
Clustering time series gene expression data
with TMixClust

Monica Golumbeanu 1 and Niko Beerenwinkel 1

1Department of Biosystems Science and Engineering, ETH Zuerich, Switzerland and Swiss
Institute of Bioinformatics, Basel, Switzerland

October 30, 2018

Abstract

A large number of longitudinal studies measuring gene expression aim to stratify the genes
according to their differential temporal behaviors. Genes with similar expression patterns may
reflect functional responses of biological relevance. However, these measurements come with
intrinsic noise which makes their time series clustering a difficult task. Here, we show how
to cluster such data with the package TMixClust. TMixClust is a soft-clustering method
which employs mixed-effects models with nonparametric smoothing spline fitting and is able
to robustly stratify genes by their complex time series patterns. The package has, besides
the main clustering method, a set of functionalities assisting the user to visualise and assess
the clustering results, and to choose the optimal clustering solution. In this manual, we
present the general workflow of using TMixClust for analysing time series gene expression
data and explain the theoretical background of the clustering method used in the package
implementation.

Contents

1 Standard workflow applied to simulated and real data 2

1.1 Loading data . 2

1.2 Clustering . 5

1.3 Stability analysis, choosing optimal clustering solution 5

1.4 Assessing and validating clustering consistency with silhouette anal-
ysis . 8

1.5 Generating a results report . 9

1.6 Application of TMixClust on publicly available time series gene ex-
pression data from yeast . 10

2 Methodology behind TMixClust 12

2.1 Mixed effects model with embedded smoothing splines 13

2.2 Estimating model parameters 14

2.3 Description of simulated data 14

Clustering time series gene expression data with TMixClust

3 How to get help . 15

4 Session info . 15

5 Citing this package . 15

1 Standard workflow applied to simulated and real
data

The general workflow of clustering time series gene expression data with TMixClust comprises
the following steps:

• Load the gene expression data into a data frame
• Set clustering parameters and perform clustering for different configurations (e.g., num-

bers of clusters)
• For a chosen clustering configuration, perform stability analysis and retrieve the optimal

clustering solution
TMixClust provides additional functions which allow the user to obtain information about
clusters by accessing the attributes of a TMixClust object, generating informative plots or
generating a comprehensive clustering report.

1.1 Loading data

After loading the package TMixClust, we first need to define a data frame which contains the
time series gene expression data. By time series, we denote a vector of expression values of a
gene measured at different, successive time points. X = {100, 200, 300, 400} is an example
of a time series constituted by measurements at 4 time points. A time series gene expression
data set contains an ensemble of time series vectors, each time series being associated to a
gene. The input data frame has a number of rows equal to the number of time series vectors
and a number of columns equal to the number of time points. Row names correspond to the
time series names (i.e., gene names), while column names represent time points names (e.g.,
"2h", "4h", etc.). The data frame can contain missing values.
Package TMixClust contains a simulated data set, toy_data_df, with 91 time series. For a
detailed description of how the data set was constructed, see Section 2. We can load the
simulated time series data into a data frame, see its first rows and plot its contents as follows:

load the package

library(TMixClust)

load the simulated time series data set

data(toy_data_df)

display the first rows of the data frame

print(head(toy_data_df))

2

Clustering time series gene expression data with TMixClust

time1 time2 time3 time4 time5 time6

gene_1 14.5515322 7.156850 41.43372 64.17897 80.89528 127.10444

gene_2 7.0624795 15.192533 33.80188 55.40540 86.15328 110.73804

gene_3 -18.4186975 4.806256 13.79942 69.30776 61.74546 98.10358

gene_4 13.8395249 14.386315 42.02976 42.93031 114.87758 95.95243

gene_5 1.5623627 29.595991 33.93879 35.56273 68.20763 96.32600

gene_6 -0.8357523 34.048379 38.37403 46.25532 90.50204 128.95565

plot the time series of the data set

plot_time_series_df(toy_data_df)

