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1 Licensing

Under the Two-Clause BSD License, you are free to use and redistribute this
software.

2 Introduction

Strand-seq is a method for determining template strand inheritance in single
cells. When strand-seq data are collected for many cells from the same organ-
ism, spatially close genomic regions show similar patterns of template strand
inheritance. ContiBAIT allows users to leverage this property to carry out three
tasks to improve draft genomes. Firstly, in assemblies made up entirely of con-
tigs or scaffolds not yet assigned to chromosomes, these contigs can be clustered
into chromosomes. Secondly, in assemblies wherein scaffolds have been assigned
to chromosomes, but not yet placed on those chromosomes, those scaffolds can
be placed in order relative to each other. Thirdly, for assemblies at the chro-
mosome stage, where scaffolds are ordered and separated by many unbridged
sequence gaps, the orientation of these sequence gaps can be found.

All three of these tasks can be run in parallel, taking contig-stage assemblies
and ordering all fragments first to chromosomes, then within chromosomes while
simultaneously determining the relative orientation of each fragment. This vi-
gnette will outline some specific functions of contiBAIT, and is comparible to
the contiBAIT() master function included in this package that will perform the
same sequence of function calls outlined below.

3 Input

ContiBAIT requires input in BAM format. Multiple BAM files are required for
analysis, so ContiBAIT specifically calls for users to identify a BAM directory
in which to analyse. Sorted BAM files will speed up analysis.

> # Read in BAM files. Path denotes location of the BAM files.

> # Returns a vector of file locations

>

> library(contiBAIT)

> bamFileList <- list.files(

+ path=file.path(system.file(package='contiBAIT'), 'extdata'),
+ pattern=".bam$",

+ full.names=TRUE)

The example data provided by contiBAIT is from a human blood sample and
has been aligned to GRCh38/hg38. Since this assembly is already complete, we
must first split this genome into chunks to simulate a contig-stage assembly. To
do this we need to extract information on the assembly the bam file is aligned
to by creating a chromosome table instance, then splitting this table.
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3.1 Creating a chromosome table instance

The example data provided with the contiBAIT package is derived from GRCh38/hg38
data (only aligned to all autosomes and allosomes; no alternative locations or
contigs were included). To subset these data, and for further downstream analy-
sis, a GRanges chromosome table instance can be made, representing the contig
name and length. This is generated with makeChrTable, where the resulting
object is similar to the header portion of a BAM file. Note a meta column
with a name formed of the contig and start and end locations is generated for
downstream workflows.

> # build chr table from BAM file in bamFileList

>

> exampleChrTable <- makeChrTable(bamFileList[1])

> exampleChrTable

ChrTable object with 24 ranges and 1 metadata column:

seqnames ranges strand | name

<Rle> <IRanges> <Rle> | <character>

[1] chr1 1-249250621 * | chr1:1-249250621

[2] chr2 1-243199373 * | chr2:1-243199373

[3] chr3 1-198022430 * | chr3:1-198022430

[4] chr4 1-191154276 * | chr4:1-191154276

[5] chr5 1-180915260 * | chr5:1-180915260

... ... ... ... . ...

[20] chr20 1-63025520 * | chr20:1-63025520

[21] chr21 1-48129895 * | chr21:1-48129895

[22] chr22 1-51304566 * | chr22:1-51304566

[23] chrX 1-155270560 * | chrX:1-155270560

[24] chrY 1-59373566 * | chrY:1-59373566

-------

seqinfo: 24 sequences from an unspecified genome; no seqlengths

3.2 Splitting a chromosome table instance

We can also split the above chromosome table instance into 1 Mb fragments.
This subdivision isn’t just for testing purposes. For chromosome- and contig-
stage assemblies with very large fragments, subdividing the data into bins can
help identify chimeric fragments and misorientations. Some assemblies have
a large degree of misorientations or chimerism in the data, and subdividing
them aids in clustering these fragments. For example, if a region is misoriented
within a contig, the strand state will change in this region, skewing this contig
toward a WC call in every library. However, while fragmenting can improve
the overall number of contigs included in analysis and improve clustering, as
the fragments get further subdivided, the number of reads used to make strand
state calls decreases, and the probability of there being insufficient reads to make
an accurate call increases. Note the following divided chromosome table can be
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used with the filter argument in strandSeqFreqTable to generate a sub-divided
table.

