding motifs from the JASPAR database[27].

First we extract the sequences around TSSs and enhancers. Here we simply define it as +/- 500 bp around
TSS peak or enhancer midpoint:

cluster_seqs <- RSE %>%
rowRanges %>%
swapRanges() %>%
unstrand() %>%

Page 29 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

add(500) %>%
getSeq(bsg, .)

Secondly, we use the TFBSTools[34] package to obtain motifs as Position Frequency Matrices (PFMs) from the
JASPAR2016 database:

Extract motifs as Position
motif_pfms <- getMatrixSet(JASPAR2016, opts = list(species="10090"))

Look at the IDs and names of the first few motifs:
head(name(motif_pfms))

MA0004.1 MA0006.1 MA0029.1 MA0063.1 MA0067.1 MA0078.1
"Arnt" "Ahr::Arnt" "Mecom" "Nkx2-5" "Pax2" "Sox17"

Thirdly, we use the motifmatchr package [35] to find hits in the sequences:

Find matches
motif_hits <- matchMotifs(motif_pfms, subject=cluster_seqs)

Matches are returned as a sparse matrix:
motifMatches(motif_hits)[1:5, 1:5]

5 x 5 sparse Matrix of class "lgCMatrix"
MA0004.1 MA0006.1 MA0029.1 MA0063.1 MA0067.1
[1,] |
[2,]
[3,] | . | . .
[4,]
[5,] . | . | .

Finally we can do a simple Fisher’s Exact test to see if a motif co-occurs more with DE TSSs and enhancer than
we would expect be chance. Here we will look at the FOS::JUN motif (MA0099.2):

2x2 table for fishers
table(FOSJUN = motifMatches(motif_hits)[,"MA0099.2"],

DE = res$padj < 0.05) %>%
print() %>%
fisher.test()

DE
FOSJUN FALSE TRUE
FALSE 22144 5596
TRUE 2961 988

##
Fisher's Exact Test for Count Data
##
data: .
p-value = 5.839e-12
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.220330 1.427821
sample estimates:
odds ratio
1.320361

A significant odds ratio above 1 indicate that FOS::JUN is a candidate transcription factor (or, more technically
correct, a candidate transcription factor dimer) in regulation of the nanotube response. This is not surprising
given that FOS::JUN is part of the TNF-alpha inflammatory pathway (see more below).

Of course, this is a just a very quick and simple analysis of motif enrichment. One could easily have used dif-
ferent regions around TSSs and enhancers and/or split the enrichment analysis between TSSs and enhancers.
Other Bioconductor packages like PWMEnrich, rGADEM and motifcounter implements more advanced statisti-
cal methods for calculating enrichment of known motifs. rGADEM, BCRANK and motifRG can also be used to
calculate enrichment of novel motifs, sometimes referred to as motif discovery.

Page 30 of 42

https://bioconductor.org/packages/3.9/TFBSTools
https://bioconductor.org/packages/3.9/JASPAR2016
https://bioconductor.org/packages/3.9/motifmatchr
https://bioconductor.org/packages/3.9/PWMEnrich
https://bioconductor.org/packages/3.9/rGADEM
https://bioconductor.org/packages/3.9/motifcounter
https://bioconductor.org/packages/3.9/rGADEM
https://bioconductor.org/packages/3.9/BCRANK
https://bioconductor.org/packages/3.9/motifRG

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Gene-level differential expression

While CAGE data is naturally analyzed at the level of clusters (TSSs and enhancers) it is in many cases interest-
ing to also look at gene-level expression estimates. A prime example of this is looking at enrichment of Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms [Hancock2014; Gene2019;
28] which are only defined at gene-level. CAGEfightR includes functions for annotating clusters with gene
models and summarizing expression to gene-level.

We can annotate clusters with gene IDs in the same manner as Transcript IDs:

RSE <- assignGeneID(RSE, geneModels=txdb)

Extracting genes...

Overlapping while taking distance to nearest TSS into account...

Finding hierachical overlaps...

Overlap Summary:

Features overlapping genes: 81.34 %

Number of unique genes: 13761

And then use CAGEfightR to sum counts of TSSs within genes:

GSE <- RSE %>%
subset(clusterType == "TSS") %>%
quantifyGenes(genes="geneID", inputAssay="counts")

The result is RangedSummarizedExperiment where the ranges are a GRangesList holding the TSSs that
were summed within each gene:

rowRanges(GSE["100038347",])

GRangesList object of length 1:
$100038347
GRanges object with 2 ranges and 9 metadata columns:
seqnames ranges strand |
<Rle> <IRanges> <Rle> |
chr7:80884953-80885056;+ chr7 80884953-80885056 + |
chr7:80885120-80885677;+ chr7 80885120-80885677 + |
score thick support txID
<numeric> <IRanges> <integer> <character>
chr7:80884953-80885056;+ 11.058474477 80885000 5 uc009hrf.2
chr7:80885120-80885677;+ 1162.344739622 80885256 11 uc009hrf.2
txType balance bidirectionality clusterType
<factor> <numeric> <numeric> <factor>
chr7:80884953-80885056;+ proximal <NA> <NA> TSS
chr7:80885120-80885677;+ promoter <NA> <NA> TSS
geneID
<character>
chr7:80884953-80885056;+ 100038347
chr7:80885120-80885677;+ 100038347
##

seqinfo: 35 sequences (1 circular) from mm9 genome

The gene IDs in this case is Entrez ID (which is widely used by Bioconductor packages). We can translate these
systematic IDs into more human-readable symbols using the org.Mm.eg.db annotation package:

Page 31 of 42

https://bioconductor.org/packages/3.9/org.Mm.eg.db

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Table 6. Global summary of differentially expressed genes.

