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Universidad Nacional de Córdoba
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Abstract

The MIGSA package allows to perform a massive and integrative gene set analysis over
several experiments and gene sets simultaneously. It provides a common gene expression
analytic framework that grants a comprehensive and coherent analysis. Only a minimal
user parameter setting is required to perform both singular and gene set enrichment
analyses in an integrative manner by means of enhanced versions of the best available
methods, i.e. dEnricher and mGSZ respectively.

One of the greatest strengths of this big omics data tool is the availability of several
functions to explore, analyze and visualize its results in order to facilitate the data mining
task over huge information sources.

The MIGSA package also allows to easily load the most updated gene sets collections
from several repositories.

Keywords: singular enrichment analysis, over representation analysis, gene set enrichment
analysis, functional class scoring, big omics data, r package, bioconductor.

1. Introduction

The functional analysis methodology allows researchers to gain biological insight from a list of
deregulated gene sets between experimental conditions of interest. As suggested by (Rodriguez
et al. 2016) both singular enrichment analysis (SEA) and gene set enrichment analysis (GSEA)
must be performed over the same dataset in order to gain as much biological insight as possible.
This strategy is known as Integrative Functional Analysis (IFA) and integrates into the same
analysis with enhanced versions of the dEnricher (Fang and Gough 2014) and mGSZ (Mishra
et al. 2014) methods.

At present, there are several freely available datasets which provide data over the same disease,
characteristic of interest (e.g. survival), or subjects studied over several different platforms.
The Cancer Genome Atlas (TCGA) among other projects makes possible the study and
comparison in a massive way of these datasets, not only among them but, also against our
own population of interest. This unprecedented opportunity allows researchers to search for
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common functional patterns between these studies, or, more interestingly, particular patterns
of our experiment in question. However, this type of approach has not been implemented in
any existing tool yet, leaving aside valuable biological information that might assist research
hypotheses.

Here, we present a Massive and Integrative Gene Set Analysis tool called MIGSA. It allows
to evaluate and compare, massively and transparently, a large collection of datasets coming
from diverse sources, maintaining the gene set enrichment ideas of IFA and minimizing pa-
rameter settings. In addition, it includes a gene ranking score alternative for RNAseq data by
integrating the Voom+Limma methodological approach. It provides an enhanced version of
mGSZ (MIGSAmGSZ) faster than the default implementation, in order to speed up even more
its execution, MIGSA can be run using multicore architectures. In this sense it can be applied
over a large collection of datasets on many gene sets in a fast way. Finally, MIGSA provides
several user-friendly methods to easily explore and visualize results at gene set, dataset and
individual gene level to aid researchers in their biological hypothesis understanding.

2. Preliminaries

2.1. Citing MIGSA

MIGSA implements a body of methodological research by the authors and co-workers. Cita-
tions are the main means by which the authors receive professional credit for their work. The
MIGSA package can be cited as:

Rodriguez JC, González GA, Fresno C, Llera AS, Fernández EA (2016).
“Improving information retrieval in functional analysis.” Computers in Biology and Medicine,
79, 10–20.

2.2. Installation

MIGSA is a package for the R computing environment and it is assumed that you have already
installed R. See the R project at http://www.r-project.org. To install the latest version of
MIGSA, you will need to be using the latest version of R.
MIGSA is part of the Bioconductor project at http://www.bioconductor.org. (Prior to R
3.4).
To get MIGSA package you can type in an R session:

> ## try http:// if https:// URLs are not supported

> if (!requireNamespace("BiocManager", quietly=TRUE))

+ install.packages("BiocManager");

> BiocManager::install("MIGSA");

2.3. Class definitions

MIGSA basically consists of six classes and various functions that interact with them. The
following is a simplified class diagram of MIGSA.
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Following we present a detailed diagram of each class, including the functions that interact
in each case. It should be noted that these diagrams represent a general overview of MIGSA,
for a detailed explanation of each class and function please refer to the user manual.
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3. Gene sets

MIGSA allows to perform the functional analysis of any type of gene sets provided by the
user. Such gene sets should be present as GeneSetCollection objects from the GSEABase R
library, in this section we will give a brief introduction on how to construct such an object
from our own gene sets. In addition, the tools provided by MIGSA to automatically load
various collections of known gene sets will be presented.

3.1. Sample GeneSetCollection creation

Here we present a simple way to create a GeneSetCollection object from own gene sets, for
more detailed information please refer to the GSEABase documentation.
For this example we are going to manually create the GeneSetCollection object for the gene
sets hsa00232, hsa00130 and hsa00785 from KEGG.
First, we will have to create each gene set separately, and then the GeneSetCollection object.

> library(GSEABase);
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> gs1 <- GeneSet(c("10", "1544", "1548", "1549", "1553", "7498", "9"),

+ setName="hsa00232",

+ setIdentifier="Caffeine metabolism");

> gs1;

setName: hsa00232

geneIds: 10, 1544, ..., 9 (total: 7)

geneIdType: Null

collectionType: Null

details: use 'details(object)'

> gs2 <- GeneSet(c("10229", "27235", "3242", "51004", "51805", "6898", "84274"),

+ setName="hsa00130",

+ setIdentifier="Ubiquinone and other terpenoid-quinone biosynthesis");

> gs3 <- GeneSet(c("11019", "387787", "51601"),

+ setName="hsa00785",

+ setIdentifier="Lipoic acid metabolism");

> ## And now construct the GeneSetCollection object.