> exampleDividedChr <- makeChrTable(bamFileList[1], splitBy=1000000)

> exampleDividedChr

ChrTable object with 3089 ranges and 1 metadata column:

seqnames ranges strand | name

<Rle> <IRanges> <Rle> | <character>

[1] chr1 1-1001007 * | chr1:1-1001007

[2] chr1 1001008-2002013 * | chr1:1001008-2002013

[3] chr1 2002014-3003020 * | chr1:2002014-3003020

[4] chr1 3003021-4004026 * | chr1:3003021-4004026

[5] chr1 4004027-5005033 * | chr1:4004027-5005033

... ... ... ... . ...

[3085] chrY 54341909-55348239 * | chrY:54341909-55348239

[3086] chrY 55348240-56354571 * | chrY:55348240-56354571

[3087] chrY 56354572-57360903 * | chrY:56354572-57360903

[3088] chrY 57360904-58367234 * | chrY:57360904-58367234

[3089] chrY 58367235-59373566 * | chrY:58367235-59373566

-------

seqinfo: 24 sequences from an unspecified genome; no seqlengths

3.3 Splitting a chromosome table based on strand state
changes

A change in strand state within a contig can represent a number of things.
At it’s simplest, it could represent a sister chromatid exchange switching the
templates in that particular cell. In cases where the same location is a site of
recurrent strand state changes, the more likely explanation is that the fragment
is chimeric or has a misorientation within it. contiBAIT allows users to cut
contigs at these locations to allow for better clustering. The most likely site of
incorrectly oriented or placed fragments is at unbridged or bridged gap regions.
A function is included that allows us to look for overlaps between recurrent
strand state changes and gap regions.

> library(rtracklayer)

> # Download GRCh38/hg38 gap track from UCSC

> gapFile <- import.bed("http://genome.ucsc.edu/cgi-bin/hgTables?hgsid=465319523_SLOtFPExny48YZFaXBh4sSTzuMcA&boolshad.hgta_printCustomTrackHeaders=0&hgta_ctName=tb_gap&hgta_ctDesc=table+browser+query+on+gap&hgta_ctVis=pack&hgta_ctUrl=&fbQual=whole&fbUpBases=200&fbDownBases=200&hgta_doGetBed=get+BED")

> # Create fake SCE file with four regions that overlap a gap

> sceFile <- GRanges(rep('chr4',4),
+ IRanges(c(1410000, 1415000, 1420000, 1425000),

+ c(1430000, 1435000, 1430000, 1435000)))

> overlappingFragments <- mapGapFromOverlap(sceFile,

+ gapFile,

+ exampleChrTable,
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+ overlapNum=4)

> show(overlappingFragments)

ChrTable object with 26 ranges and 1 metadata column:

seqnames ranges strand | name

<Rle> <IRanges> <Rle> | <character>

[1] chr1 1-249250621 * | chr1:1-249250621

[2] chr2 1-243199373 * | chr2:1-243199373

[3] chr3 1-198022430 * | chr3:1-198022430

[4] chr4 1-1429358 * | chr4:1-1429358

[5] chr4 1429359-1434206 * | chr4:1429359-1434206

... ... ... ... . ...

[22] chr20 1-63025520 * | chr20:1-63025520

[23] chr21 1-48129895 * | chr21:1-48129895

[24] chr22 1-51304566 * | chr22:1-51304566

[25] chrX 1-155270560 * | chrX:1-155270560

[26] chrY 1-59373566 * | chrY:1-59373566

-------

seqinfo: 67 sequences from an unspecified genome; no seqlengths

What is returned is a GRanges chromosome table instance where the gap
that is coincident with the recurrent strand state change has split that contig
into two smaller fragments. Note the example table now has 25 fragments as
chr4 has been split.