(Intercept) BatchB ClassNano
Down 51 2572 1505
NotSig 463 8278 10373
Up 13053 2717 1689

Translate symbols
rowData(GSE)$symbol <- mapIds(odb,

keys=rownames(GSE),
column="SYMBOL",
keytype="ENTREZID")

'select()' returned 1:1 mapping between keys and columns

Having obtained a gene-level count matrix we can now perform gene-level DE analysis. Here we use limma-
voom, since limma makes it easy to perform a subsequent enrichment analysis. Other tools such as DESeq2
(above) or edgeR (see below) could also have been used.

Note: limma is a powerful tool for DE analysis of count-based data. However, since it depends on log trans-
forming counts, it is not always suitable for analyzing datasets where features have very low counts. This is
usually not a problem for gene-level analysis, but can be a problem for enhancers, which are generally very
lowly expressed.

Similarly to the DESeq2 analysis, we first build the necessary object and then normalize the expression values:

Create DGElist object
dge <- DGEList(counts=assay(GSE, "counts"),

genes=as.data.frame(rowData(GSE)))

Calculate normalization factors
dge <- calcNormFactors(dge)

Then we apply the voom-transformation to model the mean-variance trend, for which we also need to specify
the design matrix (in this case the design must contain both wanted and unwanted effects!). The same design
matrix is then used for fitting the gene-wise models:

Design matrix
mod <- model.matrix(~ Batch + Class, data = colData(GSE))

Model mean-variance using voom
v <- voom(dge, design=mod)

Fit and shrink DE model
fit <- lmFit(v, design=mod)
eb <- eBayes(fit, robust=TRUE)

Summarize the results
dt <- decideTests(eb)

We can the both report the overall summary of differential gene expression, and look at the first few top hits:

Global summary
dt %>%

summary %>%
kable(caption="Global summary of differentially expressed genes.")

Inspect top htis
topTable(eb, coef="ClassNano") %>%

dplyr::select(symbol, nClusters, AveExpr, logFC, adj.P.Val) %>%
kable(caption="Top differentially expressed genes.")

Page 32 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Table 7. Top differentially expressed genes.

symbol nClusters AveExpr logFC adj.P.Val
66938 Sh3d21 3 5.871004 3.075745 0.0e+00
245049 Myrip 2 4.371325 2.414055 7.0e-07
12722 Clca3a1 1 3.020528 3.692198 7.0e-07
382864 Colq 3 2.770158 -3.426911 1.1e-06
20716 Serpina3n 5 6.384175 1.872782 3.0e-06
72275 2200002D01Rik 2 7.208031 1.693257 5.5e-06
381813 Prmt8 4 4.553612 1.409006 5.8e-06
170706 Tmem37 2 5.503908 1.679690 5.8e-06
18654 Pgf 1 4.862055 2.337045 5.8e-06
20361 Sema7a 1 7.612236 1.473680 5.9e-06

Table 8. Top enriched or depleted GO-terms.

Term Ont N Up Down P.Up P.Down
GO:0006954 inflammatory response BP 556 142 51 0 0.9562685
GO:0006952 defense response BP 1072 224 99 0 0.9878373
GO:0097529 myeloid leukocyte migration BP 170 61 14 0 0.9359984
GO:0010033 response to organic substance BP 2074 370 196 0 0.9987104
GO:0006950 response to stress BP 2755 464 246 0 0.9999946
GO:0006955 immune response BP 1034 210 96 0 0.9833226
GO:0042221 response to chemical BP 2762 467 292 0 0.9178712
GO:0050900 leukocyte migration BP 288 83 23 0 0.9792828
GO:0001816 cytokine production BP 634 143 45 0 0.9998658
GO:0001817 regulation of cytokine production BP 570 132 39 0 0.9998856

Enrichment of GO- and KEGG-terms

In addition to looking at individual top genes, we can look at how the differentially expressed genes relate
to known databases of gene function to gain insight in what biological processes might be affected in the
experiment.

limma makes it easy to perform such an enrichment analysis following a DE analysis. As we have gene
indexed by Entrez IDs, we can directly use goana to find enriched GO-terms: goana uses a biased urn-model
to estimate enrichment of GO-terms, while taking into account the expression levels of DE genes:

Find enriched GO-terms
GO <- goana(eb, coef = "ClassNano", species = "Mm", trend = TRUE)

Show top hits
topGO(GO, ontology = "BP", number = 10) %>%

kable(caption="Top enriched or depleted GO-terms.")

And similarly for KEGG terms:

Find enriched KEGG-terms
KEGG <- kegga(eb, coef="ClassNano", species = "Mm", trend = TRUE)

Show top hits
topKEGG(KEGG, number = 10) %>%

knitr::kable(caption="Top enriched of depleted KEGG-terms.")

Both analyses indicate that genes related to the inflammatory response and defense response are upregu-
lated following nanotube exposure. This supports the hypothesis that nanotube induces a response similar to
asbestos.

KEGG-terms represents well defined pathways. We can use the pathview package[36] to investigate in more
detail the genes in a given enriched pathway. For example, we can look at regulation of gene in the TNF-
signalling pathway:

Visualize a KEGG
DE_genes <- Filter(function(x) x != 0, dt[, "ClassNano"])

Page 33 of 42

https://bioconductor.org/packages/3.9/pathview

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Table 9. Top enriched of depleted KEGG-terms.

Pathway N Up Down P.Up P.Down
path:mmu04060 Cytokine-cytokine receptor interaction 173 56 13 0.0000000 0.9579351
path:mmu04668 TNF signaling pathway 105 31 8 0.0000037 0.9186628
path:mmu00600 Sphingolipid metabolism 41 17 2 0.0000051 0.9583011
path:mmu00980 Metabolism of xenobiotics by cytochrome P450 48 4 17 0.8857194 0.0000137
path:mmu03010 Ribosome 122 32 2 0.0000226 0.9999900
path:mmu04064 NF-kappa B signaling pathway 85 24 5 0.0000704 0.9655534
path:mmu04512 ECM-receptor interaction 66 21 11 0.0000778 0.1524408
path:mmu04657 IL-17 signaling pathway 74 22 2 0.0000806 0.9985563
path:mmu00982 Drug metabolism - cytochrome P450 46 5 15 0.7266916 0.0001238
path:mmu04630 JAK-STAT signaling pathway 112 29 7 0.0001453 0.9785951

Figure 13. Detailed view of differentially expressed gene in the KEGG TNF-signalling pathway.

