
Getting started with flowStats

F. Hahne, N. Gopalakrishnan

January 4, 2019

Abstract

flowStats is a collection of algorithms for the statistical analysis of flow cytometry data.
So far, the focus is on automated gating and normalization.

1 Introduction

Since flowStats is more a collection of algorithms, writing a coherent Vignette is somewhat
difficult. Instead, we will present a hypothetical data analysis process that also makes heavy
use of the functionality provided by flowCore, mainly the work flow infrastructure.

We start by loading the GvHD data set from the flowCore package.

> library(flowStats)

> data(ITN)

The data was acquired from blood samples by 3 groups of patients, each group containing 5
samples. Each flowFrame includes, in addition to FSC and SSC, 5 fluoresence parameters:
CD3, CD4, CD8, CD69 and HLADR.

First we need to tranform all the fluorescense channels. This is a good point to start using
a workFlow object to keep track of our progress.

> wf <- workFlow(ITN)

> tl <- transformList(colnames(ITN)[3:7], asinh, transformationId="asinh")

> add(wf, tl)

In a initial analysis step we first want to indentify and subset all T-cells. This can be archived
by gating in the CD3 and SSC dimensions, however there are several other sub-populations,
and we need to either specify our selection further, or segment the individual sub-populations.
One solution for the latter aproach is to use the mixture modelling infrastructure provided by
the flowClust package. However, since we are only interested in one single sub-population, the
T-cell, it is much faster and easier to use the lymphGate function in the flowStats package.
The idea here is to first do a rough preselection in the two-dimensional projection of the data
based on expert knowledge or prior experience and subsequently to fit a norm2Filter to this
subset. The function also allows to derive the pre-selection through back-gating: we know that
CD4 positive cells are a subset of T-cells, so by estimating CD4 positive cells first we can get
a rough idea on where to find the T-cells in the CD3 SSC projection.

1

> lg <- lymphGate(Data(wf[["asinh"]]), channels=c("SSC", "CD3"),

+ preselection="CD4", filterId="TCells", eval=FALSE,

+ scale=2.5)

> add(wf, lg$n2gate, parent="asinh")

> library(flowViz)

> print(xyplot(SSC ~ CD3| PatientID, wf[["TCells+"]],

+ par.settings=list(gate=list(col="red",

+ fill="red", alpha=0.3))))

CD3 CD3

S
S

C

0
200
400
600
800

1000

pid04015

0 2 4 6 8 10

pid04039 pid01034

0 2 4 6 8 10

pid02067

pid02059 pid04021 pid02030

0
200
400
600
800
1000

pid01019

0
200
400
600
800

1000

pid02050 pid02057 pid02048 pid04045

0 2 4 6 8 10

pid04047 pid01027

0 2 4 6 8 10

0
200
400
600
800
1000

pid04026

In the next step we want to separate T-helper and NK cells using the CD4 and CD8 stains.
A convenient way of doing this is to apply a quadGate, assuming that both CD4 and CD8 are
binary markers (cells are either positive or negative for CD4 and CD8). Often investigators
use negative samples to derive a split point between the postive and negative populations, and
apply this constant gate on all their samples. This will only work if there are no unforseen shifts
in the fluorescence itensities between samples which are purely caused by technical variation
rather than biological phenotype. Let’s take a look at this variation for the T-cell subset and
all 4 remaining fluorescense channels:

> pars <- colnames(Data(wf[["base view"]]))[c(3,4,5,7)]

2

> print(densityplot(PatientID~., Data(wf[["TCells+"]]), channels=pars, groups=GroupID,

+ scales=list(y=list(draw=F)), filter=lapply(pars, curv1Filter),

+ layout=c(4,1)))

0 2 4 6 8 10

CD8

0 2 4 6 8 10

CD69

0 2 4 6 8 10

CD4

0 2 4 6 8 10

HLADr

Indeed the data, especially for CD4 and CD8, don’t align well. At this point we could
decide to compute the quadGates for each sample separately. Alternatively, we can try to
normalize the data and then compute a common gate. The warpSet function can be used to
normalize data according to a set of landmarks, which essentially are the peaks or high-density
areas in the density estimates shown before. The ideas here are simple:

� High density areas represent particular sub-types of cells.