> gsetsColl <- GeneSetCollection(list(gs1, gs2, gs3));

> gsetsColl;

GeneSetCollection

names: hsa00232, hsa00130, hsa00785 (3 total)

unique identifiers: 10, 1544, ..., 51601 (17 total)

types in collection:

geneIdType: NullIdentifier (1 total)

collectionType: NullCollection (1 total)

3.2. MIGSA gene sets loading

As mentioned above, MIGSA provides functions for automatically loading known collections
of gene sets. These functions are loadGo and downloadEnrichrGeneSets, the first constructs
the GeneSetCollection object using the org.Hs.eg.db R package. Meanwhile, downloadEn-
richrGeneSets constructs the object by downloading the gene sets from the Enrichr database
(http://amp.pharm.mssm.edu/Enrichr/#stats). Enrichr gene set names can be listed with
the enrichrGeneSets function.

> ## Not run:

>

> ## Load cellular component gene sets (another possibility would be "MF" or "BP")

> ccGsets <- loadGo("CC"); # It is a GeneSetCollection object

> ## Load KEGG and Reactome gene sets

> keggReact <- downloadEnrichrGeneSets(c("KEGG_2015", "Reactome_2015"));

> ## It is a list object containing two GeneSetCollection objects

>

> ## End(Not run)
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4. MIGSAmGSZ

4.1. mGSZ speedup

As stated below, MIGSA provides the MIGSAmGSZ function, which implements mGSZ but
running much faster. In order to test MIGSAmGSZ’s correctness and speed up over mGSZ, it
was evaluated using the TCGA’s microarray breast cancer dataset. Basal vs. Luminal A
contrast was tested (16,207 genes x 237 subjects) over the Gene Ontology and KEGG gene
sets (20,425 gene sets).
This analysis was carried out using an Intel(R) Xeon(R) E5-2620 v3 @ 2.40GHz (24 cores),
128 GB RAM. Different number of cores were used to analyze the speed up.
Let’s test it!
Note that we are using MulticoreParam as I am testing under Linux.

> library(BiocParallel);

> library(mGSZ);

> library(MIGSA);

> library(MIGSAdata);

> data(tcgaMAdata);

> subtypes <- tcgaMAdata$subtypes;

> geneExpr <- tcgaMAdata$geneExpr;

> ## MA data: filter genes with less than 30% of genes read per condition

> dim(geneExpr);

[1] 16207 237

> geneExpr <- geneExpr[

+ rowSums(is.na(geneExpr[, subtypes == "Basal" ])) <

+ .3*sum(subtypes == "Basal") &

+ rowSums(is.na(geneExpr[, subtypes == "LumA" ])) <

+ .3*sum(subtypes == "LumA")

+ , ];

> dim(geneExpr);

[1] 16207 237

> ## Not run:

>

> ## Download GO and KEGG gene sets using MIGSA

> gSets <- list(

+ KEGG=downloadEnrichrGeneSets("KEGG_2015")[[1]],

+ BP=loadGo("BP"),

+ CC=loadGo("CC"),

+ MF=loadGo("MF"));

> gSetsList <- do.call(c, lapply(gSets, MIGSA:::asList));

> rm(gSets);
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> nCores <- c(1,2,4,8,10,12,14);

> allRes <- lapply(nCores, function(actCores) {

+ # setting in how many cores to run

+ bp_param <- MulticoreParam(workers=actCores, threshold="DEBUG",

+ progressbar=TRUE);

+

+ set.seed(8818);

+ newtimeSpent <- Sys.time();

+ MIGSAmGSZres <- MIGSAmGSZ(geneExpr, gSetsList, subtypes,

+ bp.param=bp_param);

+ newtimeSpent <- Sys.time()-newtimeSpent;

+

+ res <- list(timeSpent=newtimeSpent, res=MIGSAmGSZres);

+

+ return(res);

+ })

> set.seed(8818);

> timeSpent <- Sys.time();

> mGSZres <- mGSZ(geneExpr, gSetsList, subtypes);

> timeSpent <- Sys.time()-timeSpent;

> mGSZres <- mGSZres$mGSZ;

> ## this tests that the returned values are equal, must give all TRUE

> lapply(allRes, function(actRes) {

+ actRes <- actRes$res;

+ actRes <- actRes[,1:4];

+ mergedRes <- merge(mGSZres, actRes, by="gene.sets",

+ suffixes=c("mGSZ", "MIGSAmGSZ"));

+

+ all(unlist(lapply(2:4, function(x) {

+ all.equal(mergedRes[,x], mergedRes[,x+3])

+ })));

+ })

> ## End(Not run)

> ## As last chunk of code was not executed, we load that data:

> library(MIGSAdata);

> data(mGSZspeedup);

> nCores <- mGSZspeedup$nCores;

> allRes <- mGSZspeedup$allRes;

> timeSpent <- mGSZspeedup$timeSpent;

> ## End(Loading data)

>

> newtimeSpent <- lapply(allRes, function(actRes) {

+ actRes$timeSpent;

+ })

> names(newtimeSpent) <- nCores;

> speeduptable <- c(timeSpent, unlist(newtimeSpent));



10 MIGSA: Massive and Integrative Gene Set Analysis

> names(speeduptable) <- c(1, nCores);

> ## Let's put all times in the same unit in order to measure speedup

> newtimeSpent <- lapply(newtimeSpent, function(acttime) {

+ units(acttime) <- "secs";