3.4 Creating a strandFreqMatrix instance

To read in BAM files into ContiBAIT, create a strandFreMatrix instance by
calling strandSeqFreqTable(). This program will read each BAM file, calculate
the ratio of W and C reads, and return this value along with the total number of
reads used to make the call. Note, we will use the GRanges divided chromosome
table to simultaneously cut the assembly into 1 Mb fragments. By default
duplicate reads are removed, a minimal mapping quality of 0 is used and the
function expects to see paired end data. Because of the way BAM files store
strand information, it is important to ensure that the pairedEnd parameter
is correctly set. A warning will be issued if single-end data is run as if it is
paired-end.

> # Create a strandFreqTable instance

>

> strandFrequencyList <- strandSeqFreqTable(bamFileList,

+ filter=exampleDividedChr,

+ qual=10,

+ pairedEnd=FALSE,

+ BAITtables=TRUE)

This returns a list of two data.frames if the BAITtables argument is set to
FALSE, or four if it is set to TRUE. The first data.frame consists of a strand
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state frequency, calculated by taking the number of Watson (- strand) reads,
subtracting the number of Crick (+ strand) reads, and dividing by the total
number of reads. These values range from -1 (entirely Watson reads) through
to 1 (entirely Crick reads). The second data.frame consists of the absolute
number of reads covering the contig. This is used in thresholding the data, and
in weighting the accuracy of calls in subsequent orderings. Note that the fewer
reads used to make a strand call, the less accurate that call will be. In the
absence of background reads, WC regions will follow a binomial distribution.
If we assume any contigs with <-0.8 are WW, and >0.8 are CC (this is the
default strandTableThreshold parameter used in preprocessStrandTable), then
there is a probability of 0.044 that the strand state call is incorrect. As such we
exclude calls that are made with fewer than 10 reads. Increasing this number
will make calls more accurate, but will reduce the number of contigs included in
analysis. Since the contigs are weighted based on read density during clustering,
a minimum of 10 reads to support a strand call provides a good balance between
accuracy and inclusion.

> # Returned list consisting of two data.frames

> strandFrequencyList

$strandTable

A matrix of strand frequencies for 145 contigs over 35 libraries.

$countTable

A matrix of read counts for 145 contigs over 35 libraries.

$WatsonReads

A matrix of read counts for 3089 contigs over 35 libraries.

$CrickReads

A matrix of read counts for 3089 contigs over 35 libraries.

> # Exclude frequencies calculated from

> # contigs with less than 10 reads

>

> exampleStrandFreq <- strandFrequencyList[[1]]

> exampleReadCounts <- strandFrequencyList[[2]]

> exampleStrandFreq[which(exampleReadCounts < 10)] <- NA

Additional information can be found on the help page for strandSeqFre-
qTable including all parameters.

The quality of the libraries, specifically whether the files being analysed ap-
pear to show the expected distributions of directional reads, can be assessed
with plotWCdistributions. In a diploid organism, there is an expectation that
chromosomes will be derived from either two Watson homologues, one Watson
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and one Crick homologue, or two Crick homologues in a Mendelian 1:2:1 ra-
tio. In Strand-seq data, this will mean about 1/4 of the contigs will only have
Watson reads mapping to them, and have a strand state frequency of -1, 1/4
of the contigs will only have Crick reads mapping to them, and have a strand
state frequency of +1, and 1/2 of the contigs will have an approximately even
mix of Watson and Crick reads (based on a binomial distribution of sampling).
plotWCDistribution generates boxplots for different strand state frequencies and
models the expected distribution (blue line). The average called WW or CC
contigs are shown in green, and should match closely with the expected distri-
bution line.

> # Assess the quality of the libraries being analysed

> plotWCdistribution(exampleStrandFreq)
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4 Creating a strand state matrix

The returned list of strandSeqFreqTable can be converted to a strand state
matrix that makes a contig-wide call on the overall strand state based on the
frequencies of Watson and Crick reads. The function removes BAM files that
either contain too few reads to make accurate strand calls or are not strand-
seq libraries (i.e. every contig contains approximately equal numbers of + and
- reads). Conversely the function removes contigs that either contain too few
reads, or always contain roughly equal numbers of + and - reads. More details
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on the parameters can be found in the function documentation. The function
returns a similar data.frame to strandSeqFreqTable, but with the frequencies
converted to strand calls: 1 is a homozygous Watson call (by default, a frequency
less than -0.8, but this can be changed with the filterThreshold argument), 2
is a heterozygous call (a frequency between -0.8 and 0.8 by default) and 3 is a
homozygous Crick call (by default, a frequency above 0.8). These factors can
then be used to cluster similar contigs together.