� Markers are binary. Cells are either positive or negative for a particular marker.

� Peaks should aline if the above statements are true.

The algorithm in warpSet performs the following steps:

1. Identify landmarks for each parameter using a curv1Filter

2. Estimate the most likely total number (k) of landmarks

3

3. Perform k-means clustering to classify landmarks

4. Estimate warping functions for each sample and parameter that best align the landmarks,
given the underlying data. This step uses functionality from the fda package.

5. Transform the data using the warping functions.

The algorithm should be robust to missing peaks in some of the samples, however the
classification in step 3 becomes harder since it is not clear which cell population it represents.

> norm <- normalization(normFun=function(x, parameters, ...)

+ warpSet(x, parameters, ...),

+ parameters=pars,

+ arguments=list(grouping="GroupID", monwrd=TRUE),

+ normalizationId="Warping")

> add(wf, norm, parent="TCells+")

Estimating landmarks for channel CD8 ...

Estimating landmarks for channel CD69 ...

Estimating landmarks for channel CD4 ...

Estimating landmarks for channel HLADr ...

Registering curves for parameter CD8 ...

Registering curves for parameter CD69 ...

Registering curves for parameter CD4 ...

Registering curves for parameter HLADr ...

> print(densityplot(PatientID~., Data(wf[["Warping"]]), channels=pars, groups=GroupID,

+ scales=list(y=list(draw=F)), filter=lapply(pars, curv1Filter),

+ layout=c(4,1)))

4

0 2 4 6 8 10

CD8

0 2 4 6 8 10

CD69

0 2 4 6 8 10

CD4

0 2 4 6 8 10

HLADr

After normalization the data look much cleaner and we should be able to use a single static
gate for all flowFrames in order to separate CD4 and CD8 positive cells. Typically one would
use a quadGate, and the quadrantGate function in flowStats can be used to automatically
estimate such a gate.

> qgate <- quadrantGate(Data(wf[["Warping"]]), stains=c("CD4", "CD8"),

+ filterId="CD4CD8", sd=3)

> add(wf, qgate, parent="Warping")

> print(xyplot(CD8 ~ CD4 | PatientID, wf[["CD4+CD8+"]],

+ par.settings=list(gate=list(fill="transparent",

+ col="red"))))

5

CD4 CD4

C
D

8
C

D
8

0
2
4
6
8

10
pid04015

0 2 4 6 8 10

pid04039 pid01034

0 2 4 6 8 10

pid02067

pid02059 pid04021 pid02030

0
2
4
6
8
10

pid01019

0
2
4
6
8

10
pid02050 pid02057 pid02048 pid04045

0 2 4 6 8 10

pid04047 pid01027

0 2 4 6 8 10

0
2
4
6
8
10

pid04026

In a final step we might be interested in finding the proportion of activated T-helper cells
by means of the CD69 stain. The rangeGate function is helpful in separating positive and
negative peaks in 1D.

> CD69rg <- rangeGate(Data(wf[["Warping"]]), stain="CD69",

+ alpha=0.75, filterId="CD4+CD8-CD69", sd=2.5)

> add(wf, CD69rg, parent="CD4+CD8-")

> print(densityplot(PatientID ~ CD69, Data(wf[["CD4+CD8-"]]), main = "CD4+",

+ groups=GroupID, refline=CD69rg@min))

6

CD4+

pid04015

pid04039

pid01034

pid02067

pid02059

pid04021

pid02030

pid01019

pid02050

pid02057

pid02048

pid04045

pid04047

pid01027

pid04026

0 2 4 6 8 10

CD69

2 Probability Binning

A probability binning algorithm for quantitating multivariate distribution differences was de-
scribed by Roederer et al. The algorithm identifies the flow parameter in a flowFrame with
the largest variance and divides the events in the flowFrame into two subgroups based on the
median of the parameter. This process continues until the number of events in each subgroup
is less than a user specified threshold.

