
The RTopper package: perform run Gene Set Enrichment across

genomic platforms

Luigi Marchionni
Department of Oncology
Johns Hopkins University
email: marchion@jhu.edu

May 2, 2019

Contents

1 Overview 1

2 RTopper data structure 2
2.1 Creation of Functional Gene Sets . 4

3 Data analysis with RTopper 9
3.1 Integrated Gene-to-Phenotype score computation . 10
3.2 Separate Gene-to-Phenotype score computation . 10
3.3 Gene Set Enrichment using integrated and separate score 11
3.4 INTEGRATION + GSE . 12

3.4.1 One-sided Wilcoxon rank-sum test using absolute ranking statistics 12
3.4.2 One-sided Wilcoxon rank-sum test using signed ranking statistics 12
3.4.3 Performing a simulation-based GSE test . 12
3.4.4 Passsing alternative enrichment functions to runBatchGSE 13

3.5 GSE + INTEGRATION . 15
3.6 Multiple testing correction . 16

4 System Information 17

5 References 19

1 Overview

Gene Set Enrichment (GSE) analysis has been widely use to assist the interpretation of gene
expression data. We propose here to apply GSE for the integration of genomic data obtained from
distinct analytical platform.

In the present implementation of the RTopper GSE analysis is performed using the geneSetTest

function from the limma package [6, 5, 7]. This function enables testing the hypothesis that a
specific set of genes (a Functional Gene Set, FGS) is more highly ranked on a given statistics. In

1

particular this functions computes a p-value for each FGS by one or two-sided Wilcoxon rank-sum
test. Alternative user-defined functions can also be used.

Furthermore multiple hypothesis testing correction is achieved by applying the Benjamini and
Hochberg method [2] as implemented in the multtest R/Bioconductor package. Overall, this
approach is conceptually analogous to Gene Set Enrichment Analysis (GSEA), as proposed by
Mootha and colleagues [4, 8].

The integration can be achieved through two distinct approaches:

1. GSE + INTEGRATION: Separate GSE analysisn on the individual genomic platforms
followed by GSE results integration;

2. INTEGRATION + GSE: Integration of genomic data measurement using a logistic model
followed by GSE analysis;

2 RTopper data structure

In this tutorial we demonstrate the functionality of RTopper package. To this end we will make use
of simplified data generated within The Cancer Genome Atlas (TCGA) project, using Glioblastoma
Multiforme (GBM) genomics data obtained from the same patients’ cohort using distinct platforms,
including Differential Gene Expression (DGE), Copy Number Variation (CNV), and Differential
Methylation (DM). This data is included with the RTopper package as the dataset exampleData,
which consists of genomic measurements (the list dat) for 500 genes (in rows) and 95 patients (in
columns) from 4 distinct platforms:

1. DGE obtained using Affymetrix;

2. DGE obtained using Agilent;

3. CNV data generated ad Harvard;

4. CNV data generated ad the MSKCC;

The phenotypic class for each patient is defined in the a data.frame pheno consisting of 95 rows
(patients, pheno$Sample) and 2 columns, the first being patients identifiers, and the second variable
giving the group indicator (pheno$Class).

To load the data set type data(exampleData), and to view a description of this data type ?exam-

pleData. The structure of the data is shown below:

> library(RTopper)

> data(exampleData)

> ls()

[1] "dat" "pheno"

> class(dat)

[1] "list"

> names(dat)

[1] "dat.affy" "dat.agilent"

[3] "dat.cnvHarvard" "dat.cnvMskcc"

2

> sapply(dat,class)

dat.affy dat.agilent dat.cnvHarvard

"data.frame" "data.frame" "data.frame"

dat.cnvMskcc

"data.frame"

> sapply(dat,dim)

dat.affy dat.agilent dat.cnvHarvard

[1,] 500 500 500

[2,] 95 95 95

dat.cnvMskcc

[1,] 500

[2,] 95

> dim(pheno)

[1] 95 2

> str(pheno)

'data.frame': 95 obs. of 2 variables:

$ Sample: chr "TCGA.02.0003" "TCGA.02.0007" "TCGA.02.0011" "TCGA.02.0021" ...

$ Class : int 0 0 1 1 0 0 0 0 0 0 ...

In summary to perform the analysis with functions from RTopper the genomic data used as input
must be in the following format:

1. Genomic measurements: a list of data.frames, in which each list item corresponds to a
genomic platform, and comprises a data.frame with rows being genes and columns patients;

2. Phenotype data: a data.frame with 2 columns: patients and their phenotypes;

3. The number of columns of the Genomic measurements data.frames must match the number
of rows of the Phenotype data;

4. The same set of genes must be measured in each platform and gene labels must be stored as
rownames;

Below are shown the first 6 rows and 4 columns of each data.frame contained in dat, which share
the same genes (shown for some of the possible combinations). Similarly column names in the dat

data.frames correspond to rownames of pheno.