This will save a png file to a temporary directory
pathview(DE_genes, species="mmu", pathway.id="mmu04668", kegg.dir = tempdir())

Show the png file
grid.newpage()
grid.raster(png::readPNG("mmu04668.pathview.png"))

Differential TSS Usage

In the above two analyses we looked at whether an individual TSSs or an individual gene was changing
expression between experimental groups. However, we might also want to look at whether a gene show
differential TSS usage: whether a gene uses different TSSs under different conditions. This problem is similar
to differential splicing in RNA-Seq, but looking at TSSs rather than isoforms[26]. Here we will use the edgeR
diffSpliceDGE method to find differential TSS usage, although many other packages could have been used,
for example diffSplice from limma, DEXSeq, DRIMSeq, etc..

Intuitively, diffSpliceDGE tests whether a given TSSs show the same change as other TSSs in the same gene,
indicating that TSSs are differentially regulated across the gene. This does however not take into account the

Page 34 of 42

https://bioconductor.org/packages/3.9/DEXSeq
https://bioconductor.org/packages/3.9/DRIMSeq

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

0

3000

6000

9000

1 2 3 4 5

Number of TSSs per gene

F
re

qu
en

cy Multi−TSS

FALSE

TRUE

Figure 14. Overview of alternative TSS usage within genes.

relative composition of a given TSSs, e.g. whether a TSS increases from 1%-2% of gene output or 25%-50%.
A useful preprocessing step is therefore to filter out TSSs making only a small contribution to total gene
expression before analyses.

We use CAGEfightR to remove TSSs that are not expressed as more than 10% of total gene expression in
more than 5 samples (We first remove TSSs not assigned to genes):

Filter away lowly expressed
RSE_filtered <- RSE %>%

subset(clusterType == "TSS" & !is.na(geneID)) %>%
subsetByComposition(inputAssay="counts",

genes="geneID",
unexpressed=0.1,
minSamples=5)

Calculating composition...

Subsetting...

Removed 8001 out of 24500 regions (32.7%)

We can only do differential TSS usage analysis of genes with multiple TSSs. A useful first visualization is
therefore to see how many genes use more than one TSS:

RSE_filtered %>%
rowData %>%
as.data.frame %>%
as_tibble %>%
dplyr::count(geneID) %>%
ggplot(aes(x = n, fill = n >= 2)) +
geom_bar(alpha=0.75) +
scale_fill_colorblind("Multi-TSS") +
labs(x = "Number of TSSs per gene", y = "Frequency")

While most genes utilize only a single TSSs, many genes use two or more TSSs.

Again, we build the necessary R-objects for running edgeR:

Annotate with symbols like before:
rowData(RSE_filtered)$symbol <- mapIds(odb,

keys=rowData(RSE_filtered)$geneID,
column="SYMBOL",
keytype="ENTREZID")

'select()' returned 1:1 mapping between keys and columns

Page 35 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Table 10. Top differentially used TSSs

txType geneID symbol logFC FDR
chr17:13840650-13840851;- intron 21646 Tcte2 1.7889344 0e+00
chr10:57857044-57857314;+ promoter 110829 Lims1 -1.0651946 0e+00
chr14:70215678-70215876;- intron 246710 Rhobtb2 2.4933979 0e+00
chr4:141154044-141154185;- intron 74202 Fblim1 1.7018062 0e+00
chr17:33966135-33966308;+ intron 66416 Ndufa7 2.1612127 0e+00
chr15:76428030-76428201;- intron 94230 Cpsf1 1.4598815 0e+00
chr19:57271818-57272125;- promoter 226251 Ablim1 1.1456163 0e+00
chr9:77788968-77789200;+ intron 68801 Elovl5 0.9810692 1e-07
chr11:116395161-116395462;+ proximal 20698 Sphk1 1.7471930 1e-07
chr2:91496305-91496449;+ intron 228359 Arhgap1 0.9809491 3e-07

Extract gene info
TSS_info <- RSE_filtered %>%

rowData %>%
subset(select=c(score, txType, geneID, symbol)) %>%
as.data.frame

Build DGEList
dge <- DGEList(counts=assay(RSE_filtered, "counts"),

genes=TSS_info)

Then we normalize and fit models using the Quasi-likelihood approach, including the diffSpliceDGE step:

Estimate normalization factors
dge <- calcNormFactors(dge)

Estimate dispersion and fit GLMs
disp <- estimateDisp(dge, design = mod, tagwise = FALSE)
QLfit <- glmQLFit(disp, design=mod, robust = TRUE)

Apply diffSpliceDGE
ds <- diffSpliceDGE(QLfit, coef = "ClassNano", geneid = "geneID")

Total number of exons: 16499
Total number of genes: 13563
Number of genes with 1 exon: 11098
Mean number of exons in a gene: 1
Max number of exons in a gene: 5

Now we can look at differential TSS usage at two-levels: Whether an individual TSS shows differential TSS
usage (TSS-level) or whether a gene show differential TSS usage in any way (gene-level). First we can look
at individual TSSs (TSS-level differential TSS usage):

dtu_TSSs <- topSpliceDGE(ds, test = "exon")
dplyr::select(dtu_TSSs, txType, geneID, symbol, logFC, FDR) %>%

kable(caption = "Top differentially used TSSs")

The interpretation of log fold changes here is slightly different from before: These log fold changes are relative
to the overall log fold change for all TSSs in that gene.