+ return(acttime);

+ });

> units(timeSpent) <- "secs";

> speedup <- do.call(c, lapply(newtimeSpent, function(acttime)

+ as.numeric(timeSpent)/as.numeric(acttime)));

> speeduptable <- rbind(speeduptable, c(1, speedup));

> ## calculate efficiency

> speeduptable <- rbind(speeduptable,

+ speeduptable[2,] / as.numeric(colnames(speeduptable)));

> rownames(speeduptable) <- c("Runtime", "Speedup", "Efficiency");

> round(speeduptable, 2);

1 1 2 4 8 10 12 14

Runtime 2.46 1.55 46.50 24.98 15.63 13.67 14.79 28.43

Speedup 1.00 1.58 3.18 5.91 9.45 10.81 9.98 5.19

Efficiency 1.00 1.58 1.59 1.48 1.18 1.08 0.83 0.37

As it can be seen in Table 1, no matter the number of cores in which MIGSAmGSZ was tested,
it outperformed mGSZ. Running in one core, it has shown a speedup of 1.6X, reaching for
a top of 10.8X speedup with ten cores, giving the same results in 14 minutes in contrast to
mGSZ ’s 2.46 hours execution.

Table 1: MIGSAmGSZ speedup
mGSZ MIGSAmGSZ

#cores 1 1 2 4 8 10 12 14
Runtime 2.46h 1.55h 46.5m 24.98m 15.63m 13.67m 14.79m 28.43m
Speedup 1 1.58 3.18 5.91 9.45 10.81 9.98 5.19
Efficiency 1 1.58 1.59 1.48 1.18 1.08 0.83 0.37

4.2. MIGSAmGSZ simple example

Following, we show how to simply execute one MIGSAmGSZ analysis.
In this example we will generate an expression matrix with 200 genes (ten differentially
expressed) and eight subjects (four of condition “C1” and four of “C2”), and 50 gene sets of
ten genes each one.

> library(MIGSA);

> ## Let's create our gene expression matrix with 200 genes and 8 subjects

> nSamples <- 8; # 8 subjects

> nGenes <- 200; # 200 genes

> geneNames <- paste("g", 1:nGenes, sep = ""); # with names g1 ... g200

> ## Create random gene expression data matrix.
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> set.seed(8818);

> exprMatrix <- matrix(rnorm(nGenes*nSamples),ncol=nSamples);

> ## It must have rownames, as they will be treated as the gene names!

> rownames(exprMatrix) <- geneNames;

> ## There will be 10 differentially expressed genes.

> nDeGenes <- 10;

> ## Let's generate the offsets to sum to the differentially expressed genes.

> deOffsets <- matrix(2*abs(rnorm(nDeGenes*nSamples/2)), ncol=nSamples/2);

> ## Randomly select which are the DE genes.

> deIndexes <- sample(1:nGenes, nDeGenes, replace=FALSE);

> exprMatrix[deIndexes, 1:(nSamples/2)] <-

+ exprMatrix[deIndexes, 1:(nSamples/2)] + deOffsets;

> ## 4 subjects with condition C1 and 4 with C2.

> conditions <- rep(c("C1", "C2"),c(nSamples/2,nSamples/2));

> nGSets <- 50; # 50 gene sets

> ## Let's create randomly 50 gene sets, of 10 genes each

> gSets <- lapply(1:nGSets, function(i) sample(geneNames, size=10));

> names(gSets) <- paste("set", as.character(1:nGSets), sep="");

> ## with names set1 ... set50

>

> ## And simply execute MIGSAmGSZ

> MIGSAmGSZres <- MIGSAmGSZ(exprMatrix, gSets, conditions);

INFO [2018-10-30 23:30:22] Number of unique permutations: 63

INFO [2018-10-30 23:30:22] Getting ranking at cores: 4

> ## It is just a simple data.frame

> head(MIGSAmGSZres);

gene.sets pvalue mGszScore

set14 set14 0.01436984 2.842219

set26 set26 0.03195210 -2.127805

set1 set1 0.06608332 -1.825934

set42 set42 0.07087139 1.439009

set47 set47 0.07924634 1.344799

set40 set40 0.09196656 -1.866621

impGenes

set14 g65, g195, g20, g176, g26, g47, g180

set26 g40, g130, g1, g119, g107, g163, g102, g131, g80, g185

set1 g98, g93, g157, g190, g186, g135, g160, g73, g114, g177

set42 g102, g69, g50, g192, g43, g182, g10, g47, g26, g189

set47 g191, g156, g124, g90, g99, g31, g23, g152, g29

set40 g189, g192, g50, g54, g64, g103, g135, g44, g58, g8

5. MIGSA simple example

Following, we show how to simply execute one MIGSA analysis.
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In this example we will generate two expression matrices with 300 genes (30 differentially
expressed) and 16 subjects (8 of condition “C1” and 8 of “C2”), and two sets of 30 gene sets
of ten genes each one.

> library(MIGSA);

> ## Let's simulate two expression matrices of 300 genes and 16 subjects.

> nGenes <- 300; # 300 genes

> nSamples <- 16; # 16 subjects

> geneNames <- paste("g", 1:nGenes, sep = ""); # with names g1 ... g300

> ## Create the random gene expression data matrices.

> set.seed(8818);

> exprData1 <- matrix(rnorm(nGenes*nSamples),ncol=nSamples);

> rownames(exprData1) <- geneNames;

> exprData2 <- matrix(rnorm(nGenes*nSamples),ncol=nSamples);

> rownames(exprData2) <- geneNames;

> ## There will be 30 differentially expressed genes.