> ###data structure

> lapply(dat,function(x) head(x)[,1:3])

$dat.affy

TCGA.02.0003 TCGA.02.0007 TCGA.02.0011

AACS 7.747995 7.685409 7.535661

AARS 9.381544 9.930156 10.197194

ABI1 8.173255 8.962803 9.895811

ACHE 5.127197 4.547297 5.146552

ACTC1 6.612645 5.825879 8.067945

ACTN2 6.257383 5.330557 5.842319

3

$dat.agilent

TCGA.02.0003 TCGA.02.0007 TCGA.02.0011

AACS -1.0070000 -1.1164000 -0.913000

AARS -1.2665000 -0.8981250 0.263500

ABI1 -0.2765000 0.3356250 1.027250

ACHE 0.4403750 -0.0222500 0.115000

ACTC1 0.3641538 0.1234615 1.046692

ACTN2 4.3348000 2.2278000 3.330600

$dat.cnvHarvard

TCGA.02.0003 TCGA.02.0007 TCGA.02.0011

AACS -0.08273213 -0.08917331 -0.02075644

AARS -0.10233281 -0.20620608 -0.05157664

ABI1 -0.86886659 -0.01214599 0.59307754

ACHE 0.31560002 -1.00166150 -0.14519639

ACTC1 -1.17495078 -0.26698279 -0.95662761

ACTN2 -0.11319016 -0.09657971 0.02582138

$dat.cnvMskcc

TCGA.02.0003 TCGA.02.0007 TCGA.02.0011

AACS -0.0383875 -0.09140000 0.008233333

AARS 0.0075600 0.02801667 0.104850000

ABI1 -0.7006900 0.21270000 0.499472727

ACHE 0.8676000 -0.23970000 0.075000000

ACTC1 -0.9779500 -0.11625000 -0.692950000

ACTN2 -0.1258571 -0.05394444 0.010200000

> sum(rownames(dat[[1]])%in%rownames(dat[[2]]))

[1] 500

> sum(rownames(dat[[2]])%in%rownames(dat[[3]]))

[1] 500

2.1 Creation of Functional Gene Sets

Functional Gene Sets (FGS) are list of genes that share a specific biological function. Examples
of FGS are genes that operate in the same signaling pathway (i.e. Notch signaling genes), or that
share the same biological function (i.e. Cell adhesion genes). FGS can be retrieved from various
database, or can be construncted ad hoc. A convenient source of FGS are the R-Bioconductor
metaData packages, and S4 classes and methods for handling FGS are provided by the GSEABase

package. Below is shown a simple way to extract FGS from the human genome metaData package
org.Hs.eg.db. As a general rule the name of the metaData package, without the .db extension,
can be used a function to see the content of the package, as shown below:

> library(org.Hs.eg.db)

> org.Hs.eg()

4

Quality control information for org.Hs.eg:

This package has the following mappings:

org.Hs.egACCNUM has 40246 mapped keys (of 61521 keys)

org.Hs.egACCNUM2EG has 794338 mapped keys (of 794338 keys)

org.Hs.egALIAS2EG has 124119 mapped keys (of 124119 keys)

org.Hs.egCHR has 61351 mapped keys (of 61521 keys)

org.Hs.egCHRLENGTHS has 595 mapped keys (of 595 keys)

org.Hs.egCHRLOC has 28201 mapped keys (of 61521 keys)

org.Hs.egCHRLOCEND has 28201 mapped keys (of 61521 keys)

org.Hs.egENSEMBL has 26136 mapped keys (of 61521 keys)

org.Hs.egENSEMBL2EG has 28694 mapped keys (of 28694 keys)

org.Hs.egENSEMBLPROT has 6894 mapped keys (of 61521 keys)

org.Hs.egENSEMBLPROT2EG has 22561 mapped keys (of 22561 keys)

org.Hs.egENSEMBLTRANS has 7348 mapped keys (of 61521 keys)

org.Hs.egENSEMBLTRANS2EG has 34158 mapped keys (of 34158 keys)

org.Hs.egENZYME has 2230 mapped keys (of 61521 keys)

org.Hs.egENZYME2EG has 975 mapped keys (of 975 keys)

org.Hs.egGENENAME has 61521 mapped keys (of 61521 keys)

org.Hs.egGO has 20207 mapped keys (of 61521 keys)

org.Hs.egGO2ALLEGS has 22272 mapped keys (of 22272 keys)

org.Hs.egGO2EG has 17496 mapped keys (of 17496 keys)

org.Hs.egMAP has 58275 mapped keys (of 61521 keys)

org.Hs.egMAP2EG has 2044 mapped keys (of 2044 keys)

org.Hs.egOMIM has 15901 mapped keys (of 61521 keys)

org.Hs.egOMIM2EG has 21278 mapped keys (of 21278 keys)

org.Hs.egPATH has 5869 mapped keys (of 61521 keys)

org.Hs.egPATH2EG has 229 mapped keys (of 229 keys)

org.Hs.egPMID has 38173 mapped keys (of 61521 keys)

org.Hs.egPMID2EG has 619462 mapped keys (of 619462 keys)

org.Hs.egREFSEQ has 38921 mapped keys (of 61521 keys)

org.Hs.egREFSEQ2EG has 284012 mapped keys (of 284012 keys)

org.Hs.egSYMBOL has 61521 mapped keys (of 61521 keys)

org.Hs.egSYMBOL2EG has 61468 mapped keys (of 61468 keys)

org.Hs.egUCSCKG has 27190 mapped keys (of 61521 keys)

org.Hs.egUNIGENE has 26089 mapped keys (of 61521 keys)

org.Hs.egUNIGENE2EG has 29277 mapped keys (of 29277 keys)

org.Hs.egUNIPROT has 19257 mapped keys (of 61521 keys)

Additional Information about this package:

DB schema: HUMAN_DB

DB schema version: 2.1

Organism: Homo sapiens

Date for NCBI data: 2019-Apr26

5

Date for GO data: 2019-Apr24

Date for KEGG data: 2011-Mar15

Date for Golden Path data: 2018-Dec3

Date for Ensembl data: 2019-Apr08

For instance the org.Hs.egGO2ALLEGS environment contains the mapping of all ENTREZ Gene
identifiers to the Gene Ontology Terms [1], while org.Hs.egPATH2EG maps the identifiers to
KEGG pathways [3]. The corresponding lists of FGS can be retrieve from the corresponding
environments using the the R command as.list(), as shown below for KEGG and GO:

> kegg <- as.list(org.Hs.egPATH2EG)

> go <- as.list(org.Hs.egGO2ALLEGS)

> length(kegg)

[1] 229

> length(go)

[1] 22272

> str(kegg[1:5])

List of 5

$ 04610: chr [1:69] "2" "462" "623" "624" ...

$ 00232: chr [1:7] "9" "10" "1544" "1548" ...

$ 00983: chr [1:52] "9" "10" "978" "1066" ...

$ 01100: chr [1:1130] "9" "10" "15" "18" ...

$ 00380: chr [1:42] "15" "26" "38" "39" ...

> names(kegg)[1:5]

[1] "04610" "00232" "00983" "01100" "00380"

> str(go[1:5])

List of 5

$ GO:0000002: Named chr [1:30] "142" "291" "1763" "1890" ...

..- attr(*, "names")= chr [1:30] "IMP" "TAS" "IDA" "IMP" ...

$ GO:0000003: Named chr [1:1556] "18" "49" "49" "49" ...

..- attr(*, "names")= chr [1:1556] "IEA" "IEA" "IMP" "ISS" ...

$ GO:0000012: Named chr [1:13] "142" "3981" "7014" "7141" ...

..- attr(*, "names")= chr [1:13] "IGI" "IDA" "NAS" "IDA" ...

$ GO:0000018: Named chr [1:93] "142" "604" "641" "940" ...

..- attr(*, "names")= chr [1:93] "IDA" "IEA" "IMP" "IEA" ...

$ GO:0000019: Named chr [1:6] "4292" "4361" "7014" "7014" ...

..- attr(*, "names")= chr [1:6] "IEA" "TAS" "IMP" "ISS" ...

> names(go)[1:5]

[1] "GO:0000002" "GO:0000003" "GO:0000012"

[4] "GO:0000018" "GO:0000019"

In the kegg list genes are identified by their ENTREZ Gene identifiers, while in the dat genes are
identified by their Gene Symbol. Below is an example of the code that can be used to perform the
identifiers conversion, using only a subset of KEGG and GO FGS:

6

> kegg <- lapply(kegg[sample(1:length(kegg),5)],function(x) unique(unlist(mget(x,org.Hs.egSYMBOL))))

> go <- lapply(go[sample(1:length(go),5)],function(x) unique(unlist(mget(x,org.Hs.egSYMBOL))))

> str(kegg)

List of 5

$ 04130: chr [1:36] "BNIP1" "STX2" "SNAP25" "STX1A" ...

$ 03430: chr [1:23] "MSH6" "LIG1" "MLH1" "MSH2" ...

$ 00240: chr [1:99] "NUDT2" "POLR3D" "CAD" "ENTPD1" ...

$ 04120: chr [1:135] "AIRE" "BIRC2" "BIRC3" "XIAP" ...

$ 00524: chr [1:5] "GCK" "HK1" "HK2" "HK3" ...

> str(go)

List of 5

$ GO:0021999: chr [1:5] "CELSR2" "TBX18" "NOG" "SSBP3" ...

$ GO:0031370: chr "EIF4E"

$ GO:0051894: chr [1:25] "ABL1" "COL16A1" "HRG" "KDR" ...

$ GO:2000344: chr [1:11] "GLRA1" "ZP3" "HYAL3" "CACNA1H" ...

$ GO:0010743: chr [1:30] "ABCA1" "AGT" "AGTR1" "ALOX15B" ...

Finally, it is also possible to annotate FGS, mapping pathways identifiers to pathway names, as
shown below for KEGG, using the KEGG.db.

> library(KEGG.db)

> KEGG()

Quality control information for KEGG:

This package has the following mappings:

KEGGENZYMEID2GO has 4178 mapped keys (of 4178 keys)

KEGGEXTID2PATHID has 75100 mapped keys (of 75100 keys)

KEGGGO2ENZYMEID has 5224 mapped keys (of 5224 keys)

KEGGPATHID2EXTID has 3152 mapped keys (of 3152 keys)

KEGGPATHID2NAME has 478 mapped keys (of 478 keys)

KEGGPATHNAME2ID has 478 mapped keys (of 478 keys)

Additional Information about this package:

DB schema: KEGG_DB

DB schema version: 2.1

Date for KEGG data: 2011-Mar15

> names(kegg) <- paste(names(kegg),unlist(mget(names(kegg),KEGGPATHID2NAME)),sep=".")

> names(kegg)

[1] "04130.SNARE interactions in vesicular transport"

[2] "03430.Mismatch repair"

[3] "00240.Pyrimidine metabolism"

[4] "04120.Ubiquitin mediated proteolysis"

7

[5] "00524.Butirosin and neomycin biosynthesis"

Similarly GO Terms can be retrieved from the GO.db (please refer to the vignettes of the corre-
sponding packages for details).