Then we can look at results for each gene (Gene-level differential TSS usage):

dtu_genes <- topSpliceDGE(ds, test = "Simes")
dplyr::select(dtu_genes, geneID, symbol, NExons, FDR) %>%

kable(row.names = FALSE,
caption = "Top genes showing any differential TSS usage.")

We see that the two lists agree, which is not surprising given that the gene-level results are obtained by
aggregating TSS-level p-values across genes.

Page 36 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Table 11. Top genes showing any differential TSS usage.

geneID symbol NExons FDR
21646 Tcte2 4 0e+00
110829 Lims1 3 0e+00
246710 Rhobtb2 3 0e+00
74202 Fblim1 3 0e+00
66416 Ndufa7 3 0e+00
94230 Cpsf1 2 0e+00
226251 Ablim1 3 0e+00
68801 Elovl5 2 1e-07
20698 Sphk1 3 1e-07
228359 Arhgap1 2 2e-07

Fblim1

chr4:141154044−
141154185;−

chr4:141155731−
141155996;−

chr4:141161872−
141162070;−

C547
C549
C559
C548
C560
N13
N16
N14
N15
N17
N18

6

6.5

7

7.5

8

8.5

Figure 15. Heatmap showing expression of TSSs within Fblim1

We can look at closer at the TSS usage in on of the top hits: We can visualize the batch-corrected expression
(See above) of each TSS in the Fblim1 gene via a heatmap:

RSE_filtered %>%
subset(geneID == "74202") %>%
assay("ComBat") %>%
t %>%
pheatmap(color = magma(100),

cluster_cols = FALSE,
main="Fblim1")

Fblim1 has 3 TSSs, with 2 of them being used in the Ctrl samples, while the Nano samples also uses the
chr4:141154044-141154185;- TSS, as also seen in the TSS-level table above. While a heatmap is useful for
seeing expression changes, a genome browser view is better to inspect the genomic context of each TSSs:

Define plot area
plot_region <- subset(RSE_filtered, geneID == "74202") %>%

rowRanges %>%
reduce(min.gapwidth=1e6) %>%
unstrand() %>%
add(5e3L)

Page 37 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Create cluster track
cluster_track <- subsetByOverlaps(RSE_filtered, plot_region) %>%

trackClusters(name = "Clusters", col = NA, showId=TRUE)

Setting thick and thin features...

Merging and sorting...

Preparing track...

CTSS tracks for each group
ctrl_track <- subset(CTSSs, select=Class == "Ctrl") %>%

calcPooled() %>%
subsetByOverlaps(plot_region) %>%
trackCTSS(name="Ctrl")

Warning in calcPooled(.): object already has a column named score in
rowData: It will be overwritten!

Splitting pooled signal by strand...
Preparing track...

nano_track <- subset(CTSSs, select=Class == "Nano") %>%
calcPooled() %>%
subsetByOverlaps(plot_region) %>%
trackCTSS(name="Nano")

Warning in calcPooled(.): object already has a column named score in
rowData: It will be overwritten!

Splitting pooled signal by strand...
Preparing track...

Plot at tracks together
plotTracks(list(axis_track,

tx_track,
cluster_track,
Ctrl=ctrl_track,
nano_track),

from = start(plot_region),
to=end(plot_region),
chromosome = seqnames(plot_region))

The Fblim1 gene uses two annotated TSSs, but the Nano samples also uses a novel intronic TSS.

Discussion

This workflow is intended as providing an outline of the basic building blocks of CAGE data analysis, going
from clustering, to spatial analyses to differential expression. More advanced analyses can be strung together
from these basic elements: Finding enhancers linked to DE TSSs, enhancer stretches composed of DE enhancer,
comparing DNA binding motif enrichments between DE enhancers and TSSs, etc.

One aspect not covered in this workflow is the utility of CAGE data (and 5’-end data in general) in providing
accurate TSSs for studying other types of data. For example, having accurate TSSs is highly beneficial in chro-
matin research, since the location and nucleosome and TSSs are closely related [13, 37, 38]. CAGE can be
combined with chromatin confirmation assays such as HiC to find new enhancers that are both co-expressed
and physically interacting with TSSs. Many genome-wide association studies are finding that disease-related
genetic variants are found in intergenic regions, that are often poorly annotated. The accurate enhancer loca-
tions provided by CAGE can greatly aid interpretation of such variants [39]. The adherence of CAGEfightR
to standard Bioconductor classes facilitates these inter-assay analyses by making it easy to mix-and-match
multiple packages developed for different experimental assays.

Page 38 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

141.15 mb

141.155 mb

141.16 mb

141.165 mb

G
en

e
M

od
el

s
C

lu
st

er
s chr4:141154044−141154185;−

chr4:141155731−141155996;−

chr4:141161872−141162070;−

−20

−15

−10

−5

0

C
tr

l

minus plus

−60

−40

−20

0

N
an

o

minus plus

Figure 16. Genome-browser example of differential TSS usage within Fblim1

Page 39 of 42

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Author information

MS and AS conceived the project and wrote the paper.

Competing interests

The authors develop and maintain the CAGEfightR Bioconductor package.

Grant information

Work in the Sandelin Lab was supported by the Novo Nordisk Foundation, Lundbeck foundation, Danish
Innovation Fund, Danish Cancer Society and Independent Research Fund Denmark.

Acknowledgments

We acknowledge all members of the Sandelin Lab and Andersson Lab for advice, discussion and input on all
aspects related to CAGE data analysis.

References

[1] Stephen T. Smale and James T. Kadonaga. The RNA Polymerase II Core Promoter. Annual Review of Biochemistry, 72
(1):449–479, 2003. ISSN 0066-4154. doi: 10.1146/annurev.biochem.72.121801.161520.

[2] James T. Kadonaga. Perspectives on the RNA polymerase II core promoter. Wiley interdisciplinary reviews. Developmen-
tal biology, 1(1):40–51, 2012. ISSN 1759-7692. doi: 10.1002/wdev.21. URL http://www.ncbi.nlm.nih.gov/
pubmed/23801666http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3695423.