> # Convert strand frequencies to strand calls.

>

> exampleStrandStateMatrix <- preprocessStrandTable(

+ exampleStrandFreq,

+ lowQualThreshold=0.8)

> exampleStrandStateMatrix[[1]]

A strand state matrix for 76 contigs over 35 libraries.

5 Clustering contigs into chromosomes

clusterContigs utilizes a custom algorithm to cluster all fragments together that
share a similar strand state across multiple cells. For example, if two contigs are
adjacent on the same chromosome, then they will inherit the same strand state
in every cell that is analyzed. It is important to note however that the relative
directionality of any two fragments within an assembly is unknown. Contigs
which belong on the same chromosome but are in different orientations will
display as complete opposites; every library where one contig is homozygous
Watson will have the other contig as homozygous Crick. However, heterozy-
gous contigs (where chromosomes inherited one Watson template and one Crick
template), will not be mirrored, with one contig being ”WC”, while the other
will be ”CW”. As such, by default the function performs clustering between
homozygous calls (WW or CC treated the same) and heterozygous calls (WC)
to identify contigs that belong together despite their misorientation status with
respect to each other. Using the clusterBy=’homo’ option will perform the
clustering just between WW and CC calls (ignoring WC calls) and misoriented
fragments from the same chromosome will cluster into different linkage groups.
Once clustered, the misorientated fragments are identified in each linkage group
using reorientAndMergeLGs. Since chromosome orientation cannot be deter-
mined by sequence alone, the largest sub-group is arbitrarily considered ”+”,
while the smaller group is considered ”-”. The product of this function is a list
where the first element is a StrandStateMatrix instance that has been correctly
oriented, the second element is a data.frame of contigs and orientations, and the
third element is a recomputed LinkageGroupList that merges groups that were
previously discordant based on misorientation status. This merger occurs by
computing a consensus strand state across libraries within each linkage group
and comparing them. Note for the purposes of this example, we are using the
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argument randomise=FALSE to ensure conformity of the vignette when run-
ning sweave. Randomisation is recommended for most applications and is set
to TRUE by default.

> exampleWCMatrix <- exampleStrandStateMatrix[[1]]

> clusteredContigs <- clusterContigs(exampleWCMatrix, randomise=FALSE)

Initializing contig chr2:3002462-4003282 [1/76] as LG1

Clustering contig chr2:170139480-171140300 [2/76]

-> Adding chr2:170139480-171140300 to LG0 for a cluster of 2

Clustering contig chr2:20016410-21017230 [3/76]

-> Adding chr2:20016410-21017230 to LG0 for a cluster of 3

Clustering contig chr4:20016156-21016962 [4/76]

Clustering contig chr4:100080774-101081581 [5/76]

-> Adding chr4:100080774-101081581 to LG1 for a cluster of 2

Clustering contig chr2:6004924-7005743 [6/76]

-> Adding chr2:6004924-7005743 to LG0 for a cluster of 4

Clustering contig chr2:190155889-191156709 [7/76]

-> Adding chr2:190155889-191156709 to LG0 for a cluster of 5

Clustering contig chr3:3000341-4000453 [8/76]

Clustering contig chr1:20020131-21021137 [9/76]

Clustering contig chr4:140113083-141113890 [10/76]

-> Adding chr4:140113083-141113890 to LG1 for a cluster of 3

Clustering contig chr3:30003399-31003512 [11/76]

-> Adding chr3:30003399-31003512 to LG2 for a cluster of 2

Clustering contig chr3:6000681-7000793 [12/76]

-> Adding chr3:6000681-7000793 to LG2 for a cluster of 3

Clustering contig chr2:60049229-61050048 [13/76]

-> Adding chr2:60049229-61050048 to LG0 for a cluster of 6

Clustering contig chr4:10008078-11008885 [14/76]

-> Adding chr4:10008078-11008885 to LG1 for a cluster of 4

Clustering contig chr3:190021525-191021637 [15/76]

-> Adding chr3:190021525-191021637 to LG2 for a cluster of 4

Clustering contig chr3:160018126-161018239 [16/76]