> nDeGenes <- nGenes/10;

> ## Let's generate the offsets to sum to the differentially expressed genes.

> deOffsets <- matrix(2*abs(rnorm(nDeGenes*nSamples/2)), ncol=nSamples/2);

> ## Randomly select which are the DE genes.

> deIndexes1 <- sample(1:nGenes, nDeGenes, replace=FALSE);

> exprData1[deIndexes1, 1:(nSamples/2)] <-

+ exprData1[deIndexes1, 1:(nSamples/2)] + deOffsets;

> deIndexes2 <- sample(1:nGenes, nDeGenes, replace=FALSE);

> exprData2[deIndexes2, 1:(nSamples/2)] <-

+ exprData2[deIndexes2, 1:(nSamples/2)] + deOffsets;

> exprData1 <- new("MAList",list(M=exprData1));

> exprData2 <- new("MAList",list(M=exprData2));

> ## 8 subjects with condition C1 and 8 with C2.

> conditions <- rep(c("C1", "C2"),c(nSamples/2,nSamples/2));

> fitOpts <- FitOptions(conditions);

> nGSets <- 30; # 30 gene sets

> ## Let's create randomly 30 gene sets, of 10 genes each

>

> gSets1 <- lapply(1:nGSets, function(i) sample(geneNames, size=10));

> names(gSets1) <- paste("set", as.character(1:nGSets), sep="");

> myGSs1 <- as.Genesets(gSets1);

> gSets2 <- lapply(1:nGSets, function(i) sample(geneNames, size=10));

> names(gSets2) <- paste("set", as.character((nGSets+1):(2*nGSets)), sep="");

> myGSs2 <- as.Genesets(gSets2);

> igsaInput1 <- IGSAinput(name="igsaInput1", expr_data=exprData1,

+ fit_options=fitOpts);

> igsaInput2 <- IGSAinput(name="igsaInput2", expr_data=exprData2,

+ fit_options=fitOpts);

> experiments <- list(igsaInput1, igsaInput2);

> ## As we did not set gene sets for each IGSAinput, then we will have to

> ## provide them in MIGSA function
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>

> ## another way of generating the same MIGSA input would be setting the

> ## gene sets individually to each IGSAinput:

> igsaInput1 <- IGSAinput(name="igsaInput1", expr_data=exprData1,

+ fit_options=fitOpts,

+ gene_sets_list=list(myGeneSets1=myGSs1, myGeneSets2=myGSs2));

> igsaInput2 <- IGSAinput(name="igsaInput2", expr_data=exprData2,

+ fit_options=fitOpts,

+ gene_sets_list=list(myGeneSets1=myGSs1, myGeneSets2=myGSs2));

> experiments <- list(igsaInput1, igsaInput2);

> ## And then simply run MIGSA

> migsaRes <- MIGSA(experiments);

INFO [2018-10-30 23:30:44] *************************************

INFO [2018-10-30 23:30:44] Starting MIGSA analysis.

INFO [2018-10-30 23:30:44] *************************************

INFO [2018-10-30 23:30:44] igsaInput1 : Starting IGSA analysis.

INFO [2018-10-30 23:30:44] 60 Gene Sets.

INFO [2018-10-30 23:30:44] igsaInput1 : dEnricher starting.

INFO [2018-10-30 23:30:44] DE genes 7 of a total of 300 ( 2.33 %)

INFO [2018-10-30 23:30:44] Using BRIII: 300 genes.

INFO [2018-10-30 23:30:44] Running SEA at cores: 4

INFO [2018-10-30 23:30:55] igsaInput1 : dEnricher finnished.

INFO [2018-10-30 23:30:55] igsaInput1 : mGSZ starting.

INFO [2018-10-30 23:30:55] Number of unique permutations: 198

INFO [2018-10-30 23:30:55] Getting ranking at cores: 4

INFO [2018-10-30 23:31:18] igsaInput1 : mGSZ finnished.

INFO [2018-10-30 23:31:18] igsaInput1 : IGSA analysis ended.

INFO [2018-10-30 23:31:18] *************************************

INFO [2018-10-30 23:31:18] igsaInput2 : Starting IGSA analysis.

INFO [2018-10-30 23:31:18] 60 Gene Sets.

INFO [2018-10-30 23:31:18] igsaInput2 : dEnricher starting.

INFO [2018-10-30 23:31:19] DE genes 3 of a total of 300 ( 1 %)

INFO [2018-10-30 23:31:19] Using BRIII: 300 genes.

INFO [2018-10-30 23:31:19] Running SEA at cores: 4

INFO [2018-10-30 23:31:29] igsaInput2 : dEnricher finnished.

INFO [2018-10-30 23:31:29] igsaInput2 : mGSZ starting.

INFO [2018-10-30 23:31:29] Number of unique permutations: 199

INFO [2018-10-30 23:31:29] Getting ranking at cores: 4

INFO [2018-10-30 23:31:53] igsaInput2 : mGSZ finnished.

INFO [2018-10-30 23:31:53] igsaInput2 : IGSA analysis ended.