> library(GO.db)

> GO()

Quality control information for GO:

This package has the following mappings:

GOBPANCESTOR has 29699 mapped keys (of 29699 keys)

GOBPCHILDREN has 17495 mapped keys (of 29699 keys)

GOBPOFFSPRING has 17495 mapped keys (of 29699 keys)

GOBPPARENTS has 29699 mapped keys (of 29699 keys)

GOCCANCESTOR has 4202 mapped keys (of 4202 keys)

GOCCCHILDREN has 1458 mapped keys (of 4202 keys)

GOCCOFFSPRING has 1458 mapped keys (of 4202 keys)

GOCCPARENTS has 4202 mapped keys (of 4202 keys)

GOMFANCESTOR has 11148 mapped keys (of 11148 keys)

GOMFCHILDREN has 2071 mapped keys (of 11148 keys)

GOMFOFFSPRING has 2071 mapped keys (of 11148 keys)

GOMFPARENTS has 11148 mapped keys (of 11148 keys)

GOOBSOLETE has 2358 mapped keys (of 2358 keys)

GOTERM has 45050 mapped keys (of 45050 keys)

Additional Information about this package:

DB schema: GO_DB

DB schema version: 2.1

Date for GO data: 2019-Apr24

> names(go) <- paste(names(go),Term(names(go)),sep=".")

> names(go)

[1] "GO:0021999.neural plate anterior/posterior regionalization"

[2] "GO:0031370.eukaryotic initiation factor 4G binding"

[3] "GO:0051894.positive regulation of focal adhesion assembly"

[4] "GO:2000344.positive regulation of acrosome reaction"

[5] "GO:0010743.regulation of macrophage derived foam cell differentiation"

Finally we can be combine the two FGS collections into a named list for further used in GSE
analysis (see below).

> fgsList <- list(go=go,kegg=kegg)

8

3 Data analysis with RTopper

To compute gene-to-phenotype association scores the first step required is the convertion of the
data into a list, where each list item corresponds to a gene, and comprises a data.frame with the
rows being patients, and columns being measurements for each data type, along with the class
phenotype (the response). Importantly each element of the list with the data should have the same
genes and patients.

The convertToDr function is used to make such conversion. Below is a short description of the
arguments to this function:

� dataIntersection: a list of data.frames containing the same set of patients(columns) and
genes (rows)

� response: a data.frame indicating patients’ phenotypic class;

� nPlatforms: the number of platforms;

This can be achieved as follows using our examples data:

> dataDr <- convertToDr(dat, pheno, 4)

> class(dataDr)

[1] "list"

> length(dataDr)

[1] 500

> names(dataDr)[1:5]

[1] "AACS" "AARS" "ABI1" "ACHE" "ACTC1"

> str(dataDr[1:2])

List of 2

$ AACS:'data.frame': 95 obs. of 5 variables:

..$ dat.affy : num [1:95] 7.75 7.69 7.54 7.3 7.01 ...

..$ dat.agilent : num [1:95] -1.007 -1.116 -0.913 -1.061 -1.775 ...

..$ dat.cnvHarvard: num [1:95] -0.0827 -0.0892 -0.0208 -0.1811 -0.0625 ...

..$ dat.cnvMskcc : num [1:95] -0.03839 -0.0914 0.00823 0.03456 0.0573 ...

..$ response : int [1:95] 0 0 1 1 0 0 0 0 0 0 ...

$ AARS:'data.frame': 95 obs. of 5 variables:

..$ dat.affy : num [1:95] 9.38 9.93 10.2 9.54 9.37 ...

..$ dat.agilent : num [1:95] -1.266 -0.898 0.264 -0.599 -1.437 ...

..$ dat.cnvHarvard: num [1:95] -0.1023 -0.2062 -0.0516 -0.0923 -0.1199 ...

..$ dat.cnvMskcc : num [1:95] 0.00756 0.02802 0.10485 0.0841 0.12262 ...

..$ response : int [1:95] 0 0 1 1 0 0 0 0 0 0 ...

It is now possible to compute gene-to-phenotype association scores, using as input the gene-centered
list produced by convertToDr. Therefore the computeDrStat function assumes that each gene-
centered data.frame contains a column (the last one) called ’response’, as created by the con-

vertToDr. Below is a short description of the arguments to this function:

9

� data: a list of data.frames, one for each gene analyzed, contining the the genomic measure-
ments from all platforms (by column) for all the patients (by row), along with the phenotypic
response;

� columns: a numeric vector indicating column indexes corresponding the genomic measure-
ments to be used for computing the gene-to-phenotype association scores; the default is
columns = c(1:(ncol(data) - 1)), assuming the phenotypic response to be the last col-
umn;

� method: the method used to compute the association score;

� integrate: logical, whether an integrated gene-to-phenotype score should be computed, or
separate scores for each platform/data sets specified by columns;

In the current implementation of the RTopper there are three methods for computing gene-to-
phenotype association scores:

1. dev: this approach computes the score as the difference of deviances (as described in
Tyekucheva et al, manuscript under review [9]);

2. aic: this approach computes the score as the Akaike information criterion for model selection;

3. bic: this approach computes the score as the penalized likelihood ratio;

3.1 Integrated Gene-to-Phenotype score computation

This approach first integrates genomic data across platform, and subsequently perform GSE to iden-
tify the FGS most strongly associated with the integrated score. Below is an example of application
to compute the gene-to-phenotype association scores for 4 data type simultaneously:

> bicStatInt <- computeDrStat(dataDr, columns = c(1:4), method="bic", integrate = TRUE)

> names(bicStatInt)

[1] "integrated"

> str(bicStatInt)

List of 1

$ integrated: Named num [1:500] -11.43 -15.93 -8.85 -13.52 -7.26 ...