-> Adding chr3:160018126-161018239 to LG2 for a cluster of 5

Clustering contig chr2:80065638-81066458 [17/76]

-> Adding chr2:80065638-81066458 to LG0 for a cluster of 7

Clustering contig chr2:240196913-241197732 [18/76]

-> Adding chr2:240196913-241197732 to LG0 for a cluster of 8

Clustering contig chr1:60060392-61061397 [19/76]

-> Adding chr1:60060392-61061397 to LG3 for a cluster of 2

Clustering contig chr2:40032820-41033639 [20/76]

-> Adding chr2:40032820-41033639 to LG0 for a cluster of 9

Clustering contig chr4:80064619-81065426 [21/76]

-> Adding chr4:80064619-81065426 to LG1 for a cluster of 5

Clustering contig chr2:50041024-51041844 [22/76]
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-> Adding chr2:50041024-51041844 to LG0 for a cluster of 10

Clustering contig chr4:6004847-7005654 [23/76]

-> Adding chr4:6004847-7005654 to LG1 for a cluster of 6

Clustering contig chr2:200164094-201164913 [24/76]

-> Adding chr2:200164094-201164913 to LG0 for a cluster of 11

Clustering contig chr2:230188708-231189527 [25/76]

-> Adding chr2:230188708-231189527 to LG0 for a cluster of 12

Clustering contig chr1:10010066-11011072 [26/76]

-> Adding chr1:10010066-11011072 to LG3 for a cluster of 3

Clustering contig chr3:130014728-131014840 [27/76]

-> Adding chr3:130014728-131014840 to LG2 for a cluster of 6

Clustering contig chr2:10008206-11009025 [28/76]

-> Adding chr2:10008206-11009025 to LG0 for a cluster of 13

Clustering contig chr2:220180503-221181323 [29/76]

-> Adding chr2:220180503-221181323 to LG0 for a cluster of 14

Clustering contig chr3:150016993-151017106 [30/76]

-> Adding chr3:150016993-151017106 to LG2 for a cluster of 7

Clustering contig chr1:40040261-41041267 [31/76]

-> Adding chr1:40040261-41041267 to LG3 for a cluster of 4

Clustering contig chr2:30024615-31025434 [32/76]

-> Adding chr2:30024615-31025434 to LG0 for a cluster of 15

Clustering contig chr4:90072696-91073503 [33/76]

-> Adding chr4:90072696-91073503 to LG1 for a cluster of 7

Clustering contig chr4:110088851-111089658 [34/76]

-> Adding chr4:110088851-111089658 to LG1 for a cluster of 8

Clustering contig chr1:30030196-31031202 [35/76]

-> Adding chr1:30030196-31031202 to LG3 for a cluster of 5

Clustering contig chr3:50005665-51005777 [36/76]

-> Adding chr3:50005665-51005777 to LG2 for a cluster of 8

Clustering contig chr1:180181173-181182178 [37/76]

-> Adding chr1:180181173-181182178 to LG3 for a cluster of 6

Clustering contig chr2:1000821-2001641 [38/76]

-> Adding chr2:1000821-2001641 to LG0 for a cluster of 16

Clustering contig chr1:50050327-51051332 [39/76]

-> Adding chr1:50050327-51051332 to LG3 for a cluster of 7

Clustering contig chr1:220221433-221222439 [40/76]

-> Adding chr1:220221433-221222439 to LG3 for a cluster of 8

Clustering contig chr3:1000114-2000227 [41/76]

-> Adding chr3:1000114-2000227 to LG2 for a cluster of 9

Clustering contig chr4:150121160-151121967 [42/76]

-> Adding chr4:150121160-151121967 to LG1 for a cluster of 9

Clustering contig chr4:170137315-171138121 [43/76]

-> Adding chr4:170137315-171138121 to LG1 for a cluster of 10

Clustering contig chr4:160129237-161130044 [44/76]

-> Adding chr4:160129237-161130044 to LG1 for a cluster of 11

Clustering contig chr2:150123071-151123890 [45/76]
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-> Adding chr2:150123071-151123890 to LG0 for a cluster of 17

Clustering contig chr1:70070457-71071462 [46/76]

