
HOWTO generate repository HTML

S. Falcon

May 29, 2019

1 Overview

This document assumes you have a collection of R packages on local disk that you would
like to prepare for publishing to the web. The end result we are going for is:

1. Packages organized per CRAN-style repository standard

2. PACKAGES files created for install.packages access

3. VIEWS file created for generating biocViews

4. A vignette directory created containing the extracted vignette pdf files from each
source package in the repository.

5. An html directory created containing html descriptions of each package with links
for downloading available artifacts.

6. A simple alphabetical listing index.html file

2 CRAN-style Layout

Establish a top-level directory for the repository, we will refer to this directory as repos-
Root. Place your packages as follows:

src/contrib Contains all source packages (*.tar.gz).

bin/windows/contrib/x.y Contains all win.binary packages (*.zip). Where x.y is the
major.minor version number of R.

bin/macosx/el-capitan/contrib/x.y Contains the mac.binary.el-capitan (El Capi-
tan) (*.tgz) packages.

You will need the following parameters:

1

> reposRoot <- "path/to/reposRoot"

> ## The names are essential

> contribPaths <- c(source="src/contrib",

+ win.binary="bin/windows/contrib/3.4",

+ `mac.binary.el-capitan`="bin/macosx/el-capitan/contrib/3.4")

3 Extracting vignettes

The extractVignettes function extracts pdf files from inst/doc. The default is to
extract to a reposRoot/vignettes.

> extractVignettes(reposRoot, contribPaths["source"])

4 Generating the control files

The genReposControlFiles function will generate the PACKAGES files for each contrib
path and also create a VIEWS file with complete info for later use by biocViews.

> genReposControlFiles(reposRoot, contribPaths)

5 Generating the HTML

The writeRepositoryHtml will generate HTML detail files for each package in repos-
Root/html. The function will also create an index.html file at the top level.

Two CSS files are included with biocViews that are automatically copied along side
the appropriate HTML files during the HTML generation process. These CSS files are:

reposRoot/repository-detail.css

reposRoot/html/package-detail.css

6 Design and extension notes

The basic idea is that using the VIEWS file and the known repository structure (location
of packages and extracted vignettes), we represent the details for each package in the
repository in a PackageDetail-class instance.

packageDetail-class objects know how to write themselves to HTML using the htmlValue
method. We used the XML package’s xmlOutputDOM function to build up the HTML
documents. Each HTML producing class extends Htmlized-class which contains a slot
to hold the DOM tree and provides a place to put methods that are not specific to any
given HTML outputting class.

2

In terms of extending this to generate the biocViews, have a look at setDependsOnMeImportsMeSuggestsMe
which builds up an adjacency matrix representing package dependencies, importations,
and suggestions. The matrix is square with rows and columns labeled with the names
of the packages. The entries are 0/1 with aij = 1 meaning that package j depends on
package i.

6.1 Details on HTML generation

I started by breaking the htmlValue method for PackageDetail-class into one helper
function for each logical section of the HTML we produce (author, description, details,
downloads, and vignettes). That made the long method short enough to be readable.

In order to be able to mix and match the different chunks and be able to more
easily create new renderings, it seemed that it would be easiest to be able to render to
HTML each chunk with a method. One possibility is a function htmlChunk(object,

descriptions) where the dispatch would be done using a switch statement or similar.
A more flexible approach is to create dummy classes for each output “chunk”. Each

dummy class contains (subclasses) PackageDescription and that’s it. We then can take
advantage of the behavior of the as method to convert.

> ## Define classes like this for each logical document chunk

> setClass("pdAuthorMaintainerInfo", contains="PackageDetail")

> setClass("pdVignetteInfo", contains="PackageDetail")

> ## Then define a htmlValue method

> setMethod("htmlValue", signature(object="pdDescriptionInfo"),

+ function(object) {

+ node <- xmlNode("p", cleanText(object@Description),

+ attrs=c(class="description"))

+ node

+ })

> ## Then you can make use of all this...

> ## Assume object contains a PackageDetail instance

> authorInfo <- as(object, "pdAuthorMaintainerInfo")

> dom$addNode(htmlValue(authorInfo))

>

One advantage of this setup is that we can now define a method to generate complete
HTML documents that will work for all the dummy classes. Hence mix and match.

6.2 A note on the htmlValue method for PackageDetail

We could parameterize as follows. Not sure this makes things easier to follow, but it
does demonstrate how you could start building up documents in a more programatic
fashion.

3

details <- list(heading=list(tag="h3", text="Details"),

content="pdDetailsInfo")

downloads <- list(heading=list(tag="h3", text="Download Package"),

content="pdDownloadInfo")

vignettes <- list(heading=list(tag="h3",

text="Vignettes (Documentation)"),

content="pdVignetteInfo")

doSection <- function(sec) {

dom$addTag(sec$headingtag, secheading$text)

secObj <- as(object, sec$content)

dom$addNode(htmlValue(secObj))

}

lapply(list(details, downloads, vignettes), doSection)

4

	Overview
	CRAN-style Layout
	Extracting vignettes
	Generating the control files
	Generating the HTML
	Design and extension notes
	Details on HTML generation
	A note on the htmlValue method for PackageDetail