> ## migsaRes contains the p-values obtained in each experiment for each gene set

> head(migsaRes);

id Name GS_Name igsaInput1 igsaInput2

1 set1 myGeneSets1 0.69760989 0.67067126
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2 set10 myGeneSets1 0.33645471 0.05331946

3 set11 myGeneSets1 0.72236131 0.23921454

4 set12 myGeneSets1 0.65533918 0.55771735

5 set13 myGeneSets1 0.45011198 0.21997850

6 set14 myGeneSets1 0.03478516 0.27108191

> ## Other possible analyses:

> ## If we want some gene sets to be evaluated in just one IGSAinput we

> ## can do this:

>

> ## If we want to test myGSs1 in exprData1 and myGSs2 in exprData2:

> igsaInput1 <- IGSAinput(name="igsaInput1", expr_data=exprData1,

+ fit_options=fitOpts, gene_sets_list=list(myGeneSets1=myGSs1));

> igsaInput2 <- IGSAinput(name="igsaInput2", expr_data=exprData2,

+ fit_options=fitOpts, gene_sets_list=list(myGeneSets2=myGSs2));

> experiments <- list(igsaInput1, igsaInput2);

> ## If we want to test myGSs1 in exprData1 and both in exprData2:

> igsaInput1 <- IGSAinput(name="igsaInput1", expr_data=exprData1,

+ fit_options=fitOpts, gene_sets_list=list(myGeneSets1=myGSs1));

> igsaInput2 <- IGSAinput(name="igsaInput2", expr_data=exprData2,

+ fit_options=fitOpts,

+ gene_sets_list=list(myGeneSets1=myGSs1, myGeneSets2=myGSs2));

> experiments <- list(igsaInput1, igsaInput2);

>

> ## And this way, all possible combinations.

6. MIGSA’s utility

In this section we are going to demonstrate MIGSA’s utility by analyzing several well known
breast cancer datasets. For each dataset, subjects were classified into breast cancer intrinsic
subtypes (Basal-Like, Her2-Enriched, Luminal B, Luminal A and Normal-Like) using the
PAM50 algorithm (Parker et al. 2009) by means of the pbcmc R library (Fresno et al. 2016)
and processed as suggested by Sorlie et al. (Sørlie et al. 2010). Only those subjects classified
as Basal-Like or Luminal A were included.
Enrichment was tested over 20,245 Gene Ontology gene sets (14,291 biological processes, 1,692
cellular components and 4,263 molecular functions), and 179 from KEGG.

6.1. Used datasets

A total of eight datasets were tested, six of them were loaded by means of the pbcmc R
library, i.e., Mainz, Nki, Transbig, Unt, Upp and Vdx); and two were downloaded from the
TCGA repository, i.e., microarray and RNAseq data matrices. For each dataset, genes reliably
detected in less than 30% of the samples per condition were removed from the analysis. In
addition, in RNAseq data, genes with a mean less than 15 counts per condition were also
removed. Detailed datasets information can be seen in Table 2.
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Table 2: Datasets details
Dataset Platform Subjects Genes

Basal Luminal A

Mainz Microarray 18 117 13,091
Nki Microarray 66 100 12,975
TCGA Microarray 95 142 16,207
TCGA RNAseq 95 142 16,741
Transbig Microarray 37 89 13,091
Unt Microarray 22 42 18,528
Upp Microarray 19 150 18,528
Vdx Microarray 80 134 13,091

Total - 432 916 -

6.2. MIGSA on TCGA data

Let’s run MIGSA over the TCGA RNAseq and microarray datasets. We are going to load
both datasets using the MIGSAdata package, please refer to the gettingTcgaData vignette
for details about these matrices.
NOTE: This chunk of code took 29.83m to execute on 10 cores.

> library(edgeR);

> library(limma);

> library(MIGSA);

> library(MIGSAdata);

> data(tcgaMAdata);

> data(tcgaRNAseqData);

> geneExpr <- tcgaMAdata$geneExpr;

> rnaSeq <- tcgaRNAseqData$rnaSeq;

> subtypes <- tcgaMAdata$subtypes; # or tcgaRNAseqData$subtypes; are the same

> fitOpts <- FitOptions(subtypes);

> ## MA data: filter genes with less than 30% of genes read per condition

> dim(geneExpr);

[1] 16207 237

> geneExpr <- geneExpr[

+ rowSums(is.na(geneExpr[, subtypes == "Basal" ])) <

+ .3*sum(subtypes == "Basal") &

+ rowSums(is.na(geneExpr[, subtypes == "LumA" ])) <

+ .3*sum(subtypes == "LumA")

+ , ];

> dim(geneExpr);

[1] 16207 237

> ## create our IGSAinput object

> geneExpr <- new("MAList", list(M=geneExpr));
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> geneExprIgsaInput <- IGSAinput(

+ name="tcgaMA",

+ expr_data=geneExpr,

+ fit_options=fitOpts,

+ # with this treat we will get around 5% differentially expressed genes

+ sea_params=SEAparams(treat_lfc=1.05));

> summary(geneExprIgsaInput);

INFO [2018-10-30 23:31:58] DE genes 802 of a total of 16207 ( 4.95 %)

exp_name #samples contrast #C1 #C2

"tcgaMA" "237" "BasalVSLumA" "95" "142"

#gene_sets #genes treat_lfc de_cutoff adjust_method

"0" "16207" "1.05" "0.01" "fdr"

#de_genes br perm_number %de_genes

"802" "briii" "200" "4.95"

> ## RNAseq data: filter genes with less than 30% of genes read per

> ## condition and (below)

> dim(rnaSeq);

[1] 19948 237

> rnaSeq <- rnaSeq[

+ rowSums(is.na(rnaSeq[, subtypes == "Basal" ])) <

+ .3*sum(subtypes == "Basal") &

+ rowSums(is.na(rnaSeq[, subtypes == "LumA" ])) <

+ .3*sum(subtypes == "LumA")

+ , ];

> dim(rnaSeq);

[1] 19948 237

> ## a mean less than 15 counts per condition.

