Contents

1 Introduction

Here, we explain the way to generate CCI simulation data. scTensor has a function cellCellSimulate to generate the simulation data.

The simplest way to generate such data is cellCellSimulate with default parameters.

suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

This function internally generate the parameter sets by newCCSParams, and the values of the parameter can be changed, and specified as the input of cellCellSimulate by users as follows.

# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
##   ..@ nGene  : num 1000
##   ..@ nCell  : num [1:3] 50 50 50
##   ..@ cciInfo:List of 4
##   .. ..$ nPair: num 500
##   .. ..$ CCI1 :List of 4
##   .. .. ..$ LPattern: num [1:3] 1 0 0
##   .. .. ..$ RPattern: num [1:3] 0 1 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI2 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 1 0
##   .. .. ..$ RPattern: num [1:3] 0 0 1
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI3 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 0 1
##   .. .. ..$ RPattern: num [1:3] 1 0 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   ..@ lambda : num 1
##   ..@ seed   : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
    nPair=500, # Total number of L-R pairs
    # 1st CCI
    CCI1=list(
        LPattern=c(1,0,0), # Only 1st cell type has this pattern
        RPattern=c(0,1,0), # Only 2nd cell type has this pattern
        nGene=50, # 50 pairs are generated as CCI1
        fc="E10"), # Degree of differential expression (Fold Change)
    # 2nd CCI
    CCI2=list(
        LPattern=c(0,1,0),
        RPattern=c(0,0,1),
        nGene=30,
        fc="E100")
    )
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123

# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

The output object sim has some attributes as follows.

Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.

dim(sim$input)
## [1] 1000   60
sim$input[1:2,1:3]
##       Cell1 Cell2 Cell3
## Gene1  9105     2     0
## Gene2     4    37   850

Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.

dim(sim$LR)
## [1] 500   2
sim$LR[1:10,]
##    GENEID_L GENEID_R
## 1     Gene1   Gene81
## 2     Gene2   Gene82
## 3     Gene3   Gene83
## 4     Gene4   Gene84
## 5     Gene5   Gene85
## 6     Gene6   Gene86
## 7     Gene7   Gene87
## 8     Gene8   Gene88
## 9     Gene9   Gene89
## 10   Gene10   Gene90
sim$LR[46:55,]
##    GENEID_L GENEID_R
## 46   Gene46  Gene126
## 47   Gene47  Gene127
## 48   Gene48  Gene128
## 49   Gene49  Gene129
## 50   Gene50  Gene130
## 51   Gene51  Gene131
## 52   Gene52  Gene132
## 53   Gene53  Gene133
## 54   Gene54  Gene134
## 55   Gene55  Gene135
sim$LR[491:500,]
##     GENEID_L GENEID_R
## 491  Gene571  Gene991
## 492  Gene572  Gene992
## 493  Gene573  Gene993
## 494  Gene574  Gene994
## 495  Gene575  Gene995
## 496  Gene576  Gene996
## 497  Gene577  Gene997
## 498  Gene578  Gene998
## 499  Gene579  Gene999
## 500  Gene580 Gene1000

Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.

length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 
##   "Cell1"   "Cell2"   "Cell3"   "Cell4"   "Cell5"   "Cell6"
table(names(sim$celltypes))
## 
## Celltype1 Celltype2 Celltype3 
##        20        20        20