[3] Boris Lenhard, Albin Sandelin, and Piero Carninci. Metazoan promoters: emerging characteristics and insights into
transcriptional regulation. Nature reviews. Genetics, 13(4):233–45, apr 2012. ISSN 1471-0064. doi: 10.1038/nrg3163.
URL http://www.ncbi.nlm.nih.gov/pubmed/22392219.

[4] Vanja Haberle and Alexander Stark. Eukaryotic core promoters and the functional basis of transcription initiation.
Nature Reviews Molecular Cell Biology, 19(10):621–637, 2018. ISSN 14710080. doi: 10.1038/s41580-018-0028-8.
URL http://dx.doi.org/10.1038/s41580-018-0028-8.

[5] Xian Adiconis, Adam L. Haber, Sean K. Simmons, Ami Levy Moonshine, Zhe Ji, Michele A. Busby, Xi Shi,
Justin Jacques, Madeline A. Lancaster, Jen Q. Pan, Aviv Regev, and Joshua Z. Levin. Comprehensive com-
parative analysis of 5’-end RNA-sequencing methods. Nature methods, 15(7):505–511, jul 2018. ISSN 1548-
7105. doi: 10.1038/s41592-018-0014-2. URL http://dx.doi.org/10.1038/s41592-018-0014-2http:
//www.ncbi.nlm.nih.gov/pubmed/29867192http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=PMC6075671.

[6] Hazuki Takahashi, Sachi Kato, Mitsuyoshi Murata, and Piero Carninci. CAGE (cap analysis of gene expression): a pro-
tocol for the detection of promoter and transcriptional networks. Methods in molecular biology (Clifton, N.J.), 786(3 C):
181–200, 2012. ISSN 1940-6029. doi: 10.1007/978-1-61779-292-2_11. URL http://www.ncbi.nlm.nih.gov/
pubmed/21938627http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4094367.

[7] Piero Carninci, Albin Sandelin, Boris Lenhard, Shintaro Katayama, Kazuro Shimokawa, Jasmina Ponjavic, Colin A M
Semple, Martin S Taylor, Pär G Engström, Martin C Frith, Alistair R R Forrest, Wynand B Alkema, Sin Lam Tan,
Charles Plessy, Rimantas Kodzius, Timothy Ravasi, Takeya Kasukawa, Shiro Fukuda, Mutsumi Kanamori-Katayama,
Yayoi Kitazume, Hideya Kawaji, Chikatoshi Kai, Mari Nakamura, Hideaki Konno, Kenji Nakano, Salim Mottagui-
Tabar, Peter Arner, Alessandra Chesi, Stefano Gustincich, Francesca Persichetti, Harukazu Suzuki, Sean M Grimmond,
Christine A Wells, Valerio Orlando, Claes Wahlestedt, Edison T Liu, Matthias Harbers, Jun Kawai, Vladimir B Bajic,
David A Hume, and Yoshihide Hayashizaki. Genome-wide analysis of mammalian promoter architecture and evolution.
Nature genetics, 38(6):626–35, jun 2006. ISSN 1061-4036. doi: 10.1038/ng1789. URL http://www.ncbi.nlm.
nih.gov/pubmed/16645617.

[8] Albin Sandelin, Piero Carninci, Boris Lenhard, Jasmina Ponjavic, Yoshihide Hayashizaki, and David A. Hume. Mam-
malian RNA polymerase II core promoters: Insights from genome-wide studies. Nature Reviews Genetics, 8(6):424–
436, 2007. ISSN 14710056. doi: 10.1038/nrg2026.

[9] Hideya Kawaji, Marina Lizio, Masayoshi Itoh, Mutsumi Kanamori-Katayama, Ai Kaiho, Hiromi Nishiyori-Sueki, Jay W.
Shin, Miki Kojima-Ishiyama, Mitsuoki Kawano, Mitsuyoshi Murata, Noriko Ninomiya-Fukuda, Sachi Ishikawa-Kato,
Sayaka Nagao-Sato, Shohei Noma, Yoshihide Hayashizaki, Alistair R R Forrest, and Piero Carninci. Comparison of
CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing.
Genome Research, 24:708–717, 2014. ISSN 15495469. doi: 10.1101/gr.156232.113.

[10] The Fantom Consortium, Riken Pmi, and Clst Dgt. A promoter-level mammalian expression atlas. Nature, 507
(7493):462–70, mar 2014. ISSN 1476-4687. doi: 10.1038/nature13182. URL http://www.ncbi.nlm.nih.
gov/pubmed/24670764.

Page 40 of 42

http://www.ncbi.nlm.nih.gov/pubmed/23801666 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3695423
http://www.ncbi.nlm.nih.gov/pubmed/23801666 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3695423
http://www.ncbi.nlm.nih.gov/pubmed/22392219
http://dx.doi.org/10.1038/s41580-018-0028-8
http://dx.doi.org/10.1038/s41592-018-0014-2 http://www.ncbi.nlm.nih.gov/pubmed/29867192 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6075671
http://dx.doi.org/10.1038/s41592-018-0014-2 http://www.ncbi.nlm.nih.gov/pubmed/29867192 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6075671
http://dx.doi.org/10.1038/s41592-018-0014-2 http://www.ncbi.nlm.nih.gov/pubmed/29867192 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6075671
http://www.ncbi.nlm.nih.gov/pubmed/21938627 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4094367
http://www.ncbi.nlm.nih.gov/pubmed/21938627 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4094367
http://www.ncbi.nlm.nih.gov/pubmed/16645617
http://www.ncbi.nlm.nih.gov/pubmed/16645617
http://www.ncbi.nlm.nih.gov/pubmed/24670764
http://www.ncbi.nlm.nih.gov/pubmed/24670764