> rnaSeq <- rnaSeq[

+ rowMeans(rnaSeq[, subtypes == "Basal" ], na.rm=TRUE) >= 15 &

+ rowMeans(rnaSeq[, subtypes == "LumA" ], na.rm=TRUE) >= 15

+ , ];

> dim(rnaSeq);

[1] 16741 237

> ## create our IGSAinput object

> rnaSeq <- DGEList(counts=rnaSeq);

> rnaSeqIgsaInput <- IGSAinput(

+ name="tcgaRNA",

+ expr_data=rnaSeq,
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+ fit_options=fitOpts,

+ # with this treat we will get around 5% differentially expressed genes

+ sea_params=SEAparams(treat_lfc=1.45));

> summary(rnaSeqIgsaInput);

INFO [2018-10-30 23:32:05] DE genes 826 of a total of 16741 ( 4.93 %)

exp_name #samples contrast #C1 #C2

"tcgaRNA" "237" "BasalVSLumA" "95" "142"

#gene_sets #genes treat_lfc de_cutoff adjust_method

"0" "16741" "1.45" "0.01" "fdr"

#de_genes br perm_number %de_genes

"826" "briii" "200" "4.93"

> experiments <- list(geneExprIgsaInput, rnaSeqIgsaInput);

> ## Not run:

>

> gSets <- list(

+ KEGG=downloadEnrichrGeneSets("KEGG_2015")[[1]],

+ BP=loadGo("BP"),

+ CC=loadGo("CC"),

+ MF=loadGo("MF"));

> set.seed(8818);

> tcgaMigsaRes <- MIGSA(experiments, geneSets=gSets);

>

> ## Time difference of 29.83318 mins in 10 cores

> ## End(Not run)

6.3. MIGSA on pbcmc datasets

Let’s run MIGSA over the pbcmc microarray datasets. We are going to load six datasets
using the MIGSAdata package, please refer to the gettingPbcmcData vignette for details on
how we got this matrices.
NOTE: This chunk of code took 1.27 hours to execute on 10 cores.

> library(limma);

> library(MIGSA);

> library(MIGSAdata);

> data(pbcmcData);

> ## with these treat log fold change values we will get around 5% of

> ## differentially expressed genes for each experiment

> treatLfcs <- c(0.7, 0.2, 0.6, 0.25, 0.4, 0.75);

> names(treatLfcs) <- c("mainz", "nki", "transbig", "unt", "upp", "vdx");

> experiments <- lapply(names(treatLfcs), function(actName) {

+ actData <- pbcmcData[[actName]];

+ actExprs <- actData$geneExpr;
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+ actSubtypes <- actData$subtypes;

+

+ # filtrate genes with less than 30% per condition

+ actExprs <- actExprs[

+ rowSums(is.na(actExprs[, actSubtypes == "Basal" ])) <

+ .3*sum(actSubtypes == "Basal") &

+ rowSums(is.na(actExprs[, actSubtypes == "LumA" ])) <

+ .3*sum(actSubtypes == "LumA")

+ , ]

+

+ # create our IGSAinput object

+ actExprData <- new("MAList", list(M=actExprs));

+ actFitOpts <- FitOptions(actSubtypes);

+ actIgsaInput <- IGSAinput(

+ name=actName,

+ expr_data=actExprData,

+ fit_options=actFitOpts,

+ sea_params=SEAparams(treat_lfc=treatLfcs[[actName]]));

+ return(actIgsaInput);

+ })

>

> ## Not run:

>

> gSets <- list(

+ KEGG=downloadEnrichrGeneSets("KEGG_2015")[[1]],

+ BP=loadGo("BP"),

+ CC=loadGo("CC"),

+ MF=loadGo("MF"));

> set.seed(8818);

> pbcmcMigsaRes <- MIGSA(experiments, geneSets=gSets);

>

> ## Time difference of 1.26684 hours in 10 cores

> ## End(Not run)

6.4. MIGSA exploring breast cancer enrichment results

Let’s start with the exploratory task. First, merge both MIGSAres objects into one with all
the datasets results.
NOTE: In order to follow this code, sections 6.2 and 6.3 must have been executed. If not,
jump to the next “End(Not run)” tag.

> ## Not run:

>

> dim(pbcmcMigsaRes);

> # [1] 20425 9
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> dim(tcgaMigsaRes);

> # [1] 20425 5

>

> ## Let's merge both results in one big MIGSAres object

> bcMigsaRes <- merge(pbcmcMigsaRes, tcgaMigsaRes);

> dim(bcMigsaRes);

> # [1] 20425 11

> ## End(Not run)

> ## As last chunk of code was not executed, we load that data:

> library(MIGSA);

> library(MIGSAdata);

> data(bcMigsaResAsList);

> bcMigsaRes <- MIGSA:::MIGSAres.data.table(bcMigsaResAsList$dframe,

+ bcMigsaResAsList$genesRank);

> rm(bcMigsaResAsList);

> ## End(Loading data)

>

> ## Let's see a summary of enriched gene sets at different cutoff values

> summary(bcMigsaRes);

mainz nki tcgaMA tcgaRNA transbig unt upp vdx

enr_at_0_01 655 768 754 889 821 958 1117 829

enr_at_0_05 1866 2217 2098 2224 1873 1992 2325 2148

enr_at_0_1 2948 3492 3185 3462 3137 3221 3612 3322

> ## We will set a cutoff of 0.01 (recommended)

> ## A gene set will be considered enriched if its p-value is < 0.01 on

> ## SEA or GSEA.