-> Adding chr1:70070457-71071462 to LG3 for a cluster of 9

Clustering contig chr4:130105006-131105812 [47/76]

-> Adding chr4:130105006-131105812 to LG1 for a cluster of 12

Clustering contig chr3:10001134-11001246 [48/76]

-> Adding chr3:10001134-11001246 to LG2 for a cluster of 10

Clustering contig chr3:110012462-111012574 [49/76]

-> Adding chr3:110012462-111012574 to LG2 for a cluster of 11

Clustering contig chr4:30024233-31025040 [50/76]

-> Adding chr4:30024233-31025040 to LG1 for a cluster of 13

Clustering contig chr3:40004532-41004645 [51/76]

-> Adding chr3:40004532-41004645 to LG2 for a cluster of 12

Clustering contig chr3:20002267-21002379 [52/76]

-> Adding chr3:20002267-21002379 to LG2 for a cluster of 13

Clustering contig chr3:100011329-101011442 [53/76]

-> Adding chr3:100011329-101011442 to LG2 for a cluster of 14

Clustering contig chr3:170019259-171019371 [54/76]

-> Adding chr3:170019259-171019371 to LG2 for a cluster of 15

Clustering contig chr4:60048465-61049271 [55/76]

-> Adding chr4:60048465-61049271 to LG1 for a cluster of 14

Clustering contig chr1:1001008-2002013 [56/76]

-> Adding chr1:1001008-2002013 to LG3 for a cluster of 10

Clustering contig chr3:70007931-71008043 [57/76]

-> Adding chr3:70007931-71008043 to LG2 for a cluster of 16

Clustering contig chr1:90090587-91091592 [58/76]

-> Adding chr1:90090587-91091592 to LG3 for a cluster of 11

Clustering contig chr2:70057434-71058253 [59/76]

-> Adding chr2:70057434-71058253 to LG0 for a cluster of 18

Clustering contig chr2:130106661-131107481 [60/76]

-> Adding chr2:130106661-131107481 to LG0 for a cluster of 19

Clustering contig chr1:240241563-241242569 [61/76]

-> Adding chr1:240241563-241242569 to LG3 for a cluster of 12

Clustering contig chr1:110110717-111111723 [62/76]

-> Adding chr1:110110717-111111723 to LG3 for a cluster of 13

Clustering contig chr1:160161043-161162048 [63/76]

-> Adding chr1:160161043-161162048 to LG3 for a cluster of 14

Clustering contig chr1:100100652-101101658 [64/76]

-> Adding chr1:100100652-101101658 to LG3 for a cluster of 15

Clustering contig chr3:120013595-121013707 [65/76]

-> Adding chr3:120013595-121013707 to LG2 for a cluster of 17

Clustering contig chr1:150150978-151151983 [66/76]

-> Adding chr1:150150978-151151983 to LG3 for a cluster of 16

Clustering contig chr4:120096928-121097735 [67/76]

-> Adding chr4:120096928-121097735 to LG1 for a cluster of 15

Clustering contig chr3:60006798-61006910 [68/76]
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-> Adding chr3:60006798-61006910 to LG2 for a cluster of 18

Clustering contig chr4:70056542-71057349 [69/76]

-> Adding chr4:70056542-71057349 to LG1 for a cluster of 16

Clustering contig chr3:80009064-81009176 [70/76]

-> Adding chr3:80009064-81009176 to LG2 for a cluster of 19

Clustering contig chr1:200201303-201202309 [71/76]

-> Adding chr1:200201303-201202309 to LG3 for a cluster of 17

Clustering contig chr1:80080522-81081527 [72/76]

-> Adding chr1:80080522-81081527 to LG3 for a cluster of 18

Clustering contig chr4:40032310-41033117 [73/76]

-> Adding chr4:40032310-41033117 to LG1 for a cluster of 17

Clustering contig chr4:3002424-4003231 [74/76]

-> Adding chr4:3002424-4003231 to LG1 for a cluster of 18

Clustering contig chr4:1000809-2001615 [75/76]

-> Adding chr4:1000809-2001615 to LG1 for a cluster of 19

Clustering contig chr1:120120782-121121788 [76/76]

> reorientedMatrix <- reorientAndMergeLGs(clusteredContigs,

+ exampleWCMatrix)

> exampleLGList <- reorientedMatrix[[3]]

> exampleLGList

A linkage group list containing 5 linkage groups.