..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...

3.2 Separate Gene-to-Phenotype score computation

This approach first computes computes gene-to-phenotype score separately for each platform, uses
the scores to perform separate GSE analysis in each platform for identifying the FGS most strongly
associated with the score, and finally integrates the results from GSE analysis, Below is an example
of this approach:

> bicStatSep <- computeDrStat(dataDr, columns = c(1:4), method="bic", integrate = FALSE)

> names(bicStatSep)

[1] "dat.affy" "dat.agilent"

[3] "dat.cnvHarvard" "dat.cnvMskcc"

10

> str(bicStatSep)

List of 4

$ dat.affy : Named num [1:500] 0.545 -4.269 -2.334 -4.471 -3.625 ...

..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...

$ dat.agilent : Named num [1:500] -3.57 -4.5 -3.66 -4.52 -1.05 ...

..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...

$ dat.cnvHarvard: Named num [1:500] -4.49 -3.64 3.13 -3.26 -2.57 ...

..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...

$ dat.cnvMskcc : Named num [1:500] -4.53 -4.48 2.1 -2.55 -4.25 ...

..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...

3.3 Gene Set Enrichment using integrated and separate score

After the gene-to-phenotype scores have been obtained it is possible to perform a GSE analysis. To
this end we will use the runBatchGSE function, as shown below. This function enables to perform
GSE analysis over multiple collections of FGS, and over multiple ranking statistics. In the current
implementation of the runBatchGSE the default is performing the enrichment analysis using the
geneSetTest function from the limma package, and most of the arguments passed to runBatchGSE

are indeed passed to geneSetTest (see the relative help for the details).

As an alternative the user can also define his own function to test for FGS enrichment, passing the
selection of genes within the FGS and the ranking ranking statistics in the same way as done for
geneSetTest. In this tutorial we apply geneSetTest in order to perform a Wilcoxon rank-sum
test, using the absolute value of the gene-to-phenotype scores as the ranking statistics.

> args(runBatchGSE)

function (dataList, fgsList, ...)

NULL

Below a short description of the arguments that can be passed to this function:

� dataList: a list containing gene-to-phenotype scores to be used as ranking statistics in the
GSE analysis;

� fgsList: a list of FGS collection, in which each element is a list of character vectors, one for
each gene set;

� ...: any other argument to be passed to lower level functions, including the lower level
enrichment function to be used (like the geneSetTest function from the limma package,
which is used as the default);

� absolute: logical specifying whether the absolute values of the ranking statistics should be
used in the test (the default being TRUE);

� gseFunc: a function to perform GSE analysis, when not specified (the default) the gene-

SetTest from the limma package is used. When a function is specified, the membership of
the analyzed genes to a FGS, and the ranking statistics must be defined in the same way this
is done for geneSetTest, and the new function must return an integer (usually a p-value)
(see the help for geneSetTest in the limma package)

11

Below are few examples to perform Wilcoxon rank-sum test over multiple FGS collections, and
over multiple ranking statistics, usin the runBatchGSE. To this end we will use the KEGG and
GO collections created above, and the separate and integrated gene-to-phenotype scores computed
using the computeDrStat. The output of this function is a named list of lists, containing an element
for each ranking statistics considered in the input. Each one of these elements, in turn, is another
list, containing the GSE results for each collection sets. In the examples below we will therefore
obtain a list of length one in the case ot the integrated gene-to-phenotype score, and a list of length
four (on element for each genomic platform) in the case of the separate scores. For all the rankings
we will obtain GSE result for both the collections of FGS.

3.4 INTEGRATION + GSE

The integrated gene-to-phenotype scores we have computed can be used to perform a GSE analysis.
Below are reported few examples, using the default options, as well as passing several specific
arguments to geneSetTest (see the relative help for details).

3.4.1 One-sided Wilcoxon rank-sum test using absolute ranking statistics

This can be accomplished by calling the runBatchGSE with default values, or by specifying each
argument, as shown below:

> gseABS.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList)

> gseABS.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=TRUE, type="f", alternative="mixed")

3.4.2 One-sided Wilcoxon rank-sum test using signed ranking statistics

When the signed ranking statistics has a sign, it is possible to perform a one-sided test assensing both
tails separately, as well as a two-sided test. This can be accomplished by passing the corresponding
arguments to runBatchGSE, as shown below:

> gseUP.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, type="t", alternative="up")

> gseDW.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, type="t", alternative="down")

> gseBOTH.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, type="t", alternative="either")

3.4.3 Performing a simulation-based GSE test

It is also possible to perform an enrichment analysis comparing each FGS to randomly selected
gene lists of the same size of the FGS. In this case the p-value is computed by simulation as the
proportion of times the mean of the statistics in the FGS is smaller (or larger) than in the nsim

random simulated sets of genes.

> gseABSsim.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=TRUE, type="f", alternative="mixed",

12

+ ranks.only=FALSE, nsim=1000)

> gseUPsim.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, type="t", alternative="up",

+ ranks.only=FALSE, nsim=1000)

Results from this analysis are named lists of lists, as shown below:

> str(gseUP.int)

List of 1

$ integrated:List of 2

..$ go : Named num [1:5] NA NA NA NA 0.981

.. ..- attr(*, "names")= chr [1:5] "GO:0021999.neural plate anterior/posterior regionalization" "GO:0031370.eukaryotic initiation factor 4G binding" "GO:0051894.positive regulation of focal adhesion assembly" "GO:2000344.positive regulation of acrosome reaction" ...