1 2 3 4 5 6

−
30

0
−

10
0

10
0

Time series plot

time

va
lu

e

The user can also load the data from a tab-delimited text file, using the function get_time_series_df

in package TMixClust. For example, the previously-used time series data has been stored in
the toy_time_series.txt, also available with the TMixClust package. We can retrieve the
contents of the file and store it in a data frame as follows:
retrieve the time series data frame from a text file

toy_data_file = system.file("extdata", "toy_time_series.txt",

package = "TMixClust")

toy_data = get_time_series_df(toy_data_file)

display the first rows of the data frame

print(head(toy_data))

time1 time2 time3 time4 time5 time6

gene_1 14.5515322 7.156850 41.43372 64.17897 80.89528 127.10444

gene_2 7.0624795 15.192533 33.80188 55.40540 86.15328 110.73804

gene_3 -18.4186975 4.806256 13.79942 69.30776 61.74546 98.10358

gene_4 13.8395249 14.386315 42.02976 42.93031 114.87758 95.95243

gene_5 1.5623627 29.595991 33.93879 35.56273 68.20763 96.32600

gene_6 -0.8357523 34.048379 38.37403 46.25532 90.50204 128.95565

3

Clustering time series gene expression data with TMixClust

Finally, it is possible to load the time series data directly from a Biobase ExpressionSet object
with function get_time_series_df_bio. Here is an example using the SOS data from the
Bioconductor SPEM package:
Load the SOS pathway data from Bioconductor package SPEM

library(SPEM)

Loading required package: Rsolnp

Loading required package: Biobase

Loading required package: BiocGenerics

Loading required package: parallel

##

Attaching package: ’BiocGenerics’

The following objects are masked from ’package:parallel’:

##

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

clusterExport, clusterMap, parApply, parCapply, parLapply,

parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from ’package:stats’:

##

IQR, mad, sd, var, xtabs

The following objects are masked from ’package:base’:

##

Filter, Find, Map, Position, Reduce, anyDuplicated, append,

as.data.frame, basename, cbind, colMeans, colSums, colnames,

dirname, do.call, duplicated, eval, evalq, get, grep, grepl,

intersect, is.unsorted, lapply, lengths, mapply, match, mget,

order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind,

rowMeans, rowSums, rownames, sapply, setdiff, sort, table,

tapply, union, unique, unsplit, which, which.max, which.min

Welcome to Bioconductor

##

Vignettes contain introductory material; view with

’browseVignettes()’. To cite Bioconductor, see

’citation("Biobase")’, and for packages ’citation("pkgname")’.

data(sos)

sos_data = get_time_series_df_bio(sos)

Print the first lines of the retrieved time series data frame

print(head(sos_data))

4

Clustering time series gene expression data with TMixClust

1.2 Clustering

Once the time series data is loaded, we can perform clustering using the function TMixClust.
The only required argument of this function is the data frame containing the time series
data. By default, the function clusters the time series in 2 groups. For a different number
of desired groups, the user must specify the value of argument nb_clusters. Other optional
arguments of the TMixClust function are described in the package reference manual.
The function TMixClust creates a TMixClust object which is a list containing a set of at-
tributes such as clustering membership, estimated model parameters, posterior probabilities
of the time series, mixing coefficients or model likelihood (cf. package reference manual).
To cluster once the simulated time series data in 3 groups, we can proceed as follows:
cluster the time series in 3 groups

cluster_obj = TMixClust(toy_data_df, nb_clusters = 3)

Initializing ...

Performing EM, this operation might take a few minutes ...

log likelihood is increasing

log likelihood is increasing

log likelihood is increasing

Clustering done, results stored in a TMixClust object.

Note that, depending on the input data, the clustering result may be different than the optimal
solution. This behavior can be observed if the clustering operation is repeated several times.
Technically, this arises due to local optima in the inference procedure of TMixClust and can
only be avoided by repeating clustering several times and investigating the likelihood of the
data in each case, as described in the next section.

1.3 Stability analysis, choosing optimal clustering solution

TMixClust is based on a statistical model where inference is made through the Expectation-
Maximization (EM) technique (see Section 2 for details). When running the clustering algo-
rithm, the EM procedure might get stuck in a local optimum. The local optimum solution
has a lower likelihood and is suboptimal. It is therefore highly recommended to perform a
stability analysis of the clustering in order to see how often the algorithm gets stuck in local
optima and how different are these local optima from the best clustering solution. Finally,
we highly recommend to run several times the TMixClust function, in order to ensure that
the global optimum solution is reached.
Package TMixClust provides the function analyse_stability which runs several times the
clustering algorithm, selects the clustering solution with the highest likelihood (assumed to
be the global optimum) and returns it. The function also computes and plots the distribution
of the Rand index [1] between each clustering solution and the global optimum solution. The
Rand index quantifies the agreement probability between two clustering runs, also showing
clustering stability.