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

[11] Chung-Chau Hon, Jordan A. Ramilowski, Jayson Harshbarger, Nicolas Bertin, Owen J L Rackham, Julian Gough,
Elena Denisenko, Sebastian Schmeier, Thomas M. Poulsen, Jessica Severin, Marina Lizio, Hideya Kawaji, Takeya
Kasukawa, Masayoshi Itoh, A. Maxwell Burroughs, Shohei Noma, Sarah Djebali, Tanvir Alam, Yulia A. Medvedeva,
Alison C. Testa, Leonard Lipovich, Chi-Wai Yip, Imad Abugessaisa, Mickaël Mendez, Akira Hasegawa, Dave Tang,
Timo Lassmann, Peter Heutink, Magda Babina, Christine A. Wells, Soichi Kojima, Yukio Nakamura, Harukazu Suzuki,
Carsten O. Daub, Michiel J L de Hoon, Erik Arner, Yoshihide Hayashizaki, Piero Carninci, and Alistair R R Forrest. An
atlas of human long non-coding RNAs with accurate 5’ ends. Nature, 543(7644):199–204, 2017. ISSN 1476-4687.
doi: 10.1038/nature21374. URL http://dx.doi.org/10.1038/nature21374http://www.ncbi.nlm.nih.
gov/pubmed/28241135.

[12] Tae-Kyung Kim, Martin Hemberg, Jesse M. Gray, Allen M. Costa, Daniel M. Bear, Jing Wu, David A.
Harmin, Mike Laptewicz, Kellie Barbara-Haley, Scott Kuersten, Eirene Markenscoff-Papadimitriou, Dietmar Kuhl,
Haruhiko Bito, Paul F. Worley, Gabriel Kreiman, and Michael E. Greenberg. Widespread transcription at
neuronal activity-regulated enhancers. Nature, 465(7295):182–7, may 2010. ISSN 1476-4687. doi: 10.
1038/nature09033. URL http://dx.doi.org/10.1038/nature09033http://www.ncbi.nlm.nih.gov/
pubmed/20393465http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3020079.

[13] Robin Andersson, Claudia Gebhard, Irene Miguel-Escalada, Ilka Hoof, Jette Bornholdt, Mette Boyd, Yun Chen, Xiaobei
Zhao, Christian Schmidl, Takahiro Suzuki, Evgenia Ntini, Erik Arner, Eivind Valen, Kang Li, Lucia Schwarzfischer,
Dagmar Glatz, Johanna Raithel, Berit Lilje, Nicolas Rapin, Frederik Otzen Bagger, Mette Jørgensen, Peter Refsing
Andersen, Nicolas Bertin, Owen Rackham, a Maxwell Burroughs, J Kenneth Baillie, Yuri Ishizu, Yuri Shimizu, Erina
Furuhata, Shiori Maeda, Yutaka Negishi, Christopher J Mungall, Terrence F Meehan, Timo Lassmann, Masayoshi
Itoh, Hideya Kawaji, Naoto Kondo, Jun Kawai, Andreas Lennartsson, Carsten O Daub, Peter Heutink, David a Hume,
Torben Heick Jensen, Harukazu Suzuki, Yoshihide Hayashizaki, Ferenc Müller, Alistair R R Forrest, Piero Carninci,
Michael Rehli, and Albin Sandelin. An atlas of active enhancers across human cell types and tissues. Nature, 507
(7493):455–61, 2014. ISSN 1476-4687. doi: 10.1038/nature12787. URL http://www.ncbi.nlm.nih.gov/
pubmed/24670763.

[14] Wolfgang Huber, Vincent J. Carey, Robert Gentleman, Simon Anders, Marc Carlson, Benilton S. Carvalho, Hector Cor-
rada Bravo, Sean Davis, Laurent Gatto, Thomas Girke, Raphael Gottardo, Florian Hahne, Kasper D. Hansen, Rafael A.
Irizarry, Michael Lawrence, Michael I. Love, James MaCdonald, Valerie Obenchain, Andrzej K. Oles, Herve Pages, Ale-
jandro Reyes, Paul Shannon, Gordon K. Smyth, Dan Tenenbaum, Levi Waldron, and Martin Morgan. Orchestrating
high-throughput genomic analysis with Bioconductor. Nature Methods, 12(2):115–121, 2015. ISSN 15487105. doi:
10.1038/nmeth.3252. URL http://dx.doi.org/10.1038/nmeth.3252.

[15] R. Taylor Raborn, VP. Brendel, and K. Sridharan. TSRchitect: Promoter identification from large-scale TSS profiling
data. URL https://bioconductor.org/packages/release/bioc/html/TSRchitect.html.

[16] Vivek Bhardwaj. icetea: Integrating Cap Enrichment with Transcript Expression Analysis, 2019. URL https://
github.com/vivekbhr/icetea.

[17] V. Haberle, a. R. R. Forrest, Y. Hayashizaki, P. Carninci, and B. Lenhard. CAGEr: precise TSS data retrieval and high-
resolution promoterome mining for integrative analyses. Nucleic Acids Research, pages 1–11, 2015. ISSN 0305-1048.
doi: 10.1093/nar/gkv054. URL http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkv054.

[18] Malte Thodberg, Axel Thieffry, Kristoffer Vitting-Seerup, Robin Andersson, and Albin Sandelin. CAGEfightR: Cap
Analysis of Gene Expression (CAGE) in R/Bioconductor. bioRxiv, page 310623, jan 2018. doi: 10.1101/310623. URL
http://biorxiv.org/content/early/2018/04/28/310623.abstract.

[19] Martin C Frith, Eivind Valen, Anders Krogh, Yoshihide Hayashizaki, Piero Carninci, and Albin Sandelin. A code for
transcription initiation in mammalian genomes. Genome research, 18(1):1–12, jan 2008. ISSN 1088-9051. doi: 10.
1101/gr.6831208. URL http://www.ncbi.nlm.nih.gov/pubmed/18032727http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=PMC2134772.