For comparison across multiple samples, probability binning algorithm can be applied to
a control dataset to obtain the position of bins and the same bins can be applied to the
experimental dataset. The number of events in the control and sample bins can then be
compared using the Pearsons chi-square test or the probability binning metric defined by
Roederer et al.

Although probability binning can be applied simultaneously to all parameters in a flowFrame
with bins in n dimensional hyperspace, we proceed with a two dimenstional example from our
previous discussion involving CD4 and CD8 populations. This helps to simplify the demon-
stration of the method and interpretation of results.

From the workflow object containing the warped data, we extract our data frame of interest.

7

We try to compare the panels using probability binning to identify patients with CD4, CD8
populations different from a control flowFrame that we create using the data from all the
patients.

> dat <- Data(wf[["Warping"]])

>

The dat is visualized below

> print(xyplot(CD8 ~ CD4 , dat, main= "Experimental data set"))

Experimental data set

CD4 CD4

C
D

8
C

D
8

0
2
4
6
8

10
sample01

0 2 4 6 8 10

sample02 sample03

0 2 4 6 8 10

sample04

sample05 sample06 sample07

0
2
4
6
8
10

sample08

0
2
4
6
8

10
sample09 sample10 sample11 sample12

0 2 4 6 8 10

sample13 sample14

0 2 4 6 8 10

0
2
4
6
8
10

sample15

The control dataset is created by combining all the flowFrames in the flowSet. The
flowFrame is then subsetted after applying a sampleFilter so that the control flowSet created
has approximately the same number of events as the other flowSets in our example.

> datComb <- as(dat,"flowFrame")

> subCount <- nrow(exprs(datComb))/length(dat)

> sf <- sampleFilter(filterId="mySampleFilter", size=subCount)

> fres <- filter(datComb, sf)

> ctrlData <- Subset(datComb, fres)

8

> ctrlData <- ctrlData[,-ncol(ctrlData)] ##remove the column name "original"

>

The probability binning algorithm can then applied to the control data. The terminating
condition for the algorithm is set so that the number of events in each bin is approximately 5
percent of the total number of events in the control data.

> minRow=subCount*0.05

> refBins<-proBin(ctrlData,minRow,channels=c("CD4","CD8"))

>

The binned control Data can be visualized using the plotBins function. Areas in the
scatter plot with a large number of data points have a higher density of bins. Each bin also
has approximately same number of events.

> plotBins(refBins,ctrlData,channels=c("CD4","CD8"),title="Control Data")

>

1 2 3 4 5 6

1
2

3
4

5
6

7

Control Data

CD4

C
D

8

The same bin positions from the control data set are then applied to each flowFrame in our
sample Data set.

9

> sampBins <- fsApply(dat,function(x){

+ binByRef(refBins,x)

+ })

For each patient, the number events in the control and sample bins can be compared using
the calcPearsonChi or using Roederers probability binning metric.

> pearsonStat <- lapply(sampBins,function(x){

+ calcPearsonChi(refBins,x)

+ })

> sCount <- fsApply(dat,nrow)

> pBStat <-lapply(seq_along(sampBins),function(x){

+ calcPBChiSquare(refBins,sampBins[[x]],subCount,sCount[x])

+ })

For each sample, the results can be visualized using the plotBins function. The residuals
from Roeders probability binning metric or the Pearsons chi square test can be used to shade
bins to highlight bins in each sample that differ the most from the control sample.

> par(mfrow=c(4,4),mar=c(1.5,1.5,1.5,1.5))

> plotBins(refBins,ctrlData,channels=c("CD4","CD8"),title="Control Data")

> patNames <-sampleNames(dat)

> tm<-lapply(seq_len(length(dat)),function(x){

+ plotBins(refBins,dat[[x]],channels=c("CD4","CD8"),

+ title=patNames[x],

+ residuals=pearsonStat[[x]]$residuals[2,],

+ shadeFactor=0.7)

+

+ }

+)