NumberOfContigs

1 19

2 19

3 19

4 18

5 1

> exampleLGList[[1]]

[1] "chr3:3000341-4000453" "chr3:30003399-31003512"

[3] "chr3:6000681-7000793" "chr3:190021525-191021637"

[5] "chr3:160018126-161018239" "chr3:130014728-131014840"

[7] "chr3:150016993-151017106" "chr3:50005665-51005777"

[9] "chr3:1000114-2000227" "chr3:10001134-11001246"

[11] "chr3:110012462-111012574" "chr3:40004532-41004645"

[13] "chr3:20002267-21002379" "chr3:100011329-101011442"

[15] "chr3:170019259-171019371" "chr3:70007931-71008043"

[17] "chr3:120013595-121013707" "chr3:60006798-61006910"

[19] "chr3:80009064-81009176"

The clusterContigs function generates a list of linkage groups consisting of
all the clustered contigs. After reorientation and merging, all contigs within the
linkage groups are highly similar, while the contigs between linkage groups are
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highly dissimilar. The similarity between linkage groups can be visualized using
plotLGDistances.

> plotLGDistances(exampleLGList, exampleWCMatrix)
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While the similarity within linkage groups can be visualized using plotLink-
ageGroup (here, the first linkage group is used for creating this heatmap). Note,
side by side comparisons of linkage group members can be performs with mul-
tiple lg options (e.g. lg=1:2 will plot the first two linkage groups, lg=c(1,4) will
plot the first and forth etc.).

> plotLGDistances(exampleLGList, exampleWCMatrix, lg=1)
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6 Ordering contigs within chromosomes

With contigs clustered to chromosomes, we can then order them within chro-
mosomes. Just as meiotic recombination shuffles loci and allows genetic dis-
tances between them to be determined, sister chromatid exchanges (SCE) events
reshuffle templates, and similarly allow us to infer a linkage distance. We have
employed a greedy algorithm to do this, but have an argument allowing a TSP
solution as an alternative. Contigs are ordered by similarity across libraries,
then by contig name. Contigs that are zero distance apart (ie have no SCE
events between them and are therefore unordered) are returned in contig name
order. The output is split into sub-linkage groups, so Linkage group 1 will be
split into a number of groups depending on the number of SCE events that occur
within the chromosome. The output will be an S4 object of type contigOrdering.

> contigOrder <- orderAllLinkageGroups(exampleLGList,

+ exampleWCMatrix,

+ exampleStrandFreq,

+ exampleReadCounts,

+ whichLG=1,

+ saveOrdered=TRUE)

> contigOrder[[1]]
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A matrix of 1 LGs split into 12 sub-groups from 19 ordered fragments.

LG1.1 LG1.10 LG1.11 LG1.12 LG1.2 LG1.3

1 1 2 1 2 3

...
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If the assembly is mostly complete and you wish to compare the actual
location of the fragments in the assembly you’re working with against the output
of orderAllLinkageGroups, contiBAIT has the built in plotContigOrder function.
This assumes that the contig name from the contigOrdering object is in a format
of chr:start-end.

> plotContigOrder(contigOrder[[1]])
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Alternatively, all contigs can be ordered simultaneously by omitting the
whichLG argument. If saveOrdered is set to TRUE, plots will be generated
for every linkage group. By ordering all of the linkage groups we can proceed to
create BED files of these data for the new assemblies.

> contigOrderAll <- orderAllLinkageGroups(exampleLGList,

+ exampleWCMatrix,

+ exampleStrandFreq,

+ exampleReadCounts)

> contigOrderAll[[1]]

A matrix of 5 LGs split into 14 sub-groups from 76 ordered fragments.

LG1.1 LG1.10 LG1.11 LG1.12 LG1.2 LG1.3

1 1 2 1 2 3

...