> bcMigsaRes <- setEnrCutoff(bcMigsaRes, 0.01);

>

> ## The bcMigsaRes data object that is included in MIGSA package is the

> ## following:

> # bcMigsaRes <- bcMigsaRes[1:200,];

Let’s start exploring this MIGSA results object.

> colnames(bcMigsaRes);

[1] "id" "Name" "GS_Name" "mainz" "nki" "tcgaMA"

[7] "tcgaRNA" "transbig" "unt" "upp" "vdx"

> dim(bcMigsaRes);

[1] 20425 11

> summary(bcMigsaRes);
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INFO [2018-10-30 23:32:17] Gene sets enriched in 0 experiments: 18191

INFO [2018-10-30 23:32:17] Gene sets enriched in 1 experiments: 921

INFO [2018-10-30 23:32:17] Gene sets enriched in 2 experiments: 377

INFO [2018-10-30 23:32:17] Gene sets enriched in 3 experiments: 231

INFO [2018-10-30 23:32:17] Gene sets enriched in 4 experiments: 150

INFO [2018-10-30 23:32:17] Gene sets enriched in 5 experiments: 104

INFO [2018-10-30 23:32:17] Gene sets enriched in 6 experiments: 96

INFO [2018-10-30 23:32:17] Gene sets enriched in 7 experiments: 113

INFO [2018-10-30 23:32:17] Gene sets enriched in 8 experiments: 242

$consensusGeneSets

0 1 2 3 4 5 6 7 8

18191 921 377 231 150 104 96 113 242

$enrichmentIntersections

mainz nki tcgaMA tcgaRNA transbig unt upp vdx

mainz 655 393 397 372 489 421 485 477

nki 393 768 443 419 464 457 508 424

tcgaMA 397 443 754 525 495 503 532 451

tcgaRNA 372 419 525 889 460 457 480 434

transbig 489 464 495 460 821 550 605 573

unt 421 457 503 457 550 958 679 510

upp 485 508 532 480 605 679 1117 596

vdx 477 424 451 434 573 510 596 829

> ## We can see that 18,191 gene sets were not enriched, while 242 were

> ## enriched in every dataset.

> ## Moreover, there is a high consensus between datasets, with a maximum of 679

> ## enriched gene sets in common between upp and unt.

> ##

> ## Let's keep only gene sets enriched in at least one data set

> bcMigsaRes <- bcMigsaRes[ rowSums(bcMigsaRes[,-(1:3)], na.rm=TRUE) > 0, ];

> dim(bcMigsaRes);

[1] 2234 11

> ## Let's see enrichment heat map

> ## i.e. a heat map of binary data (enriched/not enriched)

> aux <- migsaHeatmap(bcMigsaRes);
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> ## In this heat map we can see a high number of gene sets that are being

> ## enriched in consensus by most of the datasets. Let's explore them.

> ## We can obtain them (enriched in at least 80% of datasets) by doing

> consensusGsets <- bcMigsaRes[ rowSums(bcMigsaRes[, -(1:3)], na.rm=TRUE)

+ > 6.4,];

> dim(consensusGsets);

[1] 355 11

> ## And let's see from which sets are them

> table(consensusGsets$GS_Name);

BP CC KEGG_2015 MF

287 49 1 18

> ## Moreover, let's see which are the genes that are mostly contributing

> ## to gene set enrichment (genes contributing in at least 70 gene sets)

> ## i.e. a heat map showing the number of datasets in which each gene (columns)

> ## contributed to enrich each gene set (rows).

> aux <- genesHeatmap(bcMigsaRes, enrFilter=6.4, gsFilter=70,

+ dendrogram="col");
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> ## Well, we could continue exploring them, however, at the first heat map we

> ## can see that TCGA datasets are defining a separate cluster, this is caused

> ## by a big group of gene sets that seem to be enriched mainly by TCGA.

> ## Let's explore them:

> ## (gene sets enriched by both TCGA datasets and in less than 20% of the other)

> tcgaExclusive <- bcMigsaRes[

+ rowSums(bcMigsaRes[, c("tcgaMA", "tcgaRNA")], na.rm=TRUE) == 2 &

+ rowSums(bcMigsaRes[, c("mainz","nki","transbig","unt","upp","vdx")],

+ na.rm=TRUE) < 1.2

+ ,];

> dim(tcgaExclusive);

[1] 83 11

> table(tcgaExclusive$GS_Name);

BP CC KEGG_2015 MF

62 3 1 17

> ## Let's see which is this KEGG enriched gene set

> tcgaExclusive[ tcgaExclusive$GS_Name == "KEGG_2015", "id" ];
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id

20362 nitrogen metabolism

> ## Let's see in which depths of the GO tree are these gene sets

> table(getHeights(

+ tcgaExclusive[ tcgaExclusive$GS_Name != "KEGG_2015", "id", drop=TRUE]));

2 3 4 5 6 7 10

7 12 24 20 14 4 1

> ## We can see that the most of the gene sets are between depths three and five

> ## And plot the GO tree of the other gene sets (except of CC, as it

> ## has only three gene sets, and it will look bad)

> aux <- migsaGoTree(tcgaExclusive, ont="MF");
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> aux <- migsaGoTree(tcgaExclusive, ont="BP");
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> ## Let's explore which are the genes that repeat the most in these

> ## gene sets (that are present in at least 15% of the gene sets)

> ## i.e. a bar plot of the number of gene sets in which each gene contributed to

> ## enrich.