10

1 2 3 4 5 6

1
2

3
4

5
6

7

Control Data

CD4

1 2 3 4 5 6

1
2

3
4

5
6

7

sample01

CD4

C
D

8

1 2 3 4 5 6

1
2

3
4

5
6

sample02

CD4

C
D

8

1 2 3 4 5 6

1
2

3
4

5
6

7

sample03

CD4

C
D

8

1 2 3 4 5 6

2
4

6
8

10

sample04

CD4

1 2 3 4 5 6

1
2

3
4

5
6

7

sample05

CD4

C
D

8

1 2 3 4 5 6

1
2

3
4

5
6

7

sample06

CD4

C
D

8

1 2 3 4 5 6

1
2

3
4

5
6

7

sample07

CD4

C
D

8

1 2 3 4 5 6

1
2

3
4

5
6

7

sample08

CD4

1 2 3 4 5 6

1
2

3
4

5
6

7

sample09

CD4

C
D

8

1 2 3 4 5 6

1
2

3
4

5
6

7

sample10

CD4

C
D

8

1 2 3 4 5 6

1
2

3
4

5
6

sample11

CD4

C
D

8

1 2 3 4 5 6

1
2

3
4

5
6

7

sample12

1 3 5 7

1
2

3
4

5
6

sample13

C
D

8

1 2 3 4 5 6 7

1
2

3
4

5
6

7

sample14

C
D

8

1 2 3 4 5 6

1
2

3
4

5
6

7

sample15

C
D

8

The patient with CD4/CD8 populations most different from that of the control group can
be identified from the magnitue of Pearson-chi square statistic(or Probability binning statistic).

11

chi Square Statistic pBin Statistic

sample01 236.53 25.84
sample02 424.79 47.26
sample03 70.42 4.94
sample04 122.14 11.30
sample05 151.11 15.12
sample06 179.85 17.24
sample07 223.53 24.35
sample08 118.95 11.07
sample09 305.72 34.89
sample10 231.60 22.45
sample11 70.02 4.65
sample12 240.95 27.02
sample13 234.75 25.81
sample14 131.93 12.83
sample15 40.06 2.49

12

� R version 3.5.2 (2018-12-20), x86_64-w64-mingw32

� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Running under: Windows Server 2012 R2 x64 (build 9600)

� Matrix products: default

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: BH 1.66.0-1, RcppArmadillo 0.9.200.5.0, cluster 2.0.7-1,
flowCore 1.48.1, flowStats 3.40.1, flowViz 1.46.1, flowWorkspace 3.30.2, lattice 0.20-38,
ncdfFlow 2.28.1, xtable 1.8-3

� Loaded via a namespace (and not attached): Biobase 2.42.0, BiocGenerics 0.28.0,
DEoptimR 1.0-8, IDPmisc 1.1.18, KernSmooth 2.23-15, MASS 7.3-51.1, Matrix 1.2-15,
R6 2.3.0, RColorBrewer 1.1-2, Rcpp 1.0.0, Rgraphviz 2.26.0, XML 3.98-1.16,
assertthat 0.2.0, bindr 0.1.1, bindrcpp 0.2.2, colorspace 1.3-2, compiler 3.5.2,
corpcor 1.6.9, crayon 1.3.4, data.table 1.11.8, dplyr 0.7.8, fda 2.4.8, glue 1.3.0,
graph 1.60.0, grid 3.5.2, gridExtra 2.3, gtable 0.2.0, hexbin 1.27.2, ks 1.11.3,
latticeExtra 0.6-28, magrittr 1.5, matrixStats 0.54.0, mclust 5.4.2, munsell 0.5.0,
mvtnorm 1.0-8, parallel 3.5.2, pcaPP 1.9-73, pillar 1.3.1, pkgconfig 2.0.2, purrr 0.2.5,
rlang 0.3.0.1, robustbase 0.93-3, rrcov 1.4-7, scales 1.0.0, splines 3.5.2, stats4 3.5.2,
stringi 1.2.4, stringr 1.3.1, tibble 2.0.0, tidyselect 0.2.5, tools 3.5.2, zlibbioc 1.28.0

13

	Introduction
	Probability Binning