[20] Michael I. Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion for RNA-seq
data with DESeq2. Genome Biology, 15(12):1–21, 2014. ISSN 1474760X. doi: 10.1186/s13059-014-0550-8.

[21] Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edgeR: a Bioconductor package for differential expression
analysis of digital gene expression data. Bioinformatics (Oxford, England), 26(1):139–40, jan 2010. ISSN 1367-
4811. doi: 10.1093/bioinformatics/btp616. URL http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=2796818{&}tool=pmcentrez{&}rendertype=abstract.

[22] Michael Lawrence, Wolfgang Huber, Herve Pages, Patrick Aboyoun, Marc Carlson, Robert Gentleman, Martin T. Mor-
gan, and Vincent J. Carey. Software for Computing and Annotating Genomic Ranges. PLoS Computational Biology, 9
(8):1–10, 2013. ISSN 1553734X. doi: 10.1371/journal.pcbi.1003118.

[23] Aaron T L Lun, Malcolm Perry, and Elizabeth Ing-Simmons. Infrastructure for genomic interactions: Bio-
conductor classes for Hi-C, ChIA-PET and related experiments. F1000Research, 5(0):950, 2016. ISSN 2046-
1402. doi: 10.12688/f1000research.8759.2. URL http://www.ncbi.nlm.nih.gov/pubmed/27303634http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4890298.

[24] Jette Bornholdt, Anne Thoustrup Saber, Berit Lilje, Mette Boyd, Mette Jørgensen, Yun Chen, Morana Vitezic, Nick-
las Raun Jacobsen, Sarah Søs Poulsen, Trine Berthing, Simon Bressendorff, Kristoffer Vitting-Seerup, Robin Andersson,
Karin Sørig Hougaard, Carole L. Yauk, Sabina Halappanavar, Håkan Wallin, Ulla Vogel, and Albin Sandelin. Identifi-
cation of Gene Transcription Start Sites and Enhancers Responding to Pulmonary Carbon Nanotube Exposure in Vivo.
ACS Nano, 11(4):3597–3613, 2017. ISSN 1936086X. doi: 10.1021/acsnano.6b07533.

[25] Matthew E Ritchie, Belinda Phipson, Di Wu, Yifang Hu, Charity W Law, Wei Shi, and Gordon K Smyth. limma
powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research, 43(7):
e47, apr 2015. ISSN 1362-4962. doi: 10.1093/nar/gkv007. URL http://www.ncbi.nlm.nih.gov/pubmed/
25605792http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4402510.

Page 41 of 42

http://dx.doi.org/10.1038/nature21374 http://www.ncbi.nlm.nih.gov/pubmed/28241135
http://dx.doi.org/10.1038/nature21374 http://www.ncbi.nlm.nih.gov/pubmed/28241135
http://dx.doi.org/10.1038/nature09033 http://www.ncbi.nlm.nih.gov/pubmed/20393465 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3020079
http://dx.doi.org/10.1038/nature09033 http://www.ncbi.nlm.nih.gov/pubmed/20393465 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3020079
http://www.ncbi.nlm.nih.gov/pubmed/24670763
http://www.ncbi.nlm.nih.gov/pubmed/24670763
http://dx.doi.org/10.1038/nmeth.3252
https://bioconductor.org/packages/release/bioc/html/TSRchitect.html
https://github.com/vivekbhr/icetea
https://github.com/vivekbhr/icetea
http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkv054
http://biorxiv.org/content/early/2018/04/28/310623.abstract
http://www.ncbi.nlm.nih.gov/pubmed/18032727 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2134772
http://www.ncbi.nlm.nih.gov/pubmed/18032727 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2134772
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2796818{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2796818{&}tool=pmcentrez{&}rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/27303634 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4890298
http://www.ncbi.nlm.nih.gov/pubmed/27303634 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4890298
http://www.ncbi.nlm.nih.gov/pubmed/25605792 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4402510
http://www.ncbi.nlm.nih.gov/pubmed/25605792 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4402510

F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

[26] Charlotte Soneson, Michael I. Love, and Mark D. Robinson. Differential analyses for RNA-seq: transcript-level esti-
mates improve gene-level inferences. F1000Research, 4:1521, 2015. ISSN 2046-1402. doi: 10.12688/f1000research.
7563.2. URL http://www.ncbi.nlm.nih.gov/pubmed/26925227http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=PMC4712774.

[27] Anthony Mathelier, Oriol Fornes, David J. Arenillas, Chih Yu Chen, Grégoire Denay, Jessica Lee, Wenqiang Shi, Casper
Shyr, Ge Tan, Rebecca Worsley-Hunt, Allen W. Zhang, François Parcy, Boris Lenhard, Albin Sandelin, and Wyeth W.
Wasserman. JASPAR 2016: A major expansion and update of the open-access database of transcription factor binding
profiles. Nucleic Acids Research, 44(D1):D110–D115, 2016. ISSN 13624962. doi: 10.1093/nar/gkv1176.

[28] M Kanehisa and S Goto. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 28(1):27–30, jan
2000. ISSN 0305-1048. doi: 10.1016/j.meegid.2016.07.022. URL http://www.ncbi.nlm.nih.gov/pubmed/
10592173http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC102409.

[29] Florian Hahne and Robert Ivanek. Visualizing Genomic Data Using Gviz and Bioconductor, pages 335–351. Springer
New York, New York, NY, 2016. ISBN 978-1-4939-3578-9. doi: 10.1007/978-1-4939-3578-9_16. URL https:
//doi.org/10.1007/978-1-4939-3578-9{_}16.

[30] T D Schneider and R M Stephens. Sequence logos: a new way to display consensus sequences. Nu-
cleic acids research, 18(20):6097–100, oct 1990. ISSN 0305-1048. doi: 10.1007/978-3-319-16958-3_6.
URL http://www.ncbi.nlm.nih.gov/pubmed/2172928http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=PMC332411.