LG4.5 LG4.6 LG4.7 LG4.8 LG4.9 LG5.1

1 1 3 1 2 1

7 Checking order using BAIT ideograms

It is possible to visually validate the ordering by creating ideogram plots of
the data. The supplied test data comprises of reads from the first four chro-
mosomes. Below is example code that will plot the second library from the
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output of strandSeqFreqTable. Note the third and forth elements of the strand-
FrequencyList are only generated if BAITtables is set to TRUE when running
strandSeqFreqTable. The plot below shows the location of the reads and high-
lights an SCE on chromosome 3. Note to only display the first library, we need
to subset the strandReadMatrix and retain these as strandReadMatrix objects.

> # extract elements from strandSeqFreqTable list

> WatsonFreqList <- strandFrequencyList[[3]]

> CrickFreqList <- strandFrequencyList[[4]]

> # subset elements to only analyze one library

> singleWatsonLibrary <- StrandReadMatrix(WatsonFreqList[,2, drop=FALSE])

> singleCrickLibrary <- StrandReadMatrix(CrickFreqList[,2, drop=FALSE])

> # Run ideogram plotter

> ideogramPlot(singleWatsonLibrary,

+ singleCrickLibrary,

+ exampleDividedChr)

●●

chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12

Library StrandSeqTestData_10

If chromosome builds are not complete (and so each contig has not been
assigned a chromosome in the chrTable instance), these ideograms can be plotted
using only the represented fragments in the order given to the function from the
orderedContig object generated from orderAllLinkageGroups. Here we will use
the orderedContig object representing all 4 linkage groups.

> ideogramPlot(singleWatsonLibrary,

+ singleCrickLibrary,
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+ exampleDividedChr,

+ orderFrame=contigOrderAll[[1]])

●

●

●

●

LG4 LG5

LG1 LG2 LG3

Library StrandSeqTestData_10

Alternatively, all libraries can be compared side by side for a single chro-
mosome. Because this will print to multiple pages, the showPage option can
be used to limit the output to a user=specified page. Here we will use the
orderedContig object representing just one linkage group.

> ideogramPlot(WatsonFreqList,

+ CrickFreqList,

+ exampleDividedChr,

+ orderFrame=contigOrder[[1]],

+ plotBy='chr',
+ showPage=1)

[1] "LG1"
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8 Writing out to a BED file

This file can be passed to bedtools along with the original (draft) reference
genome to create a new FASTA file containing the assembled genome. the
writeBed function requires a chrTable of class ChrTable with which to extract
the contig names and locations, the orientation information derived from reori-
entLinkageGroups to populate the strand column, the library weight to populate
the score column, and an object of type ContigOrdering to invoke the actual
order of fragments. A fileName can be supplied, or the default is used. BED
files will be written to the working directory

> writeBed(exampleDividedChr,

+ reorientedMatrix[[2]],

+ contigOrder[[1]])
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9 Additional plotting functions

Using a chromosome table instance, comparisons can be made between the por-
tion of contigs that are included in the analysis verses those that are excluded
based on either poor coverage or non-Strand-seq patterning. The code below
generates a box plot of contig sizes that are included in the analysis. Note,
since sample data are uniform 1 Mb framgents, the box plot does not deviate
from the median. The example bam files contain reads from 76 separate 1 Mb
fragments from chromsomes 1, 2, 3, and 4. Since the assembly is >3 Gb in size,
only a few percent of the assembly will be included in our analysis.

> makeBoxPlot(exampleDividedChr, exampleLGList)
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Furthermore we can determine the proportion of assembly fragments in each
linkage group in a barplot. If data are in the format chr:start-end, then each
unique chromosome name will have a unique color. If data are not in this format,
then each fragment will have a unique color. Here, all fragments from chr1 will
be colored differently to fragments from chr2, etc.

> barplotLinkageGroupCalls(exampleLGList, exampleDividedChr)
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Barplot of 4 contigs clustered into 5 linkage groups

Note that if clustering did not occur correctly, some bars would be a mixture
of colors. While the above displays the proportion of fragments from one chro-
mosome that has clustered into each linkage group, but omitting the by=’chr’
parameter, the plot changes to the proportion of linkage groups within each
chromosome.
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10 Flow diagram

Here is the basic functionality of the contiBAIT package. The input BAM file(s)
and output BED file are displayed in the grey ovals. All plotting functions are
shown in blue hexagons and all analysis functions are in white boxes.
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make
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