Session information

## R version 3.6.0 (2019-04-26)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.2 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] biomaRt_2.40.0                         
##  [2] Homo.sapiens_1.3.1                     
##  [3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
##  [4] org.Hs.eg.db_3.8.2                     
##  [5] GO.db_3.8.2                            
##  [6] OrganismDbi_1.26.0                     
##  [7] GenomicFeatures_1.36.1                 
##  [8] AnnotationDbi_1.46.0                   
##  [9] MeSH.Mmu.eg.db_1.12.0                  
## [10] LRBase.Mmu.eg.db_1.1.0                 
## [11] MeSH.Hsa.eg.db_1.12.0                  
## [12] MeSHDbi_1.20.0                         
## [13] SingleCellExperiment_1.6.0             
## [14] SummarizedExperiment_1.14.0            
## [15] DelayedArray_0.10.0                    
## [16] BiocParallel_1.18.0                    
## [17] matrixStats_0.54.0                     
## [18] Biobase_2.44.0                         
## [19] GenomicRanges_1.36.0                   
## [20] GenomeInfoDb_1.20.0                    
## [21] IRanges_2.18.1                         
## [22] S4Vectors_0.22.0                       
## [23] BiocGenerics_0.30.0                    
## [24] scTensor_1.0.2                         
## [25] RSQLite_2.1.1                          
## [26] LRBase.Hsa.eg.db_1.1.0                 
## [27] LRBaseDbi_1.2.0                        
## [28] BiocStyle_2.12.0                       
## 
## loaded via a namespace (and not attached):
##   [1] tagcloud_0.6              tidyselect_0.2.5         
##   [3] heatmaply_0.16.0          htmlwidgets_1.3          
##   [5] grid_3.6.0                MeSH.PCR.db_1.12.0       
##   [7] TSP_1.1-7                 munsell_0.5.0            
##   [9] codetools_0.2-16          misc3d_0.8-4             
##  [11] colorspace_1.4-1          GOSemSim_2.10.0          
##  [13] Category_2.50.0           highr_0.8                
##  [15] knitr_1.23                rstudioapi_0.10          
##  [17] DOSE_3.10.1               urltools_1.7.3           
##  [19] GenomeInfoDbData_1.2.1    polyclip_1.10-0          
##  [21] farver_1.1.0              bit64_0.9-7              
##  [23] MeSH.Aca.eg.db_1.12.0     MeSH.Bsu.168.eg.db_1.12.0
##  [25] xfun_0.7                  biovizBase_1.32.0        
##  [27] gclus_1.3.2               R6_2.4.0                 
##  [29] seriation_1.2-7           fields_9.8-3             
##  [31] AnnotationFilter_1.8.0    gridGraphics_0.4-1       
##  [33] bitops_1.0-6              fgsea_1.10.0             
##  [35] assertthat_0.2.1          MeSH.AOR.db_1.12.0       
##  [37] nnTensor_0.99.4           scales_1.0.0             
##  [39] ggraph_1.0.2              enrichplot_1.4.0         
##  [41] nnet_7.3-12               gtable_0.3.0             
##  [43] spam_2.2-2                ensembldb_2.8.0          
##  [45] rlang_0.3.4               genefilter_1.66.0        
##  [47] splines_3.6.0             rtracklayer_1.44.0       
##  [49] lazyeval_0.2.2            acepack_1.4.1            
##  [51] dichromat_2.0-0           europepmc_0.3            
##  [53] checkmate_1.9.3           BiocManager_1.30.4       
##  [55] yaml_2.2.0                reshape2_1.4.3           
##  [57] abind_1.4-5               backports_1.1.4          
##  [59] qvalue_2.16.0             Hmisc_4.2-0              
##  [61] RBGL_1.60.0               tools_3.6.0              
##  [63] bookdown_0.11             ggplotify_0.0.3          
##  [65] ggplot2_3.2.0             gplots_3.0.1.1           
##  [67] RColorBrewer_1.1-2        cummeRbund_2.26.0        
##  [69] ggridges_0.5.1            MeSH.Syn.eg.db_1.12.0    
##  [71] Rcpp_1.0.1                plyr_1.8.4               
##  [73] base64enc_0.1-3           progress_1.2.2           
##  [75] zlibbioc_1.30.0           purrr_0.3.2              
##  [77] RCurl_1.95-4.12           prettyunits_1.0.2        
##  [79] rpart_4.1-15              viridis_0.5.1            
##  [81] cowplot_0.9.4             ggrepel_0.8.1            
##  [83] cluster_2.1.0             magrittr_1.5             
##  [85] data.table_1.12.2         MeSH.db_1.12.0           
##  [87] DO.db_2.9                 triebeard_0.3.0          
##  [89] reactome.db_1.68.0        ProtGenerics_1.16.0      
##  [91] hms_0.4.2                 evaluate_0.14            
##  [93] xtable_1.8-4              XML_3.98-1.20            
##  [95] gridExtra_2.3             compiler_3.6.0           
##  [97] tibble_2.1.3              maps_3.3.0               
##  [99] KernSmooth_2.23-15        crayon_1.3.4             
## [101] htmltools_0.3.6           GOstats_2.50.0           
## [103] rTensor_1.4               Formula_1.2-3            
## [105] tidyr_0.8.3               ReactomePA_1.28.0        
## [107] DBI_1.0.0                 tweenr_1.0.1             
## [109] rappdirs_0.3.1            MASS_7.3-51.4            
## [111] Matrix_1.2-17             gdata_2.18.0             
## [113] Gviz_1.28.0               dotCall64_1.0-0          
## [115] igraph_1.2.4.1            pkgconfig_2.0.2          
## [117] rvcheck_0.1.3             GenomicAlignments_1.20.1 
## [119] registry_0.5-1            foreign_0.8-71           
## [121] plotly_4.9.0              xml2_1.2.0               
## [123] foreach_1.4.4             annotate_1.62.0          
## [125] webshot_0.5.1             XVector_0.24.0           
## [127] AnnotationForge_1.26.0    stringr_1.4.0            
## [129] VariantAnnotation_1.30.1  digest_0.6.19            
## [131] graph_1.62.0              Biostrings_2.52.0        
## [133] rmarkdown_1.13            fastmatch_1.1-0          
## [135] htmlTable_1.13.1          dendextend_1.12.0        
## [137] GSEABase_1.46.0           curl_3.3                 
## [139] graphite_1.30.0           Rsamtools_2.0.0          
## [141] gtools_3.8.1              meshr_1.20.0             
## [143] outliers_0.14             jsonlite_1.6             
## [145] viridisLite_0.3.0         BSgenome_1.52.0          
## [147] pillar_1.4.1              lattice_0.20-38          
## [149] httr_1.4.0                plotrix_3.7-5            
## [151] survival_2.44-1.1         glue_1.3.1               
## [153] UpSetR_1.4.0              fdrtool_1.2.15           
## [155] iterators_1.0.10          plot3D_1.1.1             
## [157] bit_1.1-14                Rgraphviz_2.28.0         
## [159] ggforce_0.2.2             stringi_1.4.3            
## [161] blob_1.1.1                latticeExtra_0.6-28      
## [163] caTools_1.17.1.2          memoise_1.1.0            
## [165] dplyr_0.8.1