[31] Omar Wagih. Ggseqlogo: A versatile R package for drawing sequence logos. Bioinformatics, 33(22):3645–3647, 2017.
ISSN 14602059. doi: 10.1093/bioinformatics/btx469.

[32] Sebastian Pott and Jason D. Lieb. What are super-enhancers? Nature Genetics, 47(1):8–12, 2015. ISSN 15461718.
doi: 10.1038/ng.3167. URL http://dx.doi.org/10.1038/ng.3167.

[33] W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in microarray expression data using empirical
Bayes methods. Biostatistics (Oxford, England), 8(1):118–27, jan 2007. ISSN 1465-4644. doi: 10.1093/biostatistics/
kxj037. URL http://www.ncbi.nlm.nih.gov/pubmed/16632515.

[34] Ge Tan and Boris Lenhard. TFBSTools: An R/bioconductor package for transcription factor binding site analysis.
Bioinformatics, 32(10):1555–1556, 2016. ISSN 14602059. doi: 10.1093/bioinformatics/btw024.

[35] Alicia Schep. motifmatchr: Fast Motif Matching in R, 2018. URL https://bioconductor.org/packages/
release/bioc/html/motifmatchr.html.

[36] Weijun Luo and Cory Brouwer. Pathview: An R/Bioconductor package for pathway-based data integration and visu-
alization. Bioinformatics, 29(14):1830–1831, 2013. ISSN 13674803. doi: 10.1093/bioinformatics/btt285.

[37] Sascha H.C. Duttke, Scott A. Lacadie, Mahmoud M. Ibrahim, Christopher K. Glass, David L. Corcoran, Christopher
Benner, Sven Heinz, James T. Kadonaga, and Uwe Ohler. Human promoters are intrinsically directional. Molecular
Cell, 57(4):674–684, 2015. ISSN 10974164. doi: 10.1016/j.molcel.2014.12.029. URL http://dx.doi.org/10.
1016/j.molcel.2014.12.029.

[38] Malte Thodberg, Axel Thieffry, Jette Bornholdt, Mette Boyd, Christian Holmberg, Ajuna Azad, Christopher T Workman,
Yun Chen, Karl Ekwall, Olaf Nielsen, and Albin Sandelin. Comprehensive profiling of the fission yeast transcription
start site activity during stress and media response. Nucleic acids research, pages 1–21, dec 2018. ISSN 1362-4962.
doi: 10.1093/nar/gky1227. URL http://www.ncbi.nlm.nih.gov/pubmed/30566651.

[39] Mette Boyd, Malte Thodberg, Morana Vitezic, Jette Bornholdt, Kristoffer Vitting-Seerup, Yun Chen, Mehmet Coskun,
Yuan Li, Bobby Zhao Sheng Lo, Pia Klausen, Pawel Jan Schweiger, Anders Gorm Pedersen, Nicolas Rapin, Ker-
stin Skovgaard, Katja Dahlgaard, Robin Andersson, Thilde Bagger Terkelsen, Berit Lilje, Jesper Thorvald Troelsen,
Andreas Munk Petersen, Kim Bak Jensen, Ismail Gögenur, Peter Thielsen, Jakob Benedict Seidelin, Ole Haagen
Nielsen, Jacob Tveiten Bjerrum, and Albin Sandelin. Characterization of the enhancer and promoter landscape of
inflammatory bowel disease from human colon biopsies. Nature communications, 9(1):1661, 2018. ISSN 2041-
1723. doi: 10.1038/s41467-018-03766-z. URL http://www.ncbi.nlm.nih.gov/pubmed/29695774http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5916929.

Page 42 of 42

http://www.ncbi.nlm.nih.gov/pubmed/26925227 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4712774
http://www.ncbi.nlm.nih.gov/pubmed/26925227 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4712774
http://www.ncbi.nlm.nih.gov/pubmed/10592173 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC102409
http://www.ncbi.nlm.nih.gov/pubmed/10592173 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC102409
https://doi.org/10.1007/978-1-4939-3578-9{_}16
https://doi.org/10.1007/978-1-4939-3578-9{_}16
http://www.ncbi.nlm.nih.gov/pubmed/2172928 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC332411
http://www.ncbi.nlm.nih.gov/pubmed/2172928 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC332411
http://dx.doi.org/10.1038/ng.3167
http://www.ncbi.nlm.nih.gov/pubmed/16632515
https://bioconductor.org/packages/release/bioc/html/motifmatchr.html
https://bioconductor.org/packages/release/bioc/html/motifmatchr.html
http://dx.doi.org/10.1016/j.molcel.2014.12.029
http://dx.doi.org/10.1016/j.molcel.2014.12.029
http://www.ncbi.nlm.nih.gov/pubmed/30566651
http://www.ncbi.nlm.nih.gov/pubmed/29695774 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5916929
http://www.ncbi.nlm.nih.gov/pubmed/29695774 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5916929

	Background
	Materials and methods
	Dataset
	R-packages

	Workflow
	Part 1: Locating, quantifying and annotating TSSs and enhancers
	Importing CTSSs
	Unidirectional and bidirectional clustering for finding TSS and enhancer candidates:
	Annotating clusters with transcript models
	Merging into a single dataset

	Part 2: Genomic analysis of TSSs and enhancers
	Genome-browser figures of TSSs and enhancers
	Location and expression of TSSs and enhancers
	Analysing TSS shapes and sequences
	Finding candidates for interacting TSSs and enhancers
	Finding stretches of enhancers

	Part 3: Differential Expression analysis of TSSs, enhancers and genes
	Normalization of expression and EDA
	Cluster-level differential expression
	Correcting expression estimates for batch effects
	Enrichment of DNA-binding motifs
	Gene-level differential expression
	Enrichment of GO- and KEGG-terms
	Differential TSS Usage

	Discussion
	Author information
	Competing interests
	Grant information
	Acknowledgments