> mostEnrichedGenes <- genesBarplot(tcgaExclusive, gsFilter=12.45);
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> mostEnrichedGenes$data;

id number

652 652 15

123872 123872 14

6422 6422 13

388389 388389 13

55036 55036 13

2099 2099 13

> ## Gene 652 is contributing to enrichment in 15 gene sets. And in total

> ## there are 6 genes that are being really active in TCGA enriched

> ## gene sets

> tcgaImportantGenes <- as.character(mostEnrichedGenes$data$id);

> ## Let's do the same analysis for the rest of the datasets, so we can filtrate

> ## which genes are acting exclusively in TCGA datasets

> consMostEnrichedGenes <- genesBarplot(consensusGsets, gsFilter=53.25);
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> consImportantGenes <- as.character(consMostEnrichedGenes$data$id);

> ## Let's see which genes they share

> intersect(tcgaImportantGenes, consImportantGenes);

[1] "652"

> ## And get the really tcga exclusive genes (5 genes)

> tcgaExclGenes <- setdiff(tcgaImportantGenes, consImportantGenes);

Another way of exploring the data is for example, suppose we have a list of genes of interest,
we can filter our results having the gene sets that were enriched by our interest genes as
follows:

> ## Let's sample 4 genes from consImportantGenes (as if they are our interest

> ## genes)

> set.seed(8818);

> myInterestGenes <- sample(consImportantGenes, 4);

> ## So we can get the filtered MIGSAres object by doing:

> intGenesMigsa <- filterByGenes(bcMigsaRes, myInterestGenes);

> dim(intGenesMigsa);
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[1] 392 11

> head(intGenesMigsa);

id

4 GO:0000003

14 GO:0000022

40 GO:0000070

41 GO:0000075

45 GO:0000082

46 GO:0000083

Name

4 reproduction

14 mitotic spindle elongation

40 mitotic sister chromatid segregation

41 cell cycle checkpoint

45 G1/S transition of mitotic cell cycle

46 regulation of transcription involved in G1/S transition of mitotic cell cycle

GS_Name mainz nki tcgaMA tcgaRNA transbig unt upp vdx

4 BP FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE

14 BP TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

40 BP TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

41 BP TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE

45 BP TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

46 BP TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

And with this new MIGSAres object reproduce the same analysis done below.

Session Info

> sessionInfo()

R version 3.5.1 Patched (2018-07-24 r75008)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2012 R2 x64 (build 9600)

Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252
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attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] edgeR_3.24.0 MIGSAdata_1.5.0 MIGSA_1.6.0

[4] mGSZ_1.0 ismev_1.42 mgcv_1.8-25

[7] nlme_3.1-137 MASS_7.3-51 limma_3.38.0

[10] GSA_1.03 BiocParallel_1.16.0 GSEABase_1.44.0

[13] graph_1.60.0 annotate_1.60.0 XML_3.98-1.16

[16] AnnotationDbi_1.44.0 IRanges_2.16.0 S4Vectors_0.20.0

[19] Biobase_2.42.0 BiocGenerics_0.28.0

loaded via a namespace (and not attached):

[1] ggdendro_0.1-20 bit64_0.9-7 splines_3.5.1

[4] assertthat_0.2.0 RBGL_1.58.0 blob_1.1.1

[7] Category_2.48.0 pillar_1.3.0 RSQLite_2.1.1

[10] lattice_0.20-35 glue_1.3.0 digest_0.6.18

[13] colorspace_1.3-2 Matrix_1.2-14 plyr_1.8.4

[16] pkgconfig_2.0.2 genefilter_1.64.0 purrr_0.2.5

[19] xtable_1.8-3 GO.db_3.7.0 snow_0.4-3

[22] scales_1.0.0 tibble_1.4.2 ggplot2_3.1.0

[25] lazyeval_0.2.1 survival_2.43-1 RJSONIO_1.3-0

[28] magrittr_1.5 crayon_1.3.4 memoise_1.1.0

[31] GOstats_2.48.0 vegan_2.5-3 tools_3.5.1

[34] data.table_1.11.8 org.Hs.eg.db_3.7.0 formatR_1.5

[37] matrixStats_0.54.0 stringr_1.3.1 munsell_0.5.0

[40] locfit_1.5-9.1 cluster_2.0.7-1 lambda.r_1.2.3

[43] bindrcpp_0.2.2 compiler_3.5.1 rlang_0.3.0.1

[46] futile.logger_1.4.3 grid_3.5.1 RCurl_1.95-4.11

[49] AnnotationForge_1.24.0 labeling_0.3 bitops_1.0-6

[52] gtable_0.2.0 DBI_1.0.0 reshape2_1.4.3

[55] R6_2.3.0 dplyr_0.7.7 bit_1.1-14

[58] bindr_0.1.1 futile.options_1.0.1 permute_0.9-4

[61] Rgraphviz_2.26.0 stringi_1.2.4 Rcpp_0.12.19

[64] tidyselect_0.2.5
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