..$ kegg: Named num [1:5] 0.1106 0.8647 0.0477 0.1526 NA

.. ..- attr(*, "names")= chr [1:5] "04130.SNARE interactions in vesicular transport" "03430.Mismatch repair" "00240.Pyrimidine metabolism" "04120.Ubiquitin mediated proteolysis" ...

> gseABSsim.int

$integrated

$integrated$go

GO:0021999.neural plate anterior/posterior regionalization

NA

GO:0031370.eukaryotic initiation factor 4G binding

NA

GO:0051894.positive regulation of focal adhesion assembly

NA

GO:2000344.positive regulation of acrosome reaction

NA

GO:0010743.regulation of macrophage derived foam cell differentiation

0.01298701

$integrated$kegg

04130.SNARE interactions in vesicular transport

0.8311688

03430.Mismatch repair

0.2007992

00240.Pyrimidine metabolism

0.8081918

04120.Ubiquitin mediated proteolysis

0.7782218

00524.Butirosin and neomycin biosynthesis

NA

3.4.4 Passsing alternative enrichment functions to runBatchGSE

Below is show how to define and pass alternative enrichment functions to runBatchGSE. We will
first show how to use the limma wilcoxGST function, which is a synonym for geneSetTest using
ranks.only=TRUE and type="t".

13

> library(limma)

> gseUP.int.2 <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, gseFunc=wilcoxGST, alternative="up")

As shown below this approach will return the same results obtained with geneSetTest passing
appropriate arguments.

> str(gseUP.int.2)

List of 1

$ integrated:List of 2

..$ go : Named num [1:5] NA NA NA NA 0.981

.. ..- attr(*, "names")= chr [1:5] "GO:0021999.neural plate anterior/posterior regionalization" "GO:0031370.eukaryotic initiation factor 4G binding" "GO:0051894.positive regulation of focal adhesion assembly" "GO:2000344.positive regulation of acrosome reaction" ...

..$ kegg: Named num [1:5] 0.1106 0.8647 0.0477 0.1526 NA

.. ..- attr(*, "names")= chr [1:5] "04130.SNARE interactions in vesicular transport" "03430.Mismatch repair" "00240.Pyrimidine metabolism" "04120.Ubiquitin mediated proteolysis" ...

> all(gseUP.int.2$go==gseUP.int$go)

[1] TRUE

We can finally also pass any new user-defined enrichment function, provided that the arguments
are passed in the same way as with geneSetTest, as shown below using the Fisher’s exact test,
and a threshold for defining the list of differentially expressed genes.

> gseFunc <- function (selected, statistics, threshold) {

+ diffExpGenes <- statistics > threshold

+ tab <- table(diffExpGenes, selected)

+ pVal <- fisher.test(tab)[["p.value"]]

+ }

> gseUP.int.3 <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, gseFunc=gseFunc, threshold=7.5)

As shown below this approach will test for over-represtation of the a specific gene set within the
genes defined as differentially expressed (in our example the genes showing an integrated association
score larger than 7.5). Results are somewhat comparable to what obtained using the Wilcoxon
rank-sum test.

> str(gseUP.int.3)

List of 1

$ integrated:List of 2

..$ go : Named num [1:5] NA NA NA NA 1

.. ..- attr(*, "names")= chr [1:5] "GO:0021999.neural plate anterior/posterior regionalization" "GO:0031370.eukaryotic initiation factor 4G binding" "GO:0051894.positive regulation of focal adhesion assembly" "GO:2000344.positive regulation of acrosome reaction" ...

..$ kegg: Named num [1:5] 1 1 0.0298 1 NA

.. ..- attr(*, "names")= chr [1:5] "04130.SNARE interactions in vesicular transport" "03430.Mismatch repair" "00240.Pyrimidine metabolism" "04120.Ubiquitin mediated proteolysis" ...

> data.frame(fisher=gseUP.int.3$integrated$kegg,wilcoxon=gseUP.int$integrated$kegg)

fisher

04130.SNARE interactions in vesicular transport 1.00000

03430.Mismatch repair 1.00000

00240.Pyrimidine metabolism 0.02976

04120.Ubiquitin mediated proteolysis 1.00000

00524.Butirosin and neomycin biosynthesis NA

14

wilcoxon

04130.SNARE interactions in vesicular transport 0.11056584

03430.Mismatch repair 0.86467926

00240.Pyrimidine metabolism 0.04771396

04120.Ubiquitin mediated proteolysis 0.15259287

00524.Butirosin and neomycin biosynthesis NA

3.5 GSE + INTEGRATION

The individual gene-to-phenotype scores computed for each platform can be similarly used to
perform separate GSE analyses for each considered genomic platform, applying the same code and
functions used to perform GSE analysis in the INTEGRATION + GSE approach above.

> gseABS.sep <- runBatchGSE(dataList=bicStatSep, fgsList=fgsList)

This step of GSE analysis on separate platform is then followed by GSE results integration, which
is achieved using the combineGSE function, which summarizes the individual p-values from the
tests. To this end different methods are available, including the computation of the geometric or
arithmetic means, the use of the median, the selection of the minimun or the maximum p-value,
and the random selection (respectively geometricMean, mean, median, min, max, and random). Few
examples are shown below:

> gseABS.geoMean.sep <- combineGSE(gseABS.sep, method="geometricMean")

> gseABS.max.sep <- combineGSE(gseABS.sep, method="max")

Also in this case the results from the combination are named lists of lists, as shown below:

> names(gseABS.sep)

[1] "dat.affy" "dat.agilent"

[3] "dat.cnvHarvard" "dat.cnvMskcc"

> str(gseABS.sep)

List of 4

$ dat.affy :List of 2

..$ go : Named num [1:5] NA NA NA NA 0.284

.. ..- attr(*, "names")= chr [1:5] "GO:0021999.neural plate anterior/posterior regionalization" "GO:0031370.eukaryotic initiation factor 4G binding" "GO:0051894.positive regulation of focal adhesion assembly" "GO:2000344.positive regulation of acrosome reaction" ...

..$ kegg: Named num [1:5] 0.858 0.593 0.986 0.849 NA

.. ..- attr(*, "names")= chr [1:5] "04130.SNARE interactions in vesicular transport" "03430.Mismatch repair" "00240.Pyrimidine metabolism" "04120.Ubiquitin mediated proteolysis" ...

$ dat.agilent :List of 2

..$ go : Named num [1:5] NA NA NA NA 0.163

.. ..- attr(*, "names")= chr [1:5] "GO:0021999.neural plate anterior/posterior regionalization" "GO:0031370.eukaryotic initiation factor 4G binding" "GO:0051894.positive regulation of focal adhesion assembly" "GO:2000344.positive regulation of acrosome reaction" ...

..$ kegg: Named num [1:5] 0.655 0.827 0.825 0.891 NA

.. ..- attr(*, "names")= chr [1:5] "04130.SNARE interactions in vesicular transport" "03430.Mismatch repair" "00240.Pyrimidine metabolism" "04120.Ubiquitin mediated proteolysis" ...

$ dat.cnvHarvard:List of 2

..$ go : Named num [1:5] NA NA NA NA 0.554

.. ..- attr(*, "names")= chr [1:5] "GO:0021999.neural plate anterior/posterior regionalization" "GO:0031370.eukaryotic initiation factor 4G binding" "GO:0051894.positive regulation of focal adhesion assembly" "GO:2000344.positive regulation of acrosome reaction" ...

..$ kegg: Named num [1:5] 0.8299 0.0917 0.0785 0.3542 NA

.. ..- attr(*, "names")= chr [1:5] "04130.SNARE interactions in vesicular transport" "03430.Mismatch repair" "00240.Pyrimidine metabolism" "04120.Ubiquitin mediated proteolysis" ...

$ dat.cnvMskcc :List of 2

15

..$ go : Named num [1:5] NA NA NA NA 0.268

.. ..- attr(*, "names")= chr [1:5] "GO:0021999.neural plate anterior/posterior regionalization" "GO:0031370.eukaryotic initiation factor 4G binding" "GO:0051894.positive regulation of focal adhesion assembly" "GO:2000344.positive regulation of acrosome reaction" ...

..$ kegg: Named num [1:5] 0.579 0.456 0.137 0.145 NA

.. ..- attr(*, "names")= chr [1:5] "04130.SNARE interactions in vesicular transport" "03430.Mismatch repair" "00240.Pyrimidine metabolism" "04120.Ubiquitin mediated proteolysis" ...

> str(gseABS.geoMean.sep)

List of 1

$ combinedScore:List of 2

..$ go : Named num [1:5] NA NA NA NA 0.288

.. ..- attr(*, "names")= chr [1:5] "GO:0021999.neural plate anterior/posterior regionalization" "GO:0031370.eukaryotic initiation factor 4G binding" "GO:0051894.positive regulation of focal adhesion assembly" "GO:2000344.positive regulation of acrosome reaction" ...

..$ kegg: Named num [1:5] 0.721 0.378 0.306 0.444 NA

.. ..- attr(*, "names")= chr [1:5] "04130.SNARE interactions in vesicular transport" "03430.Mismatch repair" "00240.Pyrimidine metabolism" "04120.Ubiquitin mediated proteolysis" ...

> gseABS.geoMean.sep

$combinedScore

$combinedScore$go

GO:0021999.neural plate anterior/posterior regionalization

NA

GO:0031370.eukaryotic initiation factor 4G binding

NA

GO:0051894.positive regulation of focal adhesion assembly

NA

GO:2000344.positive regulation of acrosome reaction

NA

GO:0010743.regulation of macrophage derived foam cell differentiation

0.287615

$combinedScore$kegg

04130.SNARE interactions in vesicular transport

0.7208740

03430.Mismatch repair

0.3784299

00240.Pyrimidine metabolism

0.3056998

04120.Ubiquitin mediated proteolysis

0.4436585

00524.Butirosin and neomycin biosynthesis

NA

3.6 Multiple testing correction

Finally the adjustPvalGSE enables to adjust the p-values computed by the runBatchGSE. This
functions is an interface to the mt.rawp2adjp function from the multtest package.

> gseABS.int.BH <- adjustPvalGSE(gseABS.int)

> gseABS.int.holm <- adjustPvalGSE(gseABS.int, proc = "Holm")

Also in this case the results after the adjustment are named lists of lists, as shown below:

16

> names(gseABS.int.BH)

[1] "integrated"

> names(gseABS.int.holm)

[1] "integrated"

> str(gseABS.int.BH)

List of 1

$ integrated:List of 2

..$ go : num [1:5, 1:2] NA NA NA NA 0.0189 ...

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:5] "GO:0021999.neural plate anterior/posterior regionalization" "GO:0031370.eukaryotic initiation factor 4G binding" "GO:0051894.positive regulation of focal adhesion assembly" "GO:2000344.positive regulation of acrosome reaction" ...

..$: chr [1:2] "rawp" "BH"

..$ kegg: num [1:5, 1:2] 0.893 0.137 0.765 0.851 NA ...

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:5] "04130.SNARE interactions in vesicular transport" "03430.Mismatch repair" "00240.Pyrimidine metabolism" "04120.Ubiquitin mediated proteolysis" ...

..$: chr [1:2] "rawp" "BH"

> str(gseABS.int.holm)

List of 1

$ integrated:List of 2

..$ go : num [1:5, 1:2] NA NA NA NA 0.0189 ...

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:5] "GO:0021999.neural plate anterior/posterior regionalization" "GO:0031370.eukaryotic initiation factor 4G binding" "GO:0051894.positive regulation of focal adhesion assembly" "GO:2000344.positive regulation of acrosome reaction" ...

..$: chr [1:2] "rawp" "Holm"

..$ kegg: num [1:5, 1:2] 0.893 0.137 0.765 0.851 NA ...

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:5] "04130.SNARE interactions in vesicular transport" "03430.Mismatch repair" "00240.Pyrimidine metabolism" "04120.Ubiquitin mediated proteolysis" ...

..$: chr [1:2] "rawp" "Holm"

4 System Information

Session information:

> sessionInfo()

R version 3.6.0 (2019-04-26)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2012 R2 x64 (build 9600)

Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

17

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats4 parallel stats graphics

[5] grDevices utils datasets methods

[9] base

other attached packages:

[1] limma_3.40.0 GO.db_3.8.2

[3] KEGG.db_3.2.3 org.Hs.eg.db_3.8.2

[5] AnnotationDbi_1.46.0 IRanges_2.18.0

[7] S4Vectors_0.22.0 RTopper_1.30.0

[9] Biobase_2.44.0 BiocGenerics_0.30.0

loaded via a namespace (and not attached):

[1] Rcpp_1.0.1 lattice_0.20-38

[3] digest_0.6.18 MASS_7.3-51.4

[5] grid_3.6.0 DBI_1.0.0

[7] RSQLite_2.1.1 blob_1.1.1

[9] Matrix_1.2-17 splines_3.6.0

[11] tools_3.6.0 bit64_0.9-7

[13] bit_1.1-14 survival_2.44-1.1

[15] compiler_3.6.0 pkgconfig_2.0.2

[17] multtest_2.40.0 memoise_1.1.0

18

5 References

References

[1] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis,
K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis,
S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. Gene
ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet,
25(1):25–9, 2000. 1061-4036 (Print) Journal Article.

[2] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society Series B, 57:289–300,
1995.

[3] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The KEGG resource for
deciphering the genome. Nucleic Acids Res, 32(Database issue):D277–80, 2004. 1362-4962
(Electronic) Journal Article.

[4] V. K. Mootha, C. M. Lindgren, K. F. Eriksson, A. Subramanian, S. Sihag, J. Lehar,
P. Puigserver, E. Carlsson, M. Ridderstrale, E. Laurila, N. Houstis, M. J. Daly, N. Patter-
son, J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn,
D. Altshuler, and L. C. Groop. PGC-1alpha-responsive genes involved in oxidative phospho-
rylation are coordinately downregulated in human diabetes. Nat Genet, 34(3):267–273, 2003.
1061-4036 (Print) Journal Article.

[5] G. K. Smyth. Linear models and empirical Bayes methods for assessing differential expression in
microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(Article
3), 2004.

[6] G. K. Smyth. Limma: linear models for microarray data. In R. Gentleman, R. V. Carey, S. Du-
doit, R. Irizarry, and W. Huber, editors, Bioinformatics and Computational Biology Solutions
using R and Bioconductor, pages 397–420. Springer, New York, 2005.

[7] G. K. Smyth, J. Michaud, and H. S. Scott. Use of within-array replicate spots for assessing
differential expression in microarray experiments. Bioinformatics, 21(9):2067–75, 2005. 1367-
4803 (Print) Evaluation Studies Journal Article Validation Studies.

[8] Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert,
Michael A Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander, and
Jill P Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A, 102(43):15545–15550, Oct 2005.

[9] Svitlana Tyekucheva, Luigi Marchionni, Rachel Karchin, and Giovanni Parmigiani. Integrating
diverse genomic data using gene sets. Genome Biology (in press), 2011.

19

	Overview
	RTopper data structure
	Creation of Functional Gene Sets

	Data analysis with RTopper
	Integrated Gene-to-Phenotype score computation
	Separate Gene-to-Phenotype score computation
	Gene Set Enrichment using integrated and separate score
	INTEGRATION + GSE
	One-sided Wilcoxon rank-sum test using absolute ranking statistics
	One-sided Wilcoxon rank-sum test using signed ranking statistics
	Performing a simulation-based GSE test
	Passsing alternative enrichment functions to runBatchGSE

	GSE + INTEGRATION
	Multiple testing correction

	System Information
	References