5

Clustering time series gene expression data with TMixClust

The user can define the number of clustering runs (i.e, the number of times TMixClust
algorithm is run on the same data, initial conditions and clustering configuration) and has
the possibility to parallelize the runs by defining a number of computing cores. By default,
the function uses 2 cores.
For example, we can repeat clustering on the previously presented simulated data for 10
times, for a number K=3 of clusters and using 3 cores, then plot the best clustering solution.
For execution time reasons, we have stored the result of this analysis (commented anal

yse_stability command in the code below) in a pre-computed object available with the
package TMixClust. We can interrogate this object as follows:
command used for running clustering 10 times with K=3

and obtaining the result stored in best_clust_toy_obj

best_clust_toy_obj = analyse_stability(toy_data_df, nb_clusters = 3,

nb_clustering_runs = 10,

nb_cores = 3)

load the optimal clustering result following stability analysis

data("best_clust_toy_obj")

display the likelihood of the best clustering solution

print(paste("Likelihood of the best solution:",

best_clust_toy_obj$em_ll[length(best_clust_toy_obj$em_ll)]))

[1] "Likelihood of the best solution: -2432.46527298599"

plot the time series in each cluster

for (i in 1:3) {

extract the time series in the current cluster and plot them

c_df=toy_data_df[which(best_clust_toy_obj$em_cluster_assignment==i),]

plot_time_series_df(c_df, plot_title = paste("cluster",i))

}

1 2 3 4 5 6−
10

0
−

50
0

50

cluster 1

time

va
lu

e

6

Clustering time series gene expression data with TMixClust

1 2 3 4 5 6

−
30

0
−

15
0

cluster 2

time

va
lu

e

1 2 3 4 5 6

0
50

10
0

cluster 3

time

va
lu

e

The function analyse_stability produces also a histogram of the Rand indexes correspond-
ing to each clustering solution. For our example and straightforward simulated data, we have
performed only 10 clustering runs. Depending on the size and complexity of the data, 10
runs might not be enough for attaining the global optimum. We therefore recommend the
user to explore with larger numbers of runs, especially if the obtained clustering solutions are
not satisfactory.

7

Clustering time series gene expression data with TMixClust

1.4 Assessing and validating clustering consistency with silhou-
ette analysis

To assist the user in performing a qualitative analysis of different clustering configurations and
choosing an adequate number of clusters, package TMixClust provides a tool based on the
silhouette technique [2]. The silhouette coefficient, also called silhouette width, is a measure
of how similar a data point is to the other points from the same cluster as opposed to the
rest of the clusters. Therefore, a high average silhouette width indicates a good clustering
cohesion. The most straightforward way to investigate silhouette widths for the data points
in a clustering is through visualisation of a silhouette plot. This plot displays the distribution
of silhouette coefficients calculated for each data point (in our case each time series) from
every cluster. The user can generate a silhouette plot using the plot_silhouette function.
For our simulated data, we can generate a silhouette plot for the previously obtained global
optimum clustering solution for K=3:
silhouette plot of the best clustering solution for K=3

plot_silhouette(best_clust_toy_obj)

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot for K=3 clusters

Average silhouette width : 0.8

n = 91 3 clusters Cj

j : nj | avei∈Cj si

1 : 30 | 0.76

2 : 31 | 0.83

3 : 30 | 0.82

and compare it to the silhouette plot for a clustering solution with K=4:
cluster the data in 4 groups and generate a silhouette plot

cluster_obj_2 = TMixClust(toy_data_df, nb_clusters = 4)

Initializing ...

Performing EM, this operation might take a few minutes ...

log likelihood is increasing

Clustering done, results stored in a TMixClust object.

plot_silhouette(cluster_obj_2)

8

Clustering time series gene expression data with TMixClust

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot for K=4 clusters

Average silhouette width : 0.58

n = 91 4 clusters Cj

j : nj | avei∈Cj si

1 : 17 | 0.10

2 : 13 | 0.23

3 : 30 | 0.75

4 : 31 | 0.83

Generally, the larger the silhouette widths and the more data points with silhouette width
above average, the better a clustering is defined. By comparing the silhouette plots, if we
look at the average silhouette width (black dotted line) for K=4, we can clearly see how both
the silhouette width and the proportion of data points above average width are less than for
K=3, meaning that the clustering with K=4 is starting to overfit the data. The solution with
K=3 is better. The user can in this way use the silhouette plot to choose the best number
of clusters corresponding to the data.

1.5 Generating a results report

Besides directly accessing the clustering results through a TMixClust object, the user has
the possibility of generating a more detailed clustering report. The report consists of a
comprehensive ensemble of figures and files. Time series plots for each cluster, likelihood
convergence plot, lists with time-series from each cluster, and the silhouette plot are part of
the generated report.
The report can be generated with the function generate_TMixClust_report. The user must
supply a TMixClust object and optionally a location path for creating the report folder with
all the generated files. If a location path is not provided, a folder TMixClust_report/ will be
created in the current working directory.
generate a TMixClust report with detailed clustering results

(not executed here)

generate_TMixClust_report(cluster_obj)

9

Clustering time series gene expression data with TMixClust

1.6 Application of TMixClust on publicly available time series gene
expression data from yeast

As a final example, we apply TMixClust to a real gene expression time series data set which
records transcriptional changes during budding yeast cell-division cycle [3]. For our example,
we use a subset of 125 time series measured at five different time points included in the
package file yeast_time_series.txt.
After running TMixClust with different numbers of clusters, investigating the silhouette plots
and stability as presented in the previous section, we concluded that the main patterns of
gene expression were best described by K=4 clusters. We have stored the TMixClust object
containing the optimal clustering solution in the best_clust_yeast_obj object, available with
the package. We can load the data, plot its time series, load the optimal clustering solution
and plot the 4 identified clusters as following:
retrieve the yeast time series data frame from a text file

yeast_data_file = system.file("extdata", "yeast_time_series.txt",

package = "TMixClust")

yeast_data = get_time_series_df(yeast_data_file)

plot the time series of the data set

plot_time_series_df(yeast_data)

1 2 3 4 5

−
2

0
2

4

Time series plot

time

va
lu

e

command used for running clustering 10 times with K=4

and obtaining the result stored in best_clust_yeast_obj

best_clust_yeast_obj = analyse_stability(yeast_data,

time_points = c(0,24,48,63,87),

nb_clusters = 4,

nb_clustering_runs = 10,

nb_cores = 3)

load the optimal clustering object for the yeast dataset

10

Clustering time series gene expression data with TMixClust

data("best_clust_yeast_obj")

plot the identified 4 time series clusters:

for (i in 1:4) {

extract the time series in the current cluster and plot them

c_df=yeast_data[which(best_clust_yeast_obj$em_cluster_assignment==i),]

plot_time_series_df(c_df, plot_title = paste("cluster",i))

}

1 2 3 4 5

−
2

0
2

4

cluster 1

time

va
lu

e

1 2 3 4 5

−
1

1
2

3

cluster 2

time

va
lu

e

11

Clustering time series gene expression data with TMixClust

1 2 3 4 5

−
2

0
2

4

cluster 3

time

va
lu

e

1 2 3 4 5

−
2

0
2

4

cluster 4

time

va
lu

e

2 Methodology behind TMixClust

TMixClust uses the concepts described by [4] for clustering gene expression time series data
within the Gaussian mixed-effects models framework with nonparametric smoothing spline
estimation [5]. In the following, we provide a short description of these concepts.

12

Clustering time series gene expression data with TMixClust

2.1 Mixed effects model with embedded smoothing splines

Let X = {Xi}1≤i≤N be a set of N gene expression observations, where each observation
Xi is a gene expression time series with T time-points: Xi = {xi,1, ..., xi,T }. The task is
then to cluster the N observations into K groups based on their time series behavior.
Each element of the time seriesXi is modeled as a linear combination of a fixed effect ξk(tj)
associated to the cluster k, a random effect βi, and an error term εi,j :

xi,j = ξk(tj) + βi + εi,j 1

where βi ∼ N (0, θk) and εi,j ∼ N (0, θ). The fixed effect ξk corresponds to the general
time series trend or baseline associated to cluster k, the random effect βi captures any gene-
specific systematic shift from the general trend, and εi,j corresponds to the measurement
error. Consequently,Xi follows a multivariate normal distributionN (ξk,Σk). The covariance
matrix Σk is defined as follows:

Σk = θkIT + θJT =

θk + θ θ ... θ
θ θk + θ ... θ
...
θ θ ... θk + θ

 2

where IT is the unity matrix of dimension T , while JT is a squared matrix of dimension T
with all elements equal to 1.
Our clustering problem is transposed into a mixture model, where each cluster can be de-
scribed with a Gaussian distribution whose paremeters were defined before, N (ξk,Σk):

Xi ∼
K∑

k=1

πkN (ξk,Σk) 3

and πk are the mixing coefficients of the mixture model.
Instead of choosing a parametric form for the baseline ξk, a less restrictive, nonparametric
approach using smoothing splines can be used, based on the assumption of existence of
smoothness in gene expression. Gu et al. have shown that when fitting smoothing splines to
a set of Gaussian random variables, the typical residual sum of squares (RSS) minimization
problem has an equivalent maximum-likelihood formulation [5]. Precisely, when we try to fit
a cubic spline ξk to a set of data points, we try to find the ξk that minimizes the following
score:

T∑
j=1

(xi,j − ξk(j))2 + λk

∫
(ξ′′k (t))2dt 4

where the first term quantifies the deviation of the observed values from the curve ξk, and the
second term penalizes the roughness of the curve. If the variables xi,j are normally distributed,
then the first term of the score becomes proportional to their minus log likelihood, leading
to the following penalized likelihood score [5]:

−l(Xi) + λk

∫
(ξ′′k (t))2dt. 5

Here l(Xi) stands for the log likelihood of the data. Therefore, the problem can be formulated
as a special case of maximum-likelihood estimation and can be solved using the Expectation-
Maximization (EM) method [4].

13

Clustering time series gene expression data with TMixClust

2.2 Estimating model parameters

As described in [4], the log-likelihood function in the context of the above-defined mixture
of Gaussian mixed effects models is:

l(X) = logP (X | Ξ) = log

N∏
i=1

P (Xi | Ξ)

=

N∑
i=1

log

K∑
k=1

πkN (Xi | ξk,Σk)

6

where Ξ represents the complete set of model parameters.
The R package gss [5], available on CRAN, performs non-parametric smoothing spline fitting
for Gaussian random variables. The method finds the cubic smoothing spline that minimizes
the penalized likelihood score described in the previous section and estimates the parame-
ters of the associated multivariate Gaussian distribution, namely the mean vector ξk and
covariance matrix Σk.
Within TMixClust, we use package gss in the following implemented EM learning scheme:

• 1. initialize clusters (e.g. with a K-means solution for speeding up convergence)
• 2. calculate data likelihood and repeat until convergence:

E-step:
- compute posterior probabilities
- assign genes to clusters based on their posterior probabilities
- compute mixing coefficients

M-step:
- maximize penalised likelihood score with package gss

- update model parameters
• 3. when convergence is reached, return maximum likelihood solution

2.3 Description of simulated data

For this manual, we built a simulated time series data-set, toy_data_df, available with pack-
age TMixClust. The simulation procedure relies on the assumption that each gene expression
time series vector Xi is described by a mixed effects model described by equation 1.
Using equation 1, we generate data from three different clusters whose general patterns ξk
correspond to the following three polynomials:

• ξ1(t) = 3t2 − 3t+ 1

• ξ2(t) = −10t− 5

• ξ3(t) = 4t3 − 34t2 + 25t− 47

and the corresponding gene shifts vectors are β1 ∼ N(14, 15) and β2 = β3 ∼ N(−5, 20).

14

Clustering time series gene expression data with TMixClust

3 How to get help

In addition to the package reference manual and current vignette, a detailed description of
each package function along with a corresponding example of use can be obtained through
one of the following commands:
?TMixClust

?generate_TMixClust_report

?get_time_series_df

?plot_time_series_df

?plot_silhouette

?analyse_stability

To post any questions related to the TMixClust package, please use the Bioconductor support
site https://support.bioconductor.org.

4 Session info

• R version 3.5.1 Patched (2018-07-24 r75008), x86_64-w64-mingw32
• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,

LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

• Running under: Windows Server 2012 R2 x64 (build 9600)

• Matrix products: default
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils
• Other packages: Biobase 2.42.0, BiocGenerics 0.28.0, Rsolnp 1.16, SPEM 1.22.0,

TMixClust 1.4.0
• Loaded via a namespace (and not attached): BiocManager 1.30.3,

BiocParallel 1.16.0, BiocStyle 2.10.0, Rcpp 0.12.19, backports 1.1.2, class 7.3-14,
cluster 2.0.7-1, compiler 3.5.1, digest 0.6.18, evaluate 0.12, flexclust 1.4-0, grid 3.5.1,
gss 2.1-9, highr 0.7, htmltools 0.3.6, knitr 1.20, lattice 0.20-35, magrittr 1.5,
modeltools 0.2-22, mvtnorm 1.0-8, rmarkdown 1.10, rprojroot 1.3-2, stats4 3.5.1,
stringi 1.2.4, stringr 1.3.1, tools 3.5.1, truncnorm 1.0-8, yaml 2.2.0, zoo 1.8-4

5 Citing this package

If you use this package for published research, please cite the package:
citation('TMixClust')

as well as [6].

15

https://support.bioconductor.org

Clustering time series gene expression data with TMixClust

References

[1] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification,
2(1):193–218, 1985. URL: http://dx.doi.org/10.1007/BF01908075,
doi:10.1007/BF01908075.

[2] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20:53 – 65, 1987.
URL: http://www.sciencedirect.com/science/article/pii/0377042787901257,
doi:http://dx.doi.org/10.1016/0377-0427(87)90125-7.

[3] Daniel F. Simola, Chantal Francis, Paul D. Sniegowski, and Junhyong Kim.
Heterochronic evolution reveals modular timing changes in budding yeast
transcriptomes. Genome Biology, 11(10):R105, 2010. URL:
http://dx.doi.org/10.1186/gb-2010-11-10-r105, doi:10.1186/gb-2010-11-10-r105.

[4] Ping Ma, Cristian I. Castillo-Davis, Wenxuan Zhong, and Jun S. Liu. A data-driven
clustering method for time course gene expression data. Nucleic Acids Res,
34(4):1261–1269, Mar 2006. 16510852[pmid]. URL:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1388097/, doi:10.1093/nar/gkl013.

[5] Chong Gu. Smoothing spline anova models: R package gss. Journal of Statistical
Software, 58(1):1–25, 2014. URL:
https://www.jstatsoft.org/index.php/jss/article/view/v058i05,
doi:10.18637/jss.v058.i05.

[6] Monica Golumbeanu, Sebastien Desfarges, Celine Hernandez, Manfredo Quadroni,
Sylvie Rato, Pejman Mohammadi, Amalio Telenti, Niko Beerenwinkel, and Angela Ciuffi.
Dynamics of proteo-transcriptomic response to hiv-1 infection. in preparation, 2017.

16

http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1007/BF01908075
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://dx.doi.org/http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1186/gb-2010-11-10-r105
http://dx.doi.org/10.1186/gb-2010-11-10-r105
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1388097/
http://dx.doi.org/10.1093/nar/gkl013
https://www.jstatsoft.org/index.php/jss/article/view/v058i05
http://dx.doi.org/10.18637/jss.v058.i05

	1 Standard workflow applied to simulated and real data
	1.1 Loading data
	1.2 Clustering
	1.3 Stability analysis, choosing optimal clustering solution
	1.4 Assessing and validating clustering consistency with silhouette analysis
	1.5 Generating a results report
	1.6 Application of TMixClust on publicly available time series gene expression data from yeast

	2 Methodology behind TMixClust
	2.1 Mixed effects model with embedded smoothing splines
	2.2 Estimating model parameters
	2.3 Description of simulated data

	3 How to get help
	4 Session info
	5 Citing